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Interaction of Bragg solitons in fiber gratings
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1. INTRODUCTION
Perhaps the most fascinating feature of solitons is their
particle like behavior. Solitons tend to survive not only
perturbations but also collisions with other solitons. In
fact, solitons are guaranteed to survive collisions if they
satisfy an integrable nonlinear equation such as the non-
linear Schrödinger equation (NLSE). Survival of two
such colliding solitons is even more remarkable if one
notes that solitons interact strongly with each other dur-
ing the collision. For copropagating NLSE solitons, the
interaction is either attractive or repulsive, depending on
the relative phase between two solitons. In both cases
the evolution of the NLSE soliton pair is well
understood.1–4

The existence of solitons in one-dimensional nonlinear
periodic media, such as fiber Bragg gratings, has been es-
tablished theoretically for more than 10 years5–9 and has
also been confirmed experimentally.10–15 Such Bragg
solitons result from the balancing of the strong grating-
induced dispersion with the Kerr nonlinearity of the fiber.
Bragg solitons can propagate through the grating at any
speed between zero and the speed of light inside optical
fiber; propagation of Bragg solitons at 50–75% of the
speed of light has been demonstrated experimentally.10

However, Bragg solitons differ fundamentally from the
0740-3224/99/010018-06$15.00 ©
NLSE solitons, since they are solutions of the nonlinear
coupled-mode equations, which are nonintegrable.
These solutions, which were first reported in their most
general form by Aceves and Wabnitz,8 are solitary waves,
not true solitons. In general, survival during mutual in-
teraction is not guaranteed for solitary waves. Collisions
between two counterpropagating Bragg solitons having
their central frequencies in the middle of the photonic
bandgap were studied numerically by Aceves and
Wabnitz.8 Their results revealed that Bragg solitons
tend to survive collisions, though their amplitudes and
velocities are not necessarily preserved. Recently it was
shown in Refs. 16 and 17 that Bragg solitons are well de-
scribed by the NLSE at low intensities (;10 GW/cm2).
One may expect that, under such conditions, the interac-
tion of Bragg solitons should reflect many of the features
of NLSE solitons. It is noteworthy that Bragg solitons
that have been demonstrated in the experiments10–14 are
within this low-intensity regime. Preliminary experi-
mental results on Bragg soliton interaction in this regime
have been reported recently.18

In this paper we extend the initial numerical results
obtained by Aceves and Wabnitz8 and study the interac-
tion of Bragg solitons whose input central frequency lies
just outside the stop band, a situation that corresponds
1999 Optical Society of America
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closely to the recent experiments of Eggleton and
colleagues.10–14 We show that, in the low-intensity limit,
Bragg soliton interaction exhibits features reminiscent of
the NLSE solitons, except for the fact that their relative
phase depends on the initial mutual separation. We
study through numerical simulations the interaction be-
tween two copropagating Bragg solitons in both finite ge-
ometry, which corresponds to the laboratory experiments,
and infinite geometry. In the finite geometry the cou-
pling of light into the grating can complicate the interac-
tion, whereas the coupling process can be ignored in an
infinitely long grating. We also discuss the implication of
our numerical results for observing the interaction of
Bragg solitons experimentally.

2. INFINITE GRATING
We first consider the propagation of two copropagating
Bragg solitons in an infinitely long grating, as shown in
Fig. 1(a). In this case we can ignore the coupling issue at
the interface between the uniform and the nonlinear pe-
riodic media. Following Ref. 19, we write the total opti-
cal field inside the grating as the sum of two counter-
propagating waves:

E~z, t ! 5 @E1~z, t !exp~ikBz ! 1 E2~z, t !

3 exp~2ikBz !#exp~2ivBt !, (1)

where the slowly varying amplitudes E1 and E2 satisfy
the following set of two nonlinear coupled-mode
equations9:

i
]E1

]z
1 i

n
c

]E1

]t
1 kE2 1 GSuE1u2E1 1 2G3uE2u2E1

5 0, (2)

2i
]E2

]z
1 i

n
c

]E2

]t
1 kE1 1 GSuE2u2E2 1 2G3uE1u2E2

5 0. (3)

Here vB is the Bragg frequency, kB is the corresponding
wave number, n is the average refractive index, c is the
speed of light in vacuum, k 5 pDn/lB is the coupling co-
efficient associated with the grating, and GS and G3 are
self- and cross-phase-modulation parameters, respec-
tively.

