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Abstract— We use spatial chirp of the built-in grating to
improve optical bistability on reflection from distributed feedback
semiconductor laser amplifiers. We show that improvements in
the on–off switching ratio occur because spatial chirp greatly
affects the saturation behavior of the reflectivity resonances, al-
lowing access to states of low reflection during bistable switching.
We also show that spatial chirp modifies the spectral range of the
variety of hysteresis shapes that occur on reflection. In doing so,
we discover a new type of hysteresis loop that reveals a qualitative
difference between the loop-shaped hystereses occurring near the
two edges of the stop band. With spatial chirp, the new hysteresis
loop can exhibit an on–off switching ratio in excess of 100 000.

Index Terms—Amplifiers, distributed feedback devices, grat-
ings, optical bistability, optical switches.

I. INTRODUCTION

OPTICAL bistability in semiconductor laser amplifiers
(SLA’s) is well suited for applications in optical switch-

ing [1], [2], signal processing [3], [4], memory [5], [6], and
logic [7]. SLA’s are compact ( 300 m active volume),
are capable of monolithic integration in photonic circuits,
provide amplification, and can be fabricated to operate at any
wavelength used in optical communications [8]. Their strong
nonlinearity and inherent gain lead to switching at microwatt
levels with switching times less than one nanosecond, resulting
in femtojoule switching energies [9].

In a distributed feedback (DFB) device, bistability is sup-
ported by feedback provided by a built-in diffraction grating
[10], [11]. Gratings are especially useful as feedback elements
in single-substrate photonic circuits because integration can be
achieved without requiring facets. The bistable performance
of a DFB device can be improved by varying the spatial
frequency of the grating (referred to as spatial chirp). For
example, spatial chirp can lower the optical signal power
required for switching, as was shown for passive devices
exhibiting a Kerr-type nonlinearity [12], [13]. In -shifted
DFB SLA’s, spatial chirp increases the spectral range of low-
threshold switching [14]. These investigations, though, focus
on transmissive bistability.

Reflection from DFB SLA’s, unlike transmission, exhibits
a variety of bistable hysteresis shapes [15], each with its
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Fig. 1. Average-internal-power hystereses for two signal wavelengths. The
longer signal wavelength [�L = 6:085 via (5)] exhibits higher switching
thresholds. Other parameters are:� = 5, �L = 3, goL = 1:19815, and
�intL = 0. The powers are normalized to the saturation power (typically
10 mW). Dashed portions of the curves are unstable.

own switching behavior. This diversity increases the potential
applications of bistable DFB SLA’s. The objective of this
paper is to show how spatial chirp can improve these reflective
hystereses. We will focus in particular on modifications in the
spectral range of such hystereses and on improvements to the
on–off switching ratios.

The paper is organized as follows. In the next section, we
discuss the positive feedback loop that gives rise to optical
bistability and outline our computational model. In Section III,
we discuss the variety of reflective hysteresis shapes in terms
of the saturation behavior of reflectivity resonances. During
this discussion, we demonstrate a new hysteresis loop on
reflection from DFB SLA’s. In Section IV, we show how
spatial chirp affects reflective bistability by changing the
saturation behavior of the reflectivity resonances. We focus
on the cases exhibiting high on–off switching ratios and show
that values greater than 100 000 can be obtained using the
new hysteresis loop.

II. OPTICAL BISTABILITY IN DFB SLA’S

A. Physical Process

Optical bistability is characterized by a steady-state hys-
teresis, as shown in Fig. 1. Here, the average internal optical
power is plotted as a function of the incident power for two
signal wavelengths. For each hysteresis, two regions of stable
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power (solid lines) are connected by a region of instability
(dashed line). The internal power switches between the two
stable branches by means of a positive feedback loop occurring
for the optical power within the DFB SLA.

The positive feedback loop for dispersive optical bistability
requires two ingredients: a cavity resonance and an intensity-
dependent refractive index. In SLA’s, the latter arises from the
dependence of the refractive index on the carrier density [8].
An optical signal that depletes the carrier density by stimulated
emission (i.e., gain saturation) simultaneously increases the
refractive index.

