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Spectrum-induced changes in diffraction of pulsed optical beams
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Abstract

Propagation of ultrashort optical pulses in a linear homogeneous medium is studied using the standard diffraction theory
of electromagnetic fields. Diffraction pattern of a Gaussian beam consisting of such short pulses depends on the pulse shape.
In general, the pulsed beam does not remain Gaussian on propagation and its spot size is enhanced. In the visible region,
changes in the diffracted intensity become noticeable only for pulse widths below 10 fs and are larger for chirped pulses and
for pulses whose spectrum has long tails. We also show that the diffraction characteristics of coherent but pulsed and CW
but partially coherent Gaussian beams are identical if the two have identical optical spectra. q 1998 Elsevier Science B.V.
All rights reserved.

1. Introduction

Propagation-induced changes in the spectrum of par-
tially coherent light have attracted considerable attention

w xrecently 1 . It has also been realized that the broad
spectrum of partially coherent light can lead to propaga-

w xtion-induced changes in the shape of an optical beam 2,3 .
Indeed, the conditions under which the beam shape re-
mains invariant on propagation were investigated as early

w xas 1984 2 . It was shown in 1990 that a partially coherent,
Ž .continuous-wave CW , Gaussian beam whose spot size at

the beam waist is frequency independent does not remain
ŽGaussian on propagation in a linear medium such as free

. w xspace if its spectrum is relatively broad 3 . One may ask
if that would also happen for a coherent Gaussian beam
consisting of ultrashort optical pulses such that the field
spectrum is quite broad. Surprisingly, a definite answer to
this simple question is not provided in the literature. Of
course, propagation of ultrashort optical pulses in a linear
optical medium has been studied extensively in recent

w xyears 4–11 . However, most studies assume a Gaussian
shape for the ultrashort pulse. In practice, pulses emitted
from passively mode-locked lasers often have a non-Gaus-

w xsian shape, a ‘‘sech’’ profile being the common one 12 .
Kaplan has recently considered pulses of arbitrary shape

w x13 but focused mostly on the temporal evolution of the
on-axis intensity.

In this paper, we consider the spatial aspects of
diffracted pulses of arbitrary shapes assuming that the
transverse intensity distribution of the beam is initially
Gaussian. Propagation of such pulsed beams in a linear
homogeneous medium can be studied by using the stan-

w xdard diffraction theory of electromagnetic fields 14 . We
show that, in general, the pulsed optical beam does not
remain Gaussian on propagation and that the diffracted
intensity profile depends on the pulse spectrum. We focus
on the spectrum-induced changes and study how the shape
and size of the diffracted beam depend on the initial pulse
shape and on the frequency chirp, when the input pulse is
not transform-limited.

2. Diffracted field

In a linear and homogeneous dielectric medium,
Maxwell’s equations for the electromagnetic field
Ž .E x, y, z,t can be solved in the frequency domain using

w xthe Helmholtz equation 14
2 2 ˜= qk E x , y , z ,v s0, 1Ž . Ž . Ž .

˜where E is the Fourier component of E at the frequency
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Ž .v, k v snvrc, n is the refractive index of the linear
medium assumed to be nondispersive, and c is the speed
of light in vacuum. The vector nature of the electromag-
netic field is ignored here assuming that the plane of
polarization does not change during propagation.

˜We consider the case in which E is known at the plane
Ž .zs0 and Eq. 1 is solved in the region z)0. For a

pulsed Gaussian beam having its beam waist at the input
˜Ž .plane zs0, E x, y,0,v can be written as

2 2 2Ẽ x , y ,0,v sexp y x qy r2 a S v , 2Ž . Ž . Ž .Ž .

where a is related to the spot size and is assumed to be
frequency independent. This assumption holds if the input

Ž . Ž . Ž .field can be factored as E x, y,0,t sF x, y A t , where0
Ž . Ž .F x, y and A t govern the beam shape and the pulse0

shape, respectively. It may not hold within a stable laser
cavity whose Hermite–Gaussian modes are characterized

w xby a frequency-dependent spot size at the beam waist 2 .
Ž .S v is the complex spectral amplitude of the pulse ob-

Ž .tained by taking the Fourier transform of A t .0

By using the angular-spectrum representation or the
Ž . w xGreen-function approach, one can solve Eq. 1 easily 14 .

