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Absolute Instabilities in Lasers with
Host-Induced Nonlinearities and Dispersion
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Abstract—We analyze the occurrence of absolute instabilities
in lasers that contain a dispersive host material with third-
order nonlinearities. Starting from the Maxwell–Bloch equations,
we derive general multimode equations to distinguish between
convective and absolute instabilities. We find that both self-phase
modulation and intensity-dependent absorption can dramatically
affect the absolute stability of such lasers. In particular, the self-
pulsing threshold (the so-called second laser threshold) can occur
at few times the first laser threshold even in good-cavity lasers for
which no self-pulsing occurs in the absence of intensity-dependent
absorption.

Index Terms—Laser stability, nonlinear optics, optical fiber
lasers, optical Kerr effect, optical pulse generation, optical prop-
agation in dispersive media.

I. INTRODUCTION

A LMOST immediately after the advent of the laser, it
was recognized that laser output can become unstable,

resulting in irregular power spikes even at a constant pumping
level [1]. Over the last 30 years or so, laser instabilities
have been studied extensively both from the fundamental and
applied viewpoints [2], [3]. The fundamental studies have led
to the flourishing field of optical chaos. On the applied side,
the development of techniques for controlling chaos are being
used to make lasers tailored for specific applications (high
power, short pulses, clean far field, etc.).

Since deterministic chaos is studied in a wide variety of
disciplines, the understanding of laser instabilities can be
improved by referring to plasma and fluid instabilities that
have been studied for a long time. A famous example is
provided by the Lorenz–Haken equations which are named
after the fluid dynamicist Lorenz and the laser theorist Haken
[3], [4]. In fluid dynamics, instabilities are categorized into
two types: convective and absolute [5]. Convective instabilities
are characterized by the growth of localized perturbations
upon propagation inside a nonlinear medium, while absolute
instabilities exhibit purely temporal dynamics. Absolute laser
instabilities have been studied for more than 30 years. The
Lorenz–Haken equations describe the dynamics of a homo-
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geneously broadened gain medium in a unidirectional ring-
cavity. Although rarely stated explicitly, the Lorenz–Haken
equations can only show absolute instabilities. The fundamen-
tal concepts such as second laser threshold, self-pulsing, Hopf
bifurcation, and different routes to chaos are all formulated
within the context of absolute laser instabilities [3].

In the last 15 years or so, new laser systems have been
designed that are not easily modeled by the Lorenz–Haken
equations. Examples of such lasers are fiber lasers and solid-
state (e.g., Ti : sapphire) lasers, which are capable of producing
ultrashort optical pulses through passive mode locking while
operating at a constant pump power. What these lasers have in
common is that the gain is provided by atoms or ions doped
inside a host material. As a result, the cavity contains not
only a gain element but also other nonlinear elements, which
are responsible for nonlinear processes such as self-phase
modulation (SPM) and intensity-dependent absorption (IDA)
[6]. Also, group-velocity dispersion (GVD) of the host medium
plays a nonnegligible role. Because of the dispersive and
nonlinear effects, evolution of the optical field over a single
round trip must be considered, contrary to the Lorenz–Haken
model in which such effects are ignored. This means that the
convective nature of any instability must be considered while
discussing instabilities for such lasers.

A well-known example of a convective instability occurs
in nonlinear fiber optics [6]. Optical fibers, without any
gain element and without any longitudinal resonances (no
cavity), show a convective instability known as the modulation
instability. When the power of a CW optical beam becomes
sufficiently large, the combination of SPM and anomalous
GVD causes the CW beam to break up spontaneously into
a pulse train (and eventually into optical solitons) whose rep-
etition rate depends on the fiber parameters. Mathematically,
a linear stability analysis shows that perturbations of the form

grow exponentially as with a
growth rate that depends on the frequency
of perturbation. The repetition rate of the resulting pulses
corresponds to the frequency for which the growth rate
is maximum.

Adding gain to the system, e.g., by doping the fiber with
rare-earth ions and pumping it optically, can affect consider-
ably the conditions under which modulation instability arises
[7]. The instability, however, remains convective in nature.
When such a host material (with or without gain) is put into a
cavity, the resulting boundary conditions at the cavity mirrors
can change the nature of the instability from convective to
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absolute. Feedback is a necessary ingredient for absolute
instabilities to occur. A well-known example is the Ikeda
instability [8], which arises when a Kerr medium is placed in
a unidirectional ring cavity. Even without gain and dispersion,
the feedback mechanism provided by the cavity results in an
absolute instability.

