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Abstract:  We propose a high-repetition-rate soliton-train source based on
adiabatic compression of a dual-frequency optical signal in nonuniform fiber
Bragg gratings.  As the signal propagates through the grating, it is reshaped
into a train of Bragg solitons whose repetition rate is predetermined by the
frequency of initial sinusoidal modulation.  We develop an approximate
analytical model to predict the width of compressed soliton-like pulses and to
provide conditions for adiabatic compression.  We demonstrate numerically
the formation of a 40-GHz train of 2.6-ps pulses and find that the numerical
results are in good agreement with the predictions of our analytical model.
The scheme relies on the dispersion provided by the grating, which can be up
to six orders of magnitude larger than of fiber and makes it possible to reduce
the fiber length significantly.
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1.  Introduction

High-repetition-rate optical pulse sources are key components in designing high-speed fiber-
optic communication systems. Recently, several soliton-pulse sources based on lithium
niobate modulators have been proposed, and nearly transform-limited pulses at repetition rates
of up to 15 GHz have been generated [1].  However, it is difficult to achieve repetition rates >
20 GHz by this electronic technique.  An all-optical method, capable of generating soliton-like
pulse trains at high repetition rates, makes use of modulational instability in optical fibers [2].
Pulse trains at repetition rates of up to 300 GHz have been generated by using such a method
[3].  However, individual pulses contain a significant pedestal, leading to nonlinear
interactions between neighboring solitons.

A novel all-optical technique which was proposed a few years ago makes use of
adiabatic compression of a dual-frequency signal inside an optical fiber and has been used to
generate a stable train of pedestal-free, non-interacting solitons [4-11].  It has been shown that
a dispersion-decreasing fiber (DDF) can be used for adiabatic pulse compression and, in fact,
is mathematically equivalent to a uniform fiber with distributed gain [5,6].  If the group-
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velocity dispersion (GVD) inside a DDF decreases adiabatically, the soliton self-adjusts to
preserve the balance between dispersion and nonlinearity, resulting in pulse compression and
enhancement of peak power.  Soliton pulse trains with a repetition rate of up to 200 GHz have
been generated by using a DDF [6].  However, because of the relatively small GVD of optical
fibers, this technique requires long fiber lengths ( > 1 km).  Moreover, fabrication of fibers
with complex dispersion profiles usually involves splicing of several different fibers or
drawing the fiber with an axially varying core diameter.

A more attractive solution consists of adiabatic compression of pulses in a highly
dispersive nonlinear medium such as a fiber Bragg grating. Grating dispersion just outside the
stop band is up to six orders of magnitude larger than that of silica fiber [12,13] and can be
tailored simply by changing the grating profile.  Indeed, a pulse-compression scheme based on
a fiber grating with slowly decreasing dispersion was recently proposed [14]. Moreover,
almost any grating profile can be manufactured using the state-of-the-art grating-writing
techniques [15,16]. To change the dispersion along the grating length, one can vary the
average refractive index, the period of the grating (chirped grating), or the index modulation
depth.  Experimental results on adiabatic soliton evolution in chirped fiber Bragg grating are
reported in Ref. [17] elsewhere in this issue.  In this paper we consider only changes in the
index modulation depth but the theory is general.

We propose a high-repetition-rate soliton source based on adiabatic compression of a
dual-frequency signal in a nonuniform fiber Bragg grating operating in transmission. As the
signal propagates through the grating whose index modulation depth decreases along its
length, it is reshaped into a train of solitons through adiabatic compression, as shown in Fig. 1.
In Section II we develop a simple analytical model based on the nonlinear Schr|dinger
equation (NLSE) for optimization of the grating parameters required for generating high-
quality, soliton-like, pulse trains.  In Section III we demonstrate numerically that a soliton
train at a 40-GHz repetition rate can be generated by this technique and find that the numerical
results are in good agreement with the predictions of our analytical model.  Finally, in Section
IV we summarize our results.