If we make the paraxial approximation, we obtain the
standard result for each spectral component of the diffracted

w xGaussian beam 15 :

S v x 2 qy2Ž .
Ẽ x , y , z ,v s exp y exp ikz ,Ž . Ž .2ž /1q id 2 a 1q idŽ .

3Ž .

where d is the normalized propagation distance defined as

z zc
d v s s , 4Ž . Ž .2 2ka na v

The propagated field is obtained by taking the inverse
Ž .Fourier transform of Eq. 3 and is given by

S v x 2qy2
` Ž .

E x , y , z ,t s exp yŽ . H 2ž /1q id 2 a 1q idŽ .y`

= w xexp yiv tyzrÕ dv , 5Ž . Ž .

where Õscrn is the phase velocity in the medium. For a
Ž . Ž .CW beam at the frequency v , S v sd vyv , and0 0

we recover the standard result showing that a Gaussian
w xbeam remains Gaussian on propagation in free space 15 .

For a pulsed beam, the spectrum can become broad enough
for ultrashort optical pulses that one must consider the v

Ž .dependence of d in Eq. 5 . In that case, a pulsed beam
may not remain Gaussian on propagation.

Ž .The integral in Eq. 5 can be evaluated in a closed
form only in a few special cases. For a Gaussian-shaped

Ž .pulse, S v is also Gaussian. If we assume d41 for all
frequencies, the far-field distribution can be obtained in a

w xclosed form 9 . In fact, if we replace 1q id by id in Eq.
Ž .5 , we obtain the general result valid for all pulse shapes

a2 E A0
E x , y , z ,t s , 6Ž . Ž .

zÕ Et

w Ž 2 2. xwhere ts ty zq x qy r2 z rÕ is the reduced time
Ž .and A t is the input pulse shape. The pulse shape in the0

far field is then related to the first derivative of the input
w xpulse 9,13 .

3. Intensity distribution

Ž .Eq. 5 can be used to obtain the spatial distribution of
the instantaneous intensity. However, practical photodetec-
tors cannot respond at femtosecond time scales, making it
hard to verify the results. It is more useful to integrate the
instantaneous intensity over time and consider the spatial

Ždistribution of the pulse energy or the time-averaged
.intensity in the case of a pulse train defined as

`
2< <I x , y , z s E x , y , z ,t d t . 7Ž . Ž . Ž .H

y`

Ž . < Ž . < 2The spatial distributions of I x, y, z and E x, y, z,t are
w x Ž .generally different 9 . We focus on I x, y, z since this

quantity is easier to measure experimentally and refer to it
as the intensity distribution assuming that the pulsed beam
consists of a pulse train. The repetition rate is small

Ž . Ž .enough -100 MHz for most lasers that S v can be
treated as a smooth function even for a pulse train.

Ž . Ž .By using E from Eq. 5 in Eq. 7 and performing the
integration over time, we obtain the simple result

< < 2 2 2S v x qy` Ž .
I x , y , z s exp y dv , 8Ž . Ž .H 2 2 2ž /1qd a 1qdŽ .y`

Ž . w Ž .xwhere d v given in Eq. 4 varies inversely with v and
` < Ž . < 2the pulse spectrum is normalized such that H S v dvy`

Ž .s I , I being the on-axis intensity at zs0. Eq. 8 is our0 0

main result and can be used to study the diffraction
characteristics of a pulsed beam for arbitrary pulse shapes.
Interestingly, this equation is identical to the one obtained

w xin Ref. 3 for partially coherent CW Gaussian beams. As a
result, the diffraction characteristics of coherent but pulsed
and CW but partially coherent Gaussian beams are identi-
cal if the two have the same optical spectra. Of course, the
origin of spectral broadening is quite distinct in the two
cases. The role of pulse width is played by the coherence
time in the case of partially coherent CW beams. Note also

< Ž . < 2 Ž .that the field spectrum S v in Eq. 8 is replaced by
the power spectrum related to the Fourier transform of the
autocorrelation function associated with the partially co-

w xherent CW beam 14 . We refer to both of them as
‘‘optical spectrum’’ in this paper.