In DFB SLA’s, a built-in diffraction grating provides feed-
back along the length of the amplifier, and therefore creates
an effective cavity even without facet mirrors. Cavity res-
onances (localized spectral regions of high internal power)
occur at both edges of the stopband (a spectral region of low
transmission centered at the Bragg wavelength).

Optical switching occurs via the following positive feedback
loop. An optical signal enters the amplifier with a center
wavelength longer than that of a cavity resonance. An in-
crease in the optical power within the amplifier increases the
refractive index, and the stopband (and cavity resonance) shifts
to longer wavelengths. If the cavity resonance moves onto
the signal wavelength, the internal optical power increases
more. As a result, the refractive index continues to increase,
and the stopband shifts to even longer wavelengths. This
positive feedback loop for the internal power moves the cavity
resonance fully onto the signal wavelength. The resulting jump
experienced by the internal power is indicated by the up-arrow
in Fig. 1.

The reverse process occurs at the down-arrow. If the inci-
dent power is lowered so that the signal wavelength is at the
peak of the cavity resonance, a small subsequent decrease in
incident power will initiate the reverse positive feedback loop.
In this case, the cavity resonance shifts away from the signal
wavelength, and internal power switches downward. These
two switching processes give rise to the common S-shaped
hysteresis.

The two bistability curves shown in Fig. 1 exhibit different
switching threshold powers. The optical signal with the longer
wavelength ( ) is initially farther away from
the cavity resonance and therefore requires a larger incident
power to seed the positive feedback loop. The correspondingly
larger internal power and higher gain saturation for longer
wavelength signals greatly affect the shape of the hysteresis
on reflection, as discussed later in Section III.

B. Computational Analysis

Optical bistability in DFB SLA’s can be studied using the
following model. The optical field is expressed as

(1)

where and are the slowly varying envelopes of the
forward- and backward-propagating fields, respectively. The
Bragg wavenumber is given by

(2)

where is the average refractive index associated with the
fundamental waveguide mode, the parameter is
the Bragg wavelength, and is the period of the built-in
grating.

The field distribution inside the DFB SLA can be calculated
via the standard coupled-mode equations [14]

(3)

(4)

Here, is the coupling coefficient, accounts for internal
losses, and is the gain coefficient. The linewidth enhance-
ment factor represents the coupling between the refractive
index and optical gain that occurs in semiconductor gain
media.

The detuning parameterin the coupled-mode equations is
given by

(5)

where and are the carrier-density-independent parts
of the signal wavenumber and the spatially averaged modal
refractive index, respectively. [The carrier-density-dependent
contribution to the detuning is represented by the
term in (3) and (4).] The detuningis related to the free-space
signal wavelength such that, for constant and , smaller
values of detuning correspond to longer signal wavelengths.

The gain coefficient for CW signals and pulses much wider
than the semiconductor carrier lifetime ( 100 ps) is given
by [14]

(6)

Here, is the small-signal gain, which we assume is flat over
the spectral range near the stopband (1 nm). The quantity

is the optical power normalized to the saturation
power , where is Planck’s constant and

is the speed of light in vacuum. A typical value of is
10 mW, if we use m for the transverse area of
the optical mode, m for the operating wavelength,

ps for the carrier lifetime, and cm
for the differential gain. In terms of the field envelopes, the
normalized power is given by

(7)

where the confinement factor represents the fraction of the
optical power of the transverse mode within the active region.
The effect of the neglected optical interference term (with a
period of 0.2 m) is assumed to be washed out by carrier
diffusion (typical diffusion length 2 m).

We solve this set of nonlinear equations via a transfer-
matrix method [16] that divides the amplifier into many small
sections. Transfer matrices, corresponding to each section, are
calculated from the analytic solutions [14] to a linearized form
of (3) and (4). The power values along the amplifier are used to
saturate the gain in each region, after which the power profile
is recalculated. This iteration procedure is continued until
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Fig. 2. Reflected-power hysteresis shapes under conditions identical to those
of Fig. 1. The inset shows a hysteresis for an even longer signal wavelength.
All signal wavelengths are on the short-wavelength side of the stopband.
Where the stable branches (solid lines) become unstable, the reflected power
switches to the other stable branch at the same incident power.

convergence (we refer the reader to [14] for further details).
Although neglected in this paper, finite facet reflectivities may
be included using appropriate matrices [17].