In this paper, we discuss under what conditions a convective
instability becomes absolute in a laser. In Section II, we
derive, starting from the Maxwell–Bloch equations, a set of
Lorenz–Haken-type multimode equations capable of describ-
ing the temporal evolution of a laser whose cavity includes
optical elements exhibiting dispersion and nonlinearities. The
usefulness of this new set of equations is illustrated in Section
III by considering a relatively simple case of a single-mode
laser. We discuss the stability of that mode as a function of
host nonlinearities.

II. M AXWELL –BLOCH EQUATIONS

For definiteness, we focus on a fiber laser although the
analysis can be applied to any solid-state laser with some
modifications. Our starting point is a set of Maxwell–Bloch
equations describing the propagation of optical fields in an
optical fiber, doped with rare-earth ions. We write the optical
field and the dopant-induced polarizationas

c.c.

(1)

c.c.

(2)

where is the polarization unit vector of light assumed
to be linearly polarized along the axis, is the
transverse profile of the fundamental fiber mode, andis
the wavenumber corresponding to the optical frequency.
We assume that the field-polarization direction is preserved
upon propagation. After substituting (1) and (2) in Maxwell’s
equations, modeling dopants as a homogeneously broadened
two-level system, and making use of the slowly varying
envelope and rotating-wave approximations, we obtain the fol-
lowing equations for the slowly varying complex amplitudes

and [6]:

(3)

(4)

(5)

where is the gain realized by pumping the dopants,is the
optical loss of the host fiber, is the population lifetime
of the dopants, is the dipole-dephasing time, is the
group velocity, is the GVD coefficient of the host fiber,
the complex parameter accounts for the host nonlinearities
responsible for SPM and IDA, is the scaled

detuning between the optical frequency and the atomic
resonance frequency , is the unsaturated gain, and is
the saturation power for the dopants. We have written (3)–(5)
in such a way that has units of W, has units of

W m , and has units of m .
The main assumptions in our model are the use of a

homogeneously broadened gain medium and the neglect of
the stochastic nature of spontaneous emission. The former is
not valid for all dopants but is a reasonable assumption for
many types of dopants [6]. The latter can be justified if one is
interested only in deterministic instabilities.

There are two distinct origins of the nonlinear effects in
(3)–(5). The host nonlinearity accounts for SPM
and IDA effects induced by the silica fiber. The SPM effects
are governed by , where is the nonlinear-
index coefficient, is the speed of light in vacuum, and is
the effective mode area [6]. The effects of IDA are accounted
for by . When , the loss in the cavity increases with
intensity, modeling processes such as two-photon absorption
[6]. In contrast, negative values for imply a decrease in
cavity losses with increasing intensity and model fast saturable
absorption. The dopant-induced nonlinear effects are governed
by the saturation power , where
is Planck’s constant divided by , is the dipole moment of
the atomic transition, and is the background refractive index.

The Maxwell–Bloch equations, together with the boundary
conditions imposed by the laser cavity, provide the most
general framework for studying laser instabilities. They are
capable of handling both convective and absolute instabilities
and can show transitions between them. However, their solu-
tions require a numerical approach. Without host nonlinearities

and without GVD , the steady-state solutions
can be obtained, and their linear stability properties have been
studied [9]. However, such an approach is quite cumbersome,
and it is not easy to carry out the analysis after the inclusion
of host nonlinearities and GVD. If one is interested only in
absolute instabilities, an analytic approach can be developed,
as discussed in the next section.