A solution of these equations, corresponding to a two-
parameter family of Bragg solitons, was found in Ref. 8.
It can be written as

E6 5 aẼ6 exp@ih~u!#, (4)

where
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with u 5 kg (sin d )(z 2 nVt), s 5 kg (cos d)(nz 2 Vt), g
5 (1 2 n2)21/2, V 5 c/n, and
1

a2 5 1 1
GS

2G3

1 1 n2

1 2 n2 ,

exp@ih~u!# 5 F2
exp~2u! 1 exp~2id!

exp~2u! 1 exp~id!
G

2GSn

2G3~12n2!1GS~11n2!
.

(6)

In Eqs. (5) and (6) the parameter n can have any value in
the range unu , 1 and determines the soliton velocity.
The parameter d is also a free parameter and can have
any value in the range 0 < d < p. It determines the
soliton amplitude and width. The parameter space (d, n)
can be divided into two regions, as shown in Fig. 2, by use
of the approximate condition unu , sin d (Ref. 9), which
determines approximately the range of parameters d and
n for which the Bragg soliton has its central frequency in-
side the stop band (shaded area). The unshaded area
represents Bragg solitons whose central frequency lies
outside the stop band. In this paper we focus on the soli-
ton propagation in the unshaded area.

For our numerical example, we choose the parameter
values that correspond closely to the recent
experiments10–14 and take k 5 10 cm21, n 5 0.745, and
d 5 0.13 (represented by a filled point in Fig. 2), which
correspond to the full width at half-maximum (FWHM)
soliton width TFWHM 5 1.763/(kgnV sin d ) 5 60 ps. To

Fig. 1. Schematic of Bragg soliton interaction in (a) an infinitely
long grating and in (b) a finite grating.

Fig. 2. Illustration of the grating stop band in the parameter
space (d, n), showing the region for which the soliton central fre-
quency lies inside the stop band (shaded area). The filled point
represents the parameters used in numerical simulations.
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study interaction between two copropagating Bragg soli-
tons, we solve Eqs. (2) and (3) numerically with the initial
conditions

E6~z, 0! 5 E6~z 2 z0 , 0! 1 E6~z 2 z0 2 LS , 0!, (7)

where E6 on the right-hand side are obtained from Eq. (4)
and z0 and z0 1 LS are the initial positions of the two
solitons inside the infinite Bragg grating. We use a
fourth-order collocation technique20 to solve Eqs. (2) and
(3). Results of our numerical simulation are shown in
Fig. 3 for three different initial pulse separations: LS
5 1.113 cm [Fig. 3(a)], LS 5 1.252 cm [Fig. 3(b)], and
LS 5 1.391 cm [Fig. 3(c)]. We discuss below how the ini-
tial separation LS was chosen. Figure 3 shows that, for
slightly different values of LS , the interaction behavior is
quite different even though we did not introduce any ad-
ditional relative phase shift between the two solitons.

To understand the results shown in Fig. 3, we note that
the solution to a linearized set of the coupled-mode equa-

Fig. 3. Interaction of two Bragg solitons in an infinite fiber grat-
ing for three different values of their initial separation LS : (a)
LS 5 1.113 cm, (b) LS 5 1.252 cm, and (c) LS 5 1.391 cm.
Other parameter values used are n 5 0.745, d 5 0.13, and
k 5 10 cm21.
tions [GS 5 G3 5 0 in Eqs. (2) and (3)] can be written in
terms of two Bloch functions at the stop-band edges, each
multiplied by a plane wave of the form exp@i(Qz 2 V6t)#,
where V6 5 6V(Q2 1 k2)1/2. The solution of the nonlin-
ear coupled-mode equations can also be written in terms
of the same Bloch functions, but with a nonconstant
amplitude.21 To lowest order in the intensity, with the
notation of Refs. 9 and 21, the coupled-mode equations
have the solution

FE1

E2
G 5 a~z, t !FA1

A2
Gexp@i~Qz 2 V6t !#. (8)

If we assume that the amplitude a(z, t) varies on a much
slower scale than that associated with the plane wave and
make use of the slowly varying envelope approximation,
we find that the amplitude a(z, t) satisfies the NLSE.16

In the notation of Eq. (8), Eq. (7) can be written in the
form

FE1~z, 0!