III. U NIFORM-GRATING DFB SLA’S

Although the hysteresis curves for the average internal
power in Fig. 1 are both S-shaped, the corresponding reflected-
power hystereses take on different shapes, as shown in Fig. 2
for the same signal wavelengths used in Fig. 1. While the
hysteresis for the shorter wavelength ( ) is S-
shaped, the longer wavelength signal exhibits a loop-shaped
hysteresis. A third hysteresis shape, for an even longer wave-
length ( ), is given in the inset.

Each reflective hysteresis shares the same switching thresh-
old powers as its corresponding average-internal-power hys-
teresis. The unstable region, which connects these thresholds,
can therefore be determined straightforwardly. The switch-
ing thresholds are the same because reflective bistability
is supported by thesamepositive feedback loop described
in Section II—i.e., a positive feedback loop involving the
intensity-dependent refractive index, a cavity resonance, and
the signal’sinternal power.

The shape of each reflected-power hysteresis can be under-
stood in terms of differences between the cavity resonance
supporting the bistable switching and areflectivity resonance.
By reflectivity resonance, we mean a localized spectral region
of either high or low reflectivity. This region may be centered
at a different wavelength than, or may have a different
spectral width than, the corresponding cavity resonance. These
differences depend, in part, on the coupling strength induced
by the built-in grating (we use throughout this
paper) and on which side of the stopband the particular cavity
resonance occurs. Differences between the reflectivity and
cavity resonance also depend on the amount ofgain within
the DFB SLA—a feature that does not (necessarily) exist for
switching devices based on a passive nonlinearity. We
will illustrate how the reflectivity resonances depend on gain
by examining the small-signal regime.

For small optical powers (0.1 W), saturation can be
ignored, and the reflectivity resonances exhibit the following

Fig. 3. Evolution of the small-signal reflectivity spectrum with change in
gain for the parameter values of Fig. 1. Reflectivity resonances at the stopband
edges reshape from a peak to a dip, and shift to longer signal wavelengths,
as gain is decreased.

dependence on gain. For large amounts of gain (enough to
approach lasing threshold), reflectivity resonances occur as
peaks at both edges of the stopband, as seen in Fig. 3 for

. As the gain is decreased, the reflectivity peaks
begin to disappear, and dips arise at wavelengths slightly far-
ther away from the stopband. This reshaping of the reflectivity
resonances is apparent in Fig. 3 for . With less gain,
the peaks completely disappear and the dips push downward.
For (the case of passive filters), the reflectivity
resonances are deep dips. The red shift of the stopband with
decreasing gain results from the corresponding increase in the
refractive index.

The small-signal reflectivity resonance behavior of Fig. 3
is helpful in understanding the reflected-hysteresis shapes
because bistable switching is accompanied by gain saturation.
The amount of saturation depends on the initial detuning of the
signal wavelength from the cavity resonance, as mentioned in
Section II. Consequently, different spectral regions will have
different reflective hysteresis shapes.

For signal wavelengths initially tuned close to a cavity
resonance, a low internal power is required to seed opti-
cal bistability. The relatively low internal power during the
positive feedback loop allows the gain to remain relatively
high under saturation. Thus, the reflectivity resonance is a
peak during the positive feedback loop. Moreover, we find
(using the saturated gain profile) that the reflectivity resonance
spectrally overlaps the cavity resonance, which is also shaped
like a high peak. Since the cavity and reflectivity resonances
are similar, the reflected power switches in the same manner,
as evident by the S-shaped hysteresis of Fig. 2. After upward
switching, the on-state of this hysteresis exhibits about 13-dB
amplification.