δ

z
STOP    BAND

INPUT

OUTPUT

GRATING

δΒ

Fig. 1.  Generation of a high-repetition-rate soliton train based on adiabatic compression in a
nonuniform fiber Bragg grating.  The stop-band width varies along the grating because of
changes in the index modulation depth.

2.  Analytical model

High-intensity pulse propagation through a fiber Bragg grating is governed by the nonlinear
coupled-mode equations of the form [18]

i 
∂E+
∂z

 + i 
1
V 

∂E+
∂t

 + κE− + ΓsE+2E++ 2Γ×E−2E+ = 0,       (1)
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−i 
∂E−
∂z

 + i 
1
V 

∂E−
∂t

 + κE+ + ΓsE−2E−+ 2Γ×E+2E− = 0.              (2)

Here E+and E−are the slowly varying amplitudes of forward and backward propagating waves,

respectively, V = c/n is the velocity of light in fiber, n is the average refractive index, κ =
πη∆n/λB is the coupling coefficient, ∆n is the index modulation depth, η is the fraction of the
energy in the fiber core, λB is the Bragg wavelength. Γs and Γ×  are the nonlinear parameters

responsible for self- and cross-phase modulation such that Γs = Γ× ≡ Γ0 = 2 π n2/λ, n2 is the

nonlinear refractive index, and λ is the signal wavelength.  The nonlinear coupled mode
equations have solitary-wave solutions, called Bragg solitons [19], that have been observed in
recent experiments [20-22].

If the grating parameters are nearly constant over the spectral bandwidth of the pulse
and the central frequency of the incident pulse is close to but outside the grating stop band, the
nonlinear coupled-mode equations can be reduced to a simple NLSE having the form [23-25]

i 
∂A
∂z

 − 
1
2 β2 

∂2A
∂ t2

 + Γ A2A = 0. (3)

Here A is the envelope of the Bloch wave associated with the grating, β2 represents the GVD
of the grating, Γ is the effective nonlinear coefficient, and t is the reduced time.  The
parameters β2 and Γ are frequency dependent inside the grating and are related to the grating
parameters through the relations [23-25]

β2 = − 
1

V 2
 

1
γ 2 v 3 δ ,    Γ = Γ0 

 3 − v 2

2 v   ,       (4)

where δ = n/c(ω − ωΒ) represents detuning of the incident signal from the Bragg frequency, v
= [1−(κ/δ)2]1/2, and γ = (1−v2)−1/2.  We note that if the grating parameters κ or δ  vary with z,
both β2 and Γ also vary along the grating length.

The fundamental soliton, by definition, obeys the following relation [26]

N 2 = 
LD

LNL
 = 

Γ Iin T 2

β2
  = 

Es Γ

2σeff
 

T
β2

  = 1,          (5)

where LD = T 2/ β2 is the dispersion length, LNL = (ΓIin)−1 is the nonlinear length, Iin = A2

is the peak intensity of the pulse inside the grating, and T is a measure of the pulse width.  For
a pulse of the form sech(t/T), T = T

FWHM
/1.763, where T

FWHM
 is the intensity full width at half

maximum. The soliton energy Es = 2IinTσeff,  where σeff is the effective core area. Note that

the intensity inside the uniform fiber grating is enhanced with respect to that outside the
grating by a factor 1/v, i.e. Iin = Iout / v [25].

We now consider soliton propagation in an axially nonuniform grating for which
both β2 and Γ are z dependent.   Combining equations (4) and (5) we obtain the following
condition for maintaining N=1 soliton in a nonuniform grating:

Es 
π n2

σeff λ
 

T (z)

 β2
eff(z)

  = 1,          (6)

where β2
eff is an effective GVD parameter defined to include the frequency dependence of

both β2 and Γ (see Eq. (4)) and is given by

β2
eff =  − 

2
V 2 (3 − v2) γ 2 v2 δ  .                               (7)

From Eq. (6) we find that if β2
eff decreases adiabatically with z such that the soliton energy ES

remains constant, T must follow changes in β2
eff to maintain the condition (5), while the peak
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intensity must increase.  Note also that as β2
eff decreases, the soliton accelerates, i.e. v

increases with z.  The soliton width at the end of the grating is given by

T (L) = T (0) 
β2

eff(L)