Ž .It is evident from Eq. 8 that, in general, a pulsed
Gaussian beam does not remain Gaussian on propagation



( )G.P. AgrawalrOptics Communications 157 1998 52–5654

and that the shape and width of the diffracted beam depend
Ž .on the pulse spectrum. However, if d v varies little over

the pulse spectrum and can be replaced by a constant, the
spectrum-induced changes become small enough to be
negligible, and the diffracted beam retains its Gaussian
character. Thus, in practice, deviations from the Gaussian
nature will be noticeable only for ultrashort optical pulses
having a broad spectrum. As an example, Fig. 1 shows
changes in the diffracted intensity occurring for a ‘‘sech’’

Ž . Ž .pulse with A t ssech trT when its full width at half0 0
Ž .maximum FWHM is reduced from 5 to 2 fs. The quantity

plotted is the relative deviation

D r , z s I r , z y I r , z rI r , z , 9w xŽ . Ž . Ž . Ž . Ž .cw

2 2(where rs x qy is the radial distance and I is thecw

intensity of a CW Gaussian beam obtained by using a
Ž .narrow spectrum in Eq. 8 . The propagation distance

zs2 L in Fig. 1, where L is the diffraction length at thed d

center wavelength of the pulse spectrum taken to be 800
Ž .nm e.g., a mode-locked Ti:sapphire laser . For pulses

wider than 10 fs, Df0, and the diffraction properties of
the pulsed beam reduce to those of a CW beam. However,
D varies by a few percent even for a 5 fs pulse, and
deviations begin to exceed 10% for a 2 fs pulse. Thus,
such effects should be observable in practice as pulse
width is reduced to below 5 fs.

We have considered several different pulse shapes. The
results for a Gaussian pulse are similar to those shown in
Fig. 1. However, as seen in Fig. 2, deviations become
considerably larger for an exponential pulse for which

Ž . Ž < < .A t sexp y t rT . This is not surprising if we note0 0

Fig. 1. Spectrum-induced changes in the diffracted intensity as a
function of radial distance for ‘‘sech’’ pulses of three different

Ž .pulse widths FWHM . Deviation in the intensity of the pulsed
optical beam from that of a CW beam is plotted at a distance
zs2 L . The pulse spectrum is centered at a wavelength of 800d

nm.

Fig. 2. Same as in Fig. 1 except that the input pulse has a
Lorentzian spectrum. Deviations are larger for such a pulse be-
cause of long spectral tails.

that the Lorentzian spectrum of such pulses has long tails
that decay as vy2 rather than exponentially.

So far, we have assumed that input pulses have a
constant phase and are thus transform-limited. In practice,
optical pulses often acquire a time-dependent phase, result-
ing in a frequency that varies with time. Such pulses are
referred to as being chirped. We have found that the
frequency chirp has a dramatic effect on the diffracted
beam. As an example, Fig. 3 shows the intensity profiles at

Ž . Žzs2 L for 5 fs FWHM chirped Gaussian pulses T s3d 0
. Ž . w Ž . 2 2 xfs using A t sexp y 1q iC t r2T , where C is the0 0

w xchirp parameter 16 . The diffracted beam is nearly Gauss-
Ž .ian when pulses are not chirped Cs0 but acquires a

Fig. 3. Radial intensity distribution at a distance zs2 L for ad

pulsed optical beam consisting of chirped Gaussian pulses for
three values of the chirp parameter C. The pulse spectrum is
centered at a wavelength of 800 nm.
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non-Gaussian shape for even relatively small values of the
Ž .chirp parameter C;1 . Notice the considerable enhance-

ment of the on-axis intensity for chirped pulses. As a
Žresult, the beam appears to have a smaller spot size on the

.basis of FWHM even though it spreads over a larger
radial region. These features can be understood by noting
that the spectrum of a linearly chirped Gaussian pulse,
having a quadratic variation of phase across the pulse,

Ž 2.1r2broadens by a factor of 1qC compared with that of
w xthe unchirped pulse 16 .