E2~z, 0!G 5 a~z 2 z0 , 0!FA1

A2
Gexp@iQ~z 2 z0!#

1 a@z 2 ~z0 1 LS!, 0#FA1

A2
G

3 exp@iQ~z 2 z0!#exp~2iQLS!. (9)

From Eq. (9) we can see that two solitons spaced by LS
exhibit a relative phase difference QLS when the field en-
velopes E6 are considered. Therefore, to study the inter-
action of truly in-phase solitons, the separation LS must
be chosen such that QLS 5 2pm, where m is an integer.
In other words, if the soliton separation is LS , then a
phase difference of f between the slowly varying ampli-
tudes a(z, t) associated with the two Bragg solitons cor-
responds to a phase difference of f 2 QLS between the
field envelopes E6(z0) and E6(z0 1 LS). Hence, to con-
sider a pair of truly in-phase solitons, we must choose

f 5 QLS . (10)

Of course, the choice of LS is also dictated by the soliton
width, since LS should be large enough to resolve one soli-
ton from another yet small enough to let their tails
overlap.1 To be more accurate, we should include the
z-dependent part of the phase of a(z, t) in determining
LS . We can obtain this phase by following Ref. 16.

The values of LS in Fig. 3 were chosen such that Fig.
3(a) corresponds to in-phase solitons; Fig. 3(b), to a phase
shift of p/2; and Fig. 3(c), to out-of-phase solitons. As can
be seen in Fig. 3, in-phase solitons attract each other [Fig.
3(a)], while out-of-phase solitons repel each other [Fig.
3(c)]. In the case of the p/2 phase shift, energy flows
from one soliton to another [Fig. 3(b)]. Note also that in
Fig. 3(a) two solitons collapse and recover periodically as
they propagate through the grating, similar to the case of
NLSE solitons.2,3

In summary, we found that in the low-intensity limit
the interaction is reminiscent of nonlinear Schrödinger
solitons in that Bragg solitons attract or repel, depending
on their relative phases, but that their relative phase de-
pends on the initial mutual separation.
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3. FINITE GRATING
Because one of the aims of a numerical analysis is to
model laboratory experiments, we now consider the
propagation of two Bragg solitons in a uniform finite grat-
ing of length L [Fig. 1(b)]. While pulses can be charac-
terized experimentally only outside the grating, numeri-
cal simulations also show how the soliton pair evolves
inside the grating—information crucial for understanding
the interaction process. Numerical modeling also allows
us to study the soliton interaction in long gratings, which
are not readily available for experiments. As above, we
solve the nonlinear coupled-mode equations (2) and (3)
numerically but use the boundary conditions appropriate
for a finite grating. More specifically, the coupling of
light from a uniform medium to a nonlinear fiber grating
must be considered. Assuming that two sech-shaped
pulses, delayed by a time interval TS , are incident upon
the left-hand boundary at z 5 0, the boundary conditions
become

E1~0, t ! 5 A0 sech@~t 2 TS!/T0#

1 A0 sech~t/T0!exp~if!, (11)

E2~L, t ! 5 0, (12)

where T0 5 TFWHM/1.763 and f is the relative phase shift
between the two incident pulses. The initial condition is
now taken to be E6(z, 0) 5 0.