III. M ULTIMODE LASER EQUATIONS

Rather than solving (3)–(5) numerically, we make use of
the fact that any cavity supports a set of longitudinal modes
whose field distribution reproduces itself after each
round trip inside the cavity. These modes can be obtained by
solving (3) with (no gain in the fiber cavity) and using
the appropriate boundary conditions at the cavity mirrors. For
a high- laser cavity, one can distribute the mirror losses
throughout the cavity and replace the fiber lossin (3) with

, where is the distributed mirror loss. The
boundary condition then simply becomes ,
where is the cavity length. For a Fabry–Perot cavity with
mirror reflectivities and , is given by

(6)

The approximation that the localized mirror loss can be
replaced by a distributed loss only holds for a high-laser
cavity [2].
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When dealing with a unidirectional ring laser without host
dispersion and nonlinearities, the form of becomes
simply , where are the mode fre-
quencies and the loss term has been ignored. In the presence of
GVD and SPM, may depend on time in a complicated
manner, but the temporal patterns remain invariant from round
trip to round trip. However, the amplitude of such “temporal
modes” can grow from round trip to round trip if an absolute
instability occurs. It is thus important to consider time scales
describing short-term and long-term dynamics, distinguished
on the basis of the round-trip time . The field-
propagation equation (3) describes both the long-term and
short-term effects. By making the coordinate transformation
[10]

(7)

we distinguish between the propagation variabledescribing
evolution over a single round trip, and the long-term timescale

measured in units of . The steady-state solutions of (3)–(5)
are found by putting the derivative with respect toequal
to zero and applying the boundary conditions at the cavity
mirrors.

In general, a laser can operate in several longitudinal modes
simultaneously. Thus, the laser field can be written as

. If this steady state is perturbed, the expansion
coefficients become a function of . We can study the
long-term stability of the steady state by expanding the field

and the polarization into a set of longitudinal modes

(8)

(9)

When the set of functions is complete, the modal
expansion in (8) and (9) is exact. However, it is hard to prove
completeness of under all operating conditions. As
a practical matter, the infinite sum in (8) and (9) is always
truncated. This is justified since only a finite number of
longitudinal modes are excited in a laser at a given pump
power.

After expansions (8) and (9) are substituted in the
Maxwell–Bloch equations (3) and (4) using the coordinate
transformation (7), we multiply the equations for and
by , and integrate them over one round-trip time. We
then obtain

(10)

(11)

where the coefficients , , and are defined as

(12)

(13)

(14)

The values of these coefficients determine how many modes
should be considered, i.e., at what point the infinite sum in (8)
and (9) can be truncated.

The complex gain coefficient in (11) is given by

(15)

and should be interpreted as follows. When ,
represents the modal gain for the mode , while for

represents gain modulation because of mode beating
(sometimes referred to as population pulsations). From (5),
we readily obtain the rate equation for the coefficients :

(16)
Note that we have not made any assumptions about the

orthogonality of the longitudinal modes. The nonorthogonality
of longitudinal modes has attracted considerable attention
in recent years [11]–[13]. In general, the more “open” a
resonator is (the larger the mirror loss), the less orthogonal the
longitudinal modes are. For fiber lasers, longitudinal modes are
expected to be nearly orthogonal since mirror losses are often
kept to a minimum.

If we assume that the functions are orthonormal, the
coefficients reduce to . The multimode equations
(10), (11), and (16) then transform into the following set of
Lorenz–Haken-type equations:

(17)

(18)

(19)

Equations (17)–(19) form a complete set of equations de-
scribing the dynamics of various longitudinal modes of the
laser. They include the effects of host dispersion and nonlin-
earity through the terms containing and in (17). What
constitutes SPM in a propagation-based description now splits
into several different kinds of nonlinearities in the modal
description. The triple sum in (10) describes the phenomenon
of SPM when , cross-phase modulation
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for and , and four-wave mixing for other
combinations of , and [6].

Equations (17)–(19) constitute the main result of this paper.
In principle, they can be used to study the phenomenon
of passive mode locking by including a larger and larger
number of longitudinal modes as the mode-locked pulses
become shorter. When the mode-locked pulse pattern becomes
unstable, the laser may switch to a higher harmonic mode-
locked operation [14] or even enter a chaotic regime [15].
Equations (17)–(19) can be used to describe such behavior.
When the steady-state pattern does not vary too rapidly,
one can restrict the analysis to a small number of modes,
although such a restriction will exclude passive mode-locking.
We illustrate the usefulness of (17)–(19) for this case by using
a simple example.