In contrast, signal wavelengths initially tuned far from the
cavity resonance require higher optical powers to seed the
positive feedback loop. The correspondingly large internal
powers saturate the gain enough that the reflectivity resonance
is a dip during the switching process. As the reflectivity
resonance shifts to longer wavelength, the reflected signal
power drops accordingly. Thus, the reflected power switches
downward even though the average internal power switches
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Fig. 4. Bistable behavior of the reflected power for three signal wavelengths
on the long-wavelength edge of the stopband for the same device used in
Fig. 1. The middle curve is a new hysteresis shape—a loop that occurs below
the stable branches.

upward. This behavior gives rise to an inverted-S-shaped
hysteresis, like the one in the inset of Fig. 2. The on-state
typically exhibits no amplification since the gain is strongly
saturated. Notice that the high-incident-power tail of this
hysteresis pushes down beyond the switching thresholds. The
signal is simply experiencing the growing reflectivity dip.

The remaining hysteresis of Fig. 2 is shaped like a loop.
The top of the loop is unstable and switching occurs down
from both sides [15] from on-states of a few decibels in
amplification. Loop-shaped hysteresis occur in a spectral range
between the hysteresis described above. For these signal
wavelengths, the internal powers saturate the gain to levels
where the cavity resonance is reshaping from a peak to a
dip (see in Fig. 3). The reflectivity peak and dip
straddle the central wavelength of the cavity resonance, with
the peak slightly closer to the stopband.

For reflection from the short-wavelength edge of the stop-
band, the reflectivity resonance peak occurs at a longer wave-
length than the cavity resonance. The peak may therefore
completely pass through the signal wavelength, resulting in
an increase and then decrease in the reflected power. This
kind of a mismatch between the internal and output resonances
was shown to gives rise to loop-shaped hysteresis in other
geometries as well [18], [19]. For DFB SLA’s, downward
switching on the high-incident-power side of the hysteresis
is facilitated by the reflectivity resonance dip. As the stopband
shifts to longer wavelengths, this dip shifts toward the optical
signal. Moreover, gain saturation during the positive feedback
loop will push the dip to lower values of reflectivity while
quenching the resonance peak.

An interesting feature of the loop-shaped hysteresis is that
its shape is qualitatively different for reflection at either edge
of the stopband. On the long-wavelength edge, the loop occurs
predominantlyunder the stable-power branches. The bottom
portion of the loop is unstable and upward switching occurs
at both sides, as shown in Fig. 4. Here, we have left out the
spectral evolution of the loop hysteresis to focus on the loop at

. During the transition from one hysteresis shape
to another, upward and downward switching may occur, in
general, on either side of loop-shaped hysteresis.

Fig. 5. Schematic illustration of a DFB SLA with a linearly chirped grating,
indicating the P-direction (C > 0) and N-direction (C < 0).

The origin of such a loop may be understood as follows.
For reflection from the long-wavelength edge of the stopband,
the reflectivity resonance peak and dip straddle the central
wavelength of the cavity resonance with thedip at the longer
wavelength. Therefore, as the stopband shifts to longer wave-
lengths, the optical signal is affected first by the reflectivity dip
and then the peak. Consequently, the reflected signal decreases
and then increases, giving rise to the particular shape of the
hysteresis loop. In our calculations for Fig. 4, we find that
even though the bottom of the reflectivity dip is not reached,
the reshaping of the reflectivity resonance is enough to initially
pull the reflected power down. The resulting on–off switching
ratios are small. Moreover, since the summit of the reflectivity
peak is not encountered, large amplification is not realized.

To our knowledge, this is the first report of qualitatively
different hysteresis loops occurring at either edge of the DFB
SLA stopband. The loop on the long-wavelength edge may
have gone unnoticed since its on–off switching ratios can be
quite small. This new hysteresis loop, though, is intriguing
because it occurs predominantly below the stable reflected-
power branches and points toward zero reflected power. One
may be able to design a device for which the loop approaches
zero reflected power, making the on–off switching ratio very
large. This will occur if the signal wavelength encounters a
deep reflectivity dip. In the following section, we pursue this
idea by introducing spatial chirp into the built-in diffraction
grating.