The amplitude A0 in Eq. (9) has been chosen, according
to the procedure described in Ref. 9, such that a pair of
Bragg solitons is formed close to the front end of the grat-
ing. Briefly, knowing the optical field associated with the
Bragg soliton [Eqs. (5)] and the transmission coefficient of
the grating, one can find the external field required for ex-
citing the Bragg soliton with a fixed set of values for the
parameters d and n. To demonstrate the effectiveness of
this coupling procedure, we first consider the case of a
single pulse launched into the fiber grating. We show in
Fig. 4 the evolution of an input pulse launched with three
different initial amplitudes A0 . Figure 4(a) corresponds
to the regime for which the input field is too weak to form
a Bragg soliton. Figure 4(b) corresponds to the case in
which the input field is chosen through the procedure de-
scribed in Ref. 9. A Bragg soliton is formed close to the
front end of the grating and propagates undistorted along
the length of the grating. In the case in which the input
field is stronger than that necessary to form the Bragg
soliton, the pulse sheds radiation as it propagates along
the grating, as shown in Fig. 4(c).

We now consider the interaction of Bragg solitons ex-
cited by launching two input pulses separated by a time
interval TS by using Eqs. (11) and (12). We also take
f 5 0 in Eq. (11), which implies no relative phase shift
between the two input pulses. To facilitate the compari-
son between finite and infinite gratings, numerical simu-
lations were performed by use of the same values for TS
(corresponding to LS 5 nVTS), as in Section 2. Figure 5
shows that the results for a finite grating are quite differ-
ent from those obtained for an infinite grating (Fig. 3).
For a finite grating the interaction is attractive for any
initial time delay TS (with f 5 0), while for an infinite
grating it can be attractive or repulsive, depending on the
initial pulse separation. This apparent discrepancy be-
tween finite and infinite gratings can be understood from
Eq. (8), which shows that the phase accumulated on
propagation over a distance z is Qz. Thus two in-phase
solitons outside the grating are always in phase inside the
grating as well, as the extra propagation of the first soli-
ton over the distance LS inside the grating provides pre-
cisely the phase required for two solitons to be in phase in
an infinite grating [see Eq. (10)]. If we now change the
initial phase shift from f 5 0 to f 5 2QLS and perform
the simulations with the modified boundary condition

E1~0, t ! 5 A0 sech@~t 2 TS!/T0#

1 A0 sech~t/T0!exp~2iQLS!, (13)

we obtain the results shown in Fig. 6. A comparison of
Figs. 3 and 6 shows that the interaction features for a fi-

Fig. 4. Evolution of a 60-ps sech-shaped pulse in a 50-cm-long
fiber grating for an input pulse intensity of (a) I0 5 A0

2

5 3 GW/cm2, (b) I0 5 5.94 GW/cm2, and (c) I0 5 10 GW/cm2.
A Bragg soliton is formed only in case (b).
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nite grating are now almost identical to those obtained in
Section 2 for an infinite grating (see Fig. 3). We notice
that for the smallest pulse separation [Fig. 6(a)] the inter-
action features are slightly different from those shown in
Fig. 3(a). This difference may be attributed to the non-
linear nature of soliton interaction: Formation of the
first Bragg soliton changes the grating enough that it af-
fects formation of the second soliton. This effect becomes
more severe for smaller pulse separations and may com-
plicate launching of a soliton pair. As the initial pulse
separation increases, this effect should diminish, as can
also be seen in Fig. 6. It is noteworthy that one can re-
verse the direction of energy flow in Fig. 6(b) simply by
changing the sign of the relative phase shift. Similar be-
havior has been observed for two fundamental spatial
solitons.4

Fig. 5. Interaction of two Bragg solitons in a 50-cm-long fiber
grating for the same initial soliton separations as in Fig. 3. The
input pulses have a width of TFWHM 5 60 ps and a peak intensity
I0 5 5.94 GW/cm2.
4. EXPERIMENTAL CONSIDERATIONS
We now discuss the implications of the numerical results
obtained in Section 3 for designing realistic laboratory ex-
periments, where grating lengths of 10 cm or less are
typically used. In the previous sections we found that
the in-phase interaction leads to a periodic collapse and
revival of two Bragg solitons. To observe this behavior in
an experiment, the collapse distance Lc should be less
than the grating length L.