 β2
eff(0)

 . (8)

We next determine the constrains on the parameters of the grating, κ and L, for
adiabatic compression of a short pulse inside the grating. Following Refs. [5,6], we reduce the
NLSE Eq. (3) with z-dependent parameters β2 and Γ to a standard NLSE with an effective

gain.  With the transformation

          ξ = 
1

T 2(0)
 ⌡⌠

0

z

β2(z′)dz′, F = T(0) 
Γ(z)
β2(z)

 A(z),

Eq. (3) becomes

i 
∂F
∂ξ  + 

1
2 

∂ 2F
∂τ 2

  + F2F = i g(ξ) F ,             (9)

where τ = t/T(0) and assume β2 is negative,

g(ξ) = 
1

2Γ 
∂Γ
∂ξ  −  

1
2β2

 
∂β2

∂ξ   = − 
1

 2β2
eff 

∂β2
eff

∂ξ  .                     (10)

The effective gain coefficient g(ξ) takes into account axial variations of both β2 and Γ.
Following Ref. [6], we define the total effective gain as

Geff(ξ) =  exp





2⌡⌠

0

ξ

g(ξ′) dξ′  .            (11)

Using Eq. (11) it can be reduced to

Geff (z) = 
β2(0)

β2(z)
 
Γ(z)
 Γ(0)

) = 
β2

eff(0)

 β2
eff(z)

 .                                       (12)

With the help of Eq. (8) and (12) the pulse width at the grating output can be written as

T (L) = 
T (0)

Geff (L) ,             (13)

where Geff represents the factor by which the input pulse is compressed.  Equations (12) and
(13) show that the compression factor is determined by the ratio of the effective dispersion at
the end points of the grating.
To ensure that the compression remains adiabatic, we impose the condition that the gain
coefficient g is small enough that little amplification occurs over one dispersion length, i.e.

gL
D
<< 1 .                      (14)

If g(ξ) varies slowly with ξ, it can be averaged over the grating length.  From Eq. (11),
Geff(L) = exp(2gL) for z = L.  The condition (14) can thus be written as ln(Geff) << L / L

D
 or,

using Eq.(12), as

 L
D

 2L ln






β2

eff(0)

 β2
eff(L)

  <<  1.                                 (15)

We note that the simple theory developed in this Section is based on the assumption that the
second-order dispersion of the grating is dominant, i.e. the impact of higher-order dispersion
terms is negligible.  This assumption is valid only for input signals whose wavelength is tuned
close to a stop-band edge but remains far enough from the edges so that the third- and higher-
order dispersion terms are small [13].
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3.  Numerical simulations

We apply the results of the previous section to design a high-repetition-rate soliton source
based on adiabatic compression of a dual-frequency signal in a nonuniform fiber Bragg
grating whose index modulation depth ∆n decreases along its length  (see Fig. 1).  Although
the theory developed in Section 2 assumes that the input pulses are solitons, it allows to
predict the width of compressed soliton-like pulses even if the input signal is sinusoidal and to
provide conditions for adiabatic compression.  As  ∆n decreases, grating stop band narrows,
as shown in Fig. 1.  The dual-frequency optical signal can be obtained from a laser operating
simultaneously in two longitudinal modes or by using two distributed feedback semiconductor
lasers, each operating in a single longitudinal mode.  Coherent beating between the two modes
generates a sinusoidally modulated optical signal such that

A(t,0) = A0 sin(πt/T
S
),              (16)

where TS  = (∆ν)−1 is the modulation period for a mode spacing of ∆ν.  We consider a fiber
grating whose coupling coefficient is nonuniform with a functional form

κ(z) = κ0 (1 − Cz) ,        (17)

where κ0 is maximum coupling coefficient, and C is a constant. The effective dispersion
parameter corresponding to this profile is given by

β2
eff(z) = 

2κ2(z) δ
V 2 [2δ 2 + κ2(z)] [δ 2 − κ2(z)]

 .             (18)

Figure 2 shows the axial variations of the coupling coefficient and the effective GVD as
functions of z.  Note that a linear variation of κ in Eq. (17) was chosen only for simplicity.  In
principle, κ can have any functional form as long as the conditions (6) and (15) are satisfied.