IV. CHIRPED-GRATING DFB SLA’S

A DFB SLA with a linearly chirped grating is depicted
in Fig. 5. The P-direction is defined to be the direction for
which an incident optical field sees anincreasein the spatial
frequency (and Bragg wavenumber) of the grating. Likewise,
an optical field incident in the N-direction sees, by definition,
a decrease in the spatial frequency of the grating. (“P” and
“N” indicate positive and negative chirp, respectively, in our
notation.)

The P- or N-direction is specified in computations by the
sign of the chirp parameter , introduced by using

(8)

where is the average Bragg wavenumber. A positive (neg-
ative) value of corresponds to the P-direction (N-direction),
and the magnitude of represents the total change in
along the device. For small amounts of spatial chirp, the
coupled-mode equations (3) and (4) remain unchanged except
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(a)

(b)

Fig. 6. Small-signal reflectivity spectra for several values of the gain for
an optical signal incident in the (a) P-direction and (b) N-direction of a
linearly chirped-grating DFB SLA withjCj = 5. Other parameters are:
� = 5; �L = 3, and �intL = 0. Note how a deep reflectivity dip can
be realized near one edge of the stopband for a relatively high value of gain
(gL = 1:1).

that the detuning parameter now becomes
dependent. In this section, we use a value of , which
corresponds to a total variation in of about 0.1% for a
300- m-long device.

Spatial chirp has a major effect on reflective bistability in
DFB SLA’s because it changes the saturation behavior of the
reflectivity resonances. To illustrate this change, it is (again)
instructive to examine the small-signal regime. For optical
signals incident in either the P-direction or the N-direction,
reflections from the two edges of the stopband exhibit re-
markably different behavior, as seen by the reflectivity spectra
shown in Fig. 6.

Reflectivity resonances exhibit peaks in spite of a reduction
in gain for short-wavelength signals incident in the P-direction
[Fig. 6(a)] and for long-wavelength signals incident in the N-
direction [Fig. 6(b)]. Each of these signals has a wavelength
that matches the Bragg wavelength away from the input facet
and therefore travels deep into the amplifier before being
reflected. The increased gain–length product results in the
enhanced reflection [20].

For these two enhanced-reflection cases, we find that the
reflectivity resonances remain spectrally overlapped with the
cavity resonances. As a result, the reflected-power behavior
mimics that of the internal power, and only S-shaped hys-
teresis occur. Fig. 7 shows the spectral evolution of reflective
bistability at the long-wavelength edge of the stopband for
optical signals incident in the N-direction. The inverted-S- and
loop-shaped hysteresis do not appear at all.

In contrast, anincrease in spectral range for inverted-
S- and loop-shaped hysteresis occurs for each optical signal
with a wavelength that matches the Bragg wavelength near
the input facet of the DFB SLA. This condition is satis-

Fig. 7. Spectral evolution of the reflected-power hysteresis for optical signals
incident in the N-direction near the long-wavelength-edge of the stopband.
Parameters are the same as in Fig. 6, except thatgoL = 1:5081. The
inverted-S- and loop-shaped hysteresis do not occur (compare with Fig. 4).

(a)

(b)

Fig. 8. Reflected-power hysteresis for optical signals incident in the
N-direction with wavelengths on the short-wavelength side of the stop band.
All other parameters are the same as in Fig. 7. (a) The switching thresholds
for the loop-shaped hysteresis are an order of magnitude smaller than those of
Fig. 2. (b) The on–off switching ratio exceeds 30 for the high-incident-power
side of the hysteresis.

fied for long-wavelength signals incident in the P-direction
[Fig. 6(a)] and for short-wavelength signals incident in the
N-direction [Fig. 6(b)]. Here, the reflectivity resonance peak
readily diminishes with gain saturation. Moreover, we find
that the reflectivity resonance dip is the most prominent for a
nonzerovalue of gain. In Fig. 6, large reflectivity dips occur
for . Increasing the amount of spatial chirp tends to
increase the value of gain for which the dip is most prominent.
Gain saturation via the optical signal now has an even larger
effect on the reflected-power hysteresis.