In the limit of low-intensity solitons considered in this
paper, Bragg solitons are well described by the NLSE,16

and therefore the results obtained for the NLSE solitons
can be used for Bragg solitons as well. For NLSE soli-
tons, the dependence of soliton separation on the propa-
gation distance and on the initial soliton separation TS
has been studied analytically by use of the inverse scat-
tering technique,1,22,23 resulting in the following expres-
sion for the collapse distance:

Fig. 6. Interaction of two Bragg solitons in a 50-cm-long fiber
grating for the same parameters as in Fig. 5, but with three dif-
ferent relative phase shifts: (a) f 5 0, (b) f 5 p/2, and (c)
f 5 p.



Litchinitser et al. Vol. 16, No. 1 /January 1999 /J. Opt. Soc. Am. B 23
Lc 5
p sinh~TS /T0!cosh~TS/2T0!

TS /T0 1 sinh~TS /T0!

T0
2

ub2u
, (14)

where b2 is the effective group-velocity dispersion intro-
duced by the grating given by24,25

b2 5 2
1

V2

k2

@~V/V !2 2 k2#3/2 . (15)

For our numerical examples considered in Sections 2 and
3 [Figs. 3(a) and 6(a)], we find from Eq. (14) that Lc
' 23 cm, which is in good agreement with the results
shown in Figs. 3(a) and 6(a). Soliton interaction can be
observed in experiment if the grating length L . Lc .
Therefore, to observe soliton collapse in a 10-cm-long
grating, one should decrease the collapse distance either
by using shorter pulses or by increasing b2 . The use of
shorter pulses is not practical because of their relatively
wide spectrum, which makes operation near the edge of
the photonic bandgap hard to realize. Moreover, higher
input pulse intensities necessary to form shorter solitons
can lead to significant damage of the grating. Equation
(15) shows that b2 increases close to an edge of the pho-
tonic bandgap, i.e., when V/V → k, which corresponds
to slowly moving solitons. For example, from Eq. (14),
Lc ' 9 cm when V/V 5 12.5 cm21 and k 5 10 cm21.
Thus the experimental observation of the collapse of two
Bragg solitons would require either low-velocity solitons
or a relatively long grating.

5. CONCLUSIONS
We have studied numerically the interaction between two
copropagating Bragg solitons in a fiber grating. Our re-
sults reveal that, in the low-intensity limit, Bragg solitons
can attract or repel each other or can exchange energy,
depending on their initial separation. Bragg soliton in-
teraction exhibits features reminiscent of the NLSE soli-
tons except for the new feature that the relative phase of
two Bragg solitons depends on their initial separation.
Finally, we discussed the implications of our numerical
results for observing the interaction of Bragg solitons ex-
perimentally. In the future we hope to address in detail
the interaction of Bragg solitons in the nonintegrable
limit.

ACKNOWLEDGMENTS
We thank T. G. Brown and A. V. Buryak for fruitful dis-
cussions. N. M. Litchinitser thanks the Aileen S. An-
drew Foundation for a postdoctoral fellowship. This re-
search is partially supported by the National Science
Foundation under grant PHY 94-15583 and by the Aus-
tralian Research Council.

REFERENCES
1. J. P. Gordon, ‘‘Interaction forces among solitons in optical

fibers,’’ Opt. Lett. 8, 596–598 (1983).
2. F. M. Mitschke and L. F. Mollenauer, ‘‘Experimental obser-

vation of interaction forces between solitons in optical fi-
bers,’’ Opt. Lett. 12, 407–409 (1987).

3. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird,
M. K. Oliver, J. L. Jackel, and P. W. E. Smith, ‘‘Experimen-
tal observation of spatial soliton interactions,’’ Opt. Lett.
16, 15–17 (1991).

4. M. Shalaby, F. Reynaud, and A. Barthelemy, ‘‘Experimen-
tal observation of spatial soliton interactions with a p/2
relative phase difference,’’ Opt. Lett. 17, 778–780 (1992).

5. W. Chen and D. L. Mills, ‘‘Gap solitons and nonlinear opti-
cal response of superlattices,’’ Phys. Rev. Lett. 58, 160–163
(1987).

6. J. E. Sipe and H. G. Winful, ‘‘Nonlinear Schrödinger soli-
tons in a periodic structure,’’ Opt. Lett. 13, 132–133 (1988).