4. Spot size

It is seen in Figs. 1–3 that a pulsed diffracted beam has
a higher intensity at the beam center but, at the same time,
it spreads more than a CW Gaussian beam. To quantify
such effects, we estimate the spot size through the root-

Ž .mean-square RMS width s defined using

`
2r I x , y , z r d rŽ .H

02s z s , 10Ž . Ž .
`

I x , y , z r d rŽ .H
0

Ž 2 2.1r2where rs x qy is the radial distance. Using Eq.
Ž .8 , the integration over r can be carried out analytically,
resulting in the following simple expression

22 2s z s1q zrL F , 11Ž . Ž .Ž .d p

where

v 2
` 0 22 < <F s S v dv 12Ž . Ž .Hp 2vy`

and L sv a2rÕ is the diffraction length at the frequencyd 0

v at which the pulse spectrum is centered. For a rela-0
Ž .tively wide pulse or for a CW beam F s1, and wep

recover the standard result well known for CW Gaussian
w xbeams 15 . The factor F depends on the pulse shape onlyp

and is a rough measure of the change in the spot size
induced by the pulse spectrum.

The factor F can be evaluated in a closed form only inp

a few special cases. However, it can be expressed in the
form of a convergent series by using the transformation

Ž .fs vyv T , where T is related to the pulse width.0 0 0
Ž .Eq. 12 then becomes

` y2 22 < <F s 1qd f S f d f , 13Ž . Ž . Ž .Hp
y`

Ž .y1where ds v T is a small parameter and indicates0 0

the spectral width of the pulse normalized to the carrier
Ž .y2frequency. By expanding 1qd f in a Taylor series

and assuming a symmetric pulse spectrum, we obtain
`

2 2m 2 m² :F s 2mq1 d f , 14Ž . Ž .Ýp
ms 0

² n: ` n < Ž . < 2where f sH f S f d f denotes the nth momenty`

of the pulse spectrum. The spectral moments can be ex-
pressed in a closed form for several common pulse shapes
including the Gaussian and ‘‘sech’’ pulses. In practice,
only a few terms in the series need to be included if
d<1. As an example, consider a chirped Gaussian pulse

Ž . w Ž . 2 2 xwith A t sexp y 1q iC t r2T . Retaining the terms0 0
Ž .up to ms2 in Eq. 14 , we obtain the following expres-

sion for F :p

23 512 2 4 2F f1q d 1qC q d 1qC , 15Ž . Ž . Ž .p 4 32

Ž .y1where ds v T and C is the chirp parameter.0 0

It is worthwhile to consider a simple practical example.
Ž .Shortest optical pulses -5 fs wide have been generated

from Ti:sapphire lasers operating in the spectral region
w x Ž .near 800 nm 17 . For 5 fs pulses T s3 fs with a0

spectrum centered at 800 nm, ds0.085. If pulses are
unchirped, there is only a 0.5% enhancement in the RMS
spot size compared with the CW case. However, the
enhancement becomes 20% for chirped Gaussian pulses
with Cs5 and increases rapidly for larger values of C.
Such changes should be observable with the existing
mode-locked lasers. If input pulses are transform-limited,
they can be chirped easily by using the nonlinear phe-
nomenon of self-phase modulation in a nonlinear medium

w xsuch as an optical fiber 18 when the pulsed beam is
intense enough.

5. Concluding remarks

In this paper we have considered propagation of a
pulsed optical beam in a linear, homogeneous, nondisper-
sive medium with focus on the spectrum-induced changes
in the diffracted beam. The input beam is initially Gauss-

Ž .ian in transverse directions but consists of a train of
ultrashort optical pulses of arbitrary shape. The propaga-
tion problem is solved analytically by using the diffraction
theory of electromagnetic fields. In general, a pulsed beam
does not remain Gaussian on propagation, and the diffracted
intensity depends on the pulse shape. In the visible region,
changes in the diffracted intensity become noticeable only
for pulse widths below 10 fs and are larger for pulses
whose spectrum has long tails. We also studied the effect
of frequency chirp and found that it affects considerably
the shape and size of the diffracted beam. The RMS spot
size is generally enhanced for pulsed optical beams and
can double in size for chirped pulses. The predicted effects
are large enough that they can be observed with the
existing mode-locked lasers.

As a side remark, we have shown that the diffraction
characteristics of coherent but pulsed and CW but partially
coherent Gaussian beams are identical if the two have

Ž .identical optical spectra in the sense of Section 3 . Of
course, the origin of spectral broadening is quite distinct in
the two cases. The role of pulse width is played by the
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coherence time in the case of partially coherent CW
beams.
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