A consequence of the above behavior is that loop-shaped
hystereses occur at smaller incident powers. Fig. 8(a) shows
a loop-shaped hysteresis for an optical signal on the short-
wavelength edge of the stopband, incident in the N-direction of
a chirped-grating DFB SLA. The hysteresis is similar in shape
to that of Fig. 2, but the switching powers are one order of
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Fig. 9. Reflected-power hysteresis for signals incident in the P-direction
with wavelengths on the long-wavelength edge of the stop band. All other
parameters are the same as in Fig. 7. The on–off switching ratio exceeds
100 000 for the low-incident-power side of the middle hysteresis.

magnitude smaller. (For both cases, the small-signal gain is set
at about 95% of lasing threshold.) For a device with
mW, this corresponds to 20-W switching. The loop-shaped
hystereses not only occur for smaller incident powers, but also
exist over a wider spectral range than for the unchirped case.

As discussed in Section III, the high-incident-power tail
of the reflected-power hysteresis pushes down for signal
wavelengths on the short-wavelength side of the stopband. For
the chirped-grating case, a deep reflectivity dip can affect the
optical signal during the bistable switching process, allowing
the bottom of the hysteresis tail to approach zero reflected
power. An example is given in Fig. 8(b), for a longer optical
wavelength than in Fig. 8(a). Downward switching occurs
from an on-state of about 4-dB amplification with an on–off
switching ratio of about 30.

For the long-wavelength side of the stopband, a deep
reflectivity dip may also be experienced by the optical signal
during the positive feedback loop. This causes the hysteresis
loop to push down toward zero for the loop- and inverted-
S-shaped hysteresis, as shown in Fig. 9 for signals incident
in the P-direction. The on–off switching ratios at the low-
incident-power side are greater than 30 for the outer hysteresis,
which span a spectral range of . This corresponds
to a spectral width of about 27 GHz for a 300-m-long
device operating near 1.55m. Within this spectral region, the
reflective hysteresis obtains an on–off switching ratio in excess
of 100 000, as exhibited by the middle hysteresis of Fig. 9. In
spite of these excellent switching ratios, amplification has been
lost since the peaked-reflectivity resonance is not encountered
by the optical signal.

V. CONCLUSION

DFB SLA’s support reflectivity resonances that range from
high-amplification peaks to zero-reflection dips, depending on
the amount of gain. Gain saturation can therefore reshape
reflectivity resonances from one extreme to the other. This
reshaping gives rise to a wide variety of reflected-power hys-
teresis, mainly because of differences between the reflectivity
and cavity resonances. The loop-shaped and inverted-S-shaped

hysteresis are intriguing because the reflectivity resonance dip
is involved in the bistable switching process. The lower the
reflectivity dip, the higher the on–off switching ratio.

By introducing spatial chirp into the built-in grating, the
reflectivity resonance can push toward zero reflectivity during
the bistable switching process. This occurs for signal wave-
lengths that match the Bragg wavelength near the input facet
of a chirped-grating DFB SLA. For , we found optical
wavelengths for which the on–off switching ratio exceeds
30 at one side of their reflected-power hysteresis. For the
N-direction, this high switching ratio is accompanied by an
on-state of about 4-dB amplification. For the P-direction, an
on–off switching ratio of at least 30 is realized for optical
signals over a spectral range of about 27 GHz, with the
maximum switching ratio exceeding 100 000, but without
amplification.

Ideally, large on-state amplification will coexist with im-
provements in the on–off switching ratio. This will occur if the
optical signal experiences both a high-reflectivity peak and a
low-reflectivity dip during the bistable switching process. Such
behavior may be achieved by optimizing parameters such as
the coupling strength, the linewidth enhancement factor, and
the chirp parameter. In addition, other grating nonuniformities
(including different chirp profiles), nonzero facet reflectivities,
and resonances away from the stopband edges may also con-
tribute to high-contrast high-gain switching. We are currently
investigating some of these options.
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