7. D. N. Christodoulides and R. I. Joseph, ‘‘Slow Bragg soli-
tons in nonlinear periodic structures,’’ Phys. Rev. Lett. 62,
1746–1749 (1989).

8. A. B. Aceves and S. Wabnitz, ‘‘Self-induced transparency
solitons in nonlinear refractive periodic media,’’ Phys. Lett.
A 141, 37–42 (1989).

9. C. M. de Sterke and J. E. Sipe, ‘‘Gap solitons,’’ in Progress
in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1994),
Vol. 33, pp. 203–260.

10. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug,
and J. E. Sipe, ‘‘Bragg grating solitons,’’ Phys. Rev. Lett. 76,
1627–1630 (1996).

11. C. M. de Sterke, B. J. Eggleton, and P. A. Krug, ‘‘High-
intensity pulse propagation in uniform gratings and grating
superstructures,’’ J. Lightwave Technol. 15, 1494–1502
(1997).

12. B. J. Eggleton, R. E. Slusher, T. A. Strasser, and C. M. de
Sterke, ‘‘High intensity pulse propagation in fiber Bragg
gratings,’’ in Bragg Gratings, Photosensitivity, and Poling
in Glass Fibers and Waveguides: Applications and Funda-
mentals, Vol. 17 of 1997 OSA Technical Digest Series (Op-
tical Society of America, Washington, D.C., 1997), paper
BMB1-1.

13. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, ‘‘Nonlin-
ear pulse propagation in Bragg gratings,’’ J. Opt. Soc. Am.
B 14, 2980–2993 (1997).

14. B. J. Eggleton, C. M. de Sterke, R. E. Slusher, A. Aceves, J.
E. Sipe, and T. A. Strasser, ‘‘Modulational instabilities and
tunable multiple soliton generation in apodized fiber grat-
ings,’’ Opt. Commun. 149, 267–271 (1998).

15. D. Taverner, N. G. R. Broderick, D. T. Richardson, R. I.
Laming, and M. Ibsen, ‘‘Nonlinear self-switching and mul-
tiple gap-soliton formation in a fiber Bragg grating,’’ Opt.
Lett. 23, 328–330 (1998).

16. C. M. de Sterke and B. J. Eggleton, ‘‘Bragg solitons and the
nonlinear Schrödinger equation,’’ Phys. Rev. E (to be pub-
lished).

17. T. Iizuka and M. Wadati, ‘‘Grating solitons in optical fi-
bers,’’ J. Phys. Soc. Jpn. 66, 2308–2313 (1997).

18. B. J. Eggleton, R. E. Slusher, N. M. Litchinitser, G. P.
Agrawal, and C. M. de Sterke, ‘‘Experimental observation
of interaction of Bragg solitons,’’ in International Quantum
Electronics Conference (IQEC), Vol. 7 of 1998 OSA Techni-
cal Digest Series (Optical Society of America, Washington,
D.C., 1998), paper QTuJ5.

19. H. G. Winful, ‘‘Pulse compression in optical fiber filters,’’
Appl. Phys. Lett. 46, 527–529 (1985).

20. C. M. de Sterke, K. R. Jackson, and B. D. Robert, ‘‘Nonlin-
ear coupled mode equations on a finite interval: a numeri-
cal procedure,’’ J. Opt. Soc. Am. B 8, 403–412 (1991).

21. C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, and M.
J. Steel, ‘‘Nonlinear optics in fiber gratings,’’ Opt. Fiber
Technol. 2, 253–268 (1996).

22. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd
ed. (Wiley, New York, 1997).

23. C. Desem and P. L. Chu, IEE Proc.-J: Optoelectron. 134,
145–151 (1987).

24. P. St. J. Russell, ‘‘Bloch wave analysis of dispersion and
pulse propagation in pure distributed feedback structures,’’
J. Mod. Opt. 38, 1599–1619 (1991).

25. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, ‘‘Fi-
ber Bragg gratings for dispersion compensation in trans-
mission: Theoretical model and design criterion for nearly
ideal pulse compression,’’ J. Lightwave Technol. 15, 1303–
1313 (1997).