IV. A SIMPLE EXAMPLE

The simplest case, analogous to the single-mode
Lorenz–Haken model, is obtained from (17)–(19) by setting

. The resulting equations become

(20)

(21)

(22)

where the SPM coefficient is defined as . The
effect of GVD on a single longitudinal mode merely involves
a frequency shift of magnitude , which
has been scaled out of the problem by changing the carrier
frequency to . This is equivalent to resetting the
atomic detuning by . We normalize these equations
using the standard Lorenz–Haken notation and rewrite them
in the following way:

(23)

(24)

(25)

where the normalized time is measured in units of
. The parameters, , , and , and the variables, , and
are related to quantities appearing in (3)–(5) as

(26)

(27)

These equations are identical to the standard Lorenz–Haken
equations [3] except for the last term in (23) that is re-
sponsible for SPM and IDA occurring because of the host
nonlinearities [3].

We now employ the standard linear stability analysis to
investigate the stability properties of (23)–(25). First, we look

for CW solutions of the form

(28)

(29)

(30)

where is the (scaled) optical field intensity, is
the (scaled) polarization amplitude, is the frequency shift
with respect to the optical frequency , and is the phase
lag between electric field and polarization. We stress that all
these quantities are referring to the single longitudinal mode
under consideration.

After substituting (28)–(30) in the evolution equations
(23)–(25) and denoting , the field intensity

is a positive real solution of the quartic equation

(31)

where the coefficients are given by

(32)

(33)

(34)

(35)

(36)

For each solution , the accompanying frequency shift
, inversion , phase lag , and polarization are

determined by the following relations:

(37)

(38)

(39)

The presence of SPM affects the CW characteristics of
the laser through the frequency shift . At resonance, i.e.,

, the laser operates at the gain peak in the absence of
SPM. In the presence of SPM, this CW state will be detuned
from the gain peak, thus producing less output power. Thus,
the effects of detuning and the SPM parameter either
counteract or re-enforce each other. In Fig. 1 we show how
the laser power varies with pump at fixed SPM parameter

for three different detunings. In general, the detuning
increases the first laser threshold, but for and

the laser output power exceeds that obtained for . In
Fig. 1, we choose and , typical values used in the
context of the Lorenz–Haken model.

The stability of the CW solutions is investigated by per-
forming a linear stability analysis. After writing the perturbed
steady states as

(40)

(41)

(42)



1858 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 34, NO. 10, OCTOBER 1998

Fig. 1. The laser powerP as a function of pump levelr in the presence of
SPM (q0

= 1) for three different values of atomic detuning� (indicated in
the figure). Other parameters are� = 3 and b = 1.

linearizing the evolution equations for the perturbations
(where is the phase difference ), and

assuming a solution of the form for , the
characteristic eigenvalue equation foris found to be a quartic
polynomial obtained from the determinant equation as shown
in (43), shown at the bottom of the page. When any of the
four complex roots of (43) has a positive real part, the steady
state under consideration is unstable.

Because of the complexity of the determinant in (43),
we do not attempt to find an analytical expression for the
second threshold. Instead, we study two cases in detail. One
is characterized by the combination and ,
and is called the “bad-cavity” laser, while the other (“good-
cavity” laser) has the combination . The bad-cavity
laser has a finite second threshold even in the absence of
host nonlinearities, while the good-cavity laser has no second
threshold in the Lorenz–Haken limit obtained by setting
[3]. For the resonant case ( ), the second threshold is
simply given by [3]. A
necessary condition, the so-called bad-cavity condition, for the
second threshold to exist is . An analytical expression
for the second threshold for arbitrary detuning values was
given in [16].

We first consider a laser without IDA and set .
SPM is then the only host-induced nonlinearity. In Fig. 2,
we show the pump parameter at the second threshold as a
function of the SPM parameter for the bad-cavity laser
operating on-resonance ( ). In absence of SPM ( ),
the second threshold is located at . Quite surprisingly,

Fig. 2. The effect of SPM on the location of the second threshold at atomic
resonance (� = 0), for the “bad-cavity” laser with� = 3 andb = 1.

Fig. 3. The effect of IDA on the location of the second threshold at atomic
resonance (� = 0). Solid line: bad-cavity laser with� = 1 andb = 1. Dashed
line: good-cavity laser with� = 3 and b = 1.

the global effect of SPM is to stabilize the system: already at
the second threshold ceases to exist. This result is

surprising since SPM is essential for convective instabilities to
occur in passive fibers and fiber amplifiers. From the steady-
state analysis above we know that SPM causes a shift in
operating frequency away from the gain peak, thus lowering
the output power. From a stability point of view this shift can
be interpreted as a shift away from the second threshold. The
good-cavity laser shows no second threshold
with or without SPM.