DISTANCE (cm)

0 10 20 30 40 50 60 70

C
O

U
P

LI
N

G
  C

O
E

F
F

IC
IE

N
T

  (
cm

− 1
)

0

30

60

90 9

6

3

0

E
F

F
E

C
T

IV
E

  D
IS

P
E

R
S

IO
N

  (ps
2/cm

)

To test the validity of our simple analytic model, numerical simulations were
performed using the nonlinear coupled-mode equations.  As an example, we consider
propagation of a 40-GHz sinusoidal signal with TS = 25 ps and Iout

 = 7.04 GW/cm2 through a
70-cm-long apodized fiber grating.  The κ profile is given by Eq. (15) with κ0 = 80 cm−1, δ =
160 cm−1, and C is chosen such that Geff  =5.  Since gLD ≈ 0.1 for this choice of parameters, the
adiabatic-compression condition (14) is reasonably well  satisfied.  Figures  3  and  4   show
pulse   shapes  and spectra  respectively  at the input (upper plot) and output (lower plot) ends
of  the  grating.   These  results  show  that  the  12.5-ps sinusoidal pulses evolve and compress
by a factor of about 4.8 to become 2.6 ps soliton-like pulses.  This behavior is in good
agreement  with  the prediction of our simple analytic theory.  We note that each pulse in the

Fig. 2.  Axial variations of κ(z) (black line) and |β2
eff(z)| (red line) inside the grating.
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generated train contains a very small pedestal which is not visible on a linear scale.  The
origin of the pedestal may be related to the fact that the compression is not perfectly adiabatic,
resulting in an asymmetric spectrum, as seen in Fig. 4.  The time-bandwidth product for each
pulse in the train is found to be about 0.34 (FWHM), while it is 0.315 for a soliton, which
means that the pulses are very close to transform-limited.  Finally, we note that in this example
the ratio between the soliton separation and soliton pulse width is 9.6.  Since pulses are widely
separated, neighboring solitons practically do not interact with each other [27].
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4.  Conclusions

In this paper we have proposed a high-repetition-rate soliton-train source based on a
nonuniform fiber Bragg grating.  In our scheme, a dual-frequency signal is reshaped into a
train of soliton-like pulses as it is compressed adiabatically during its propagation in a fiber
grating with a nonuniform coupling coefficient. We develop an simple analytical model to
predict the width of compressed soliton-like pulses and to provide conditions for adiabatic
compression. We demonstrate numerically that a 40-GHz train of 2.6 ps solitons can be
generated using a fiber grating with linearly decreasing coupling coefficient.  Higher repetition
rates can be achieved using stronger and longer gratings or other types of photonic crystals.
Since the proposed  scheme relies on the dispersion provided by the grating, which is many
orders of magnitude larger than that of silica fibers, the device length can be reduced
significantly, compared to fiber-based devices.  However, note that the intensities required
when silica-fiber gratings are used are very large (~10 GW/cm2).  The required intensity can
be scaled down using a medium with high nonlinearity.  For example, the nonlinear coefficient
of As2S3 chalcogenide fibers is 100 times larger than that of standard silica fibers [28] and,
therefore, the peak intensity of  7 GW/cm2 used in our numerical example in Section III will
scale down to 70 MW/cm2 (peak power ~ 10 W) if such fibers are used.
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Fig. 3.  Input sinusoidal signal (upper plot), and
soliton train  generated at the grating output (lower
plot).

Fig. 4.  Input dual-frequency signal spectrum
(upper plot) and output spectrum of the soliton
train (lower plot).
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