Quite a different picture emerges when IDA is included.
For both good- and bad-cavity lasers, IDA can reduce the

(43)
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Fig. 4. The location of the second threshold for the bad-cavity laser of Fig. 3,
as a function of SPM for four different values of IDA (indicated in the figure).

second threshold dramatically, as shown in Fig. 3. In both
cases, positive values of account for two-photon absorption
while negative values of can be used to describe the
effect of a fast saturable absorber. Clearly, fast saturable
absorption (negative ) reduces the second laser threshold
for both good- and bad-cavity lasers. In the presence of a fast
saturable absorber, self-pulsing can therefore occur at pump
levels only a few times above the first threshold. We stress
that this self-pulsing is not related to passive mode locking
because of our assumption of a single longitudinal mode. In
fact, the frequency of self-pulsing is related to the relaxation
oscillations and is a fraction of the longitudinal-mode spacing.

Fig. 4 shows the combined effect of SPM and IDA for the
bad-cavity laser. For four different values of, the second
laser threshold is shown as a function of the SPM parameter

. The effects of SPM and negative IDA have opposite effects
on the second threshold: SPM stabilizes the laser by increasing
the second threshold, while negative IDA destabilizes the laser
and reduces the pumping level at which the second threshold
occurs. For the good-cavity laser, a qualitatively similar figure
is obtained, although in that case no second threshold exists
when .

Fiber ring lasers usually oscillate in many longitudinal
modes simultaneously because their mode spacing (10 MHz)
is a fraction of the gain bandwidth ( THz). By using a
grating, they can be forced to operate in a single longitudinal
mode. When we use typical values for a neodymium-doped
fiber laser, km , ps, ms,

W km , and W, the dimensionless
parameters are , , and

. These values make the single-longitudinal-mode
fiber ring laser a good-cavity laser with no second threshold
by itself. Fig. 5 shows the effect of fast saturable absorption
on the second threshold of such a laser. Even relatively small
values of cause a second threshold to exist at quite low
pump values. For example, when , the
second laser threshold exists at a pump level only twice the
first laser threshold. This value of corresponds to

W km if we use . This is a weak
saturable absorption indeed, since it only reduces the losses

Fig. 5. The location of the second threshold for a fiber ring laser which is
forced to oscillate in only one longitudinal mode, as a function of (negative)
IDA.

in the cavity by 0.001% for an intracavity power of 3 W. At
the second laser threshold, the relaxation-oscillation frequency
is 50 kHz, and self-pulsing will occur with a repetition rate
close to that value.

V. CONCLUSIONS

In this paper, we have analyzed the effects of GVD and
host nonlinearities (SPM and IDA) on the absolute stability
of lasers. Starting from the Maxwell–Bloch equations, we
derive a set of multimode laser equations, which govern the
absolute dynamics of the laser on a timescale longer than
the cavity round-trip time. The presence of a resonator gives
rise to longitudinal modes that can differ from their conven-
tional form in the presence of GVD and host-nonlinearities.
Our analysis shows the link between the propagation-based
(convective) modulation instability and the purely temporal
(absolute) instabilities of these spatio-temporal patterns. The
latter can occur only in a resonator as absolute instabilities
require optical feedback.

To illustrate our formalism, we consider the case of a fiber
ring laser forced to oscillate in a single longitudinal mode.
The nonlinear dynamics of the slowly-varying amplitude of
that mode is governed by the Lorenz–Haken equations except
that a nonlinear term is added to the field equation. This
nonlinear term contains a complex parameterwhose real and
imaginary parts account for nonlinear effects such as SPM
and IDA, respectively. SPM is found to stabilize the laser,
while IDA, in general, destabilizes the laser. Thus, we show
that SPM can have a double role as far as stability issues
are concerned. On the one hand, it can cause convective
instabilities in combination with GVD, which can lead to
exponential growth of a localized perturbation. However, once
the perturbation fills the entire cavity, its subsequent growth is
dictated by the cavity modes. SPM is found to suppress such
subsequent growth. IDA induced by fast saturable absorbers,
however, quickly gives rise to a second laser threshold at
relatively low pump levels. In our single-mode laser, the
laser begins to self-pulse at a repetition rate close to the
relaxation–oscillation frequency.
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