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Absolute instabilities of counterpropagating pump beams in a dispersive Kerr medium, placed inside a Fabry–
Perot cavity, are analytically studied by use of the analysis and the results of part I [J. Opt. Soc. B 14, 607
(1998)]. Our approach allows characterization of such a complicated nonlinear system in terms of a doubly
resonant optical parametric oscillator. We consider the growth of modulation-instability sidebands associated
with each pump beam when weak probe signals are injected through one of the mirrors of the Fabry–Perot
cavity. The results are used to obtain the threshold condition for the onset of the absolute instability and the
growth rate for the unstable sidebands in the above-threshold regime. As expected, the well-known Ikeda
instability is recovered at low modulation frequencies. The effects of the group-velocity dispersion are found
to become quite important at high modulation frequencies. Although the absolute instability dominates in the
anomalous-dispersion regime, it exists even in the normal-dispersion regime of the nonlinear medium. Below
the instability threshold, our analysis provides analytic expressions for the probe transmittivity and the re-
flectivity of the phase-conjugated signal that is generated through a four-wave-mixing process. © 1998 Op-
tical Society of America [S0740-3224(98)04102-2]
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1. INTRODUCTION
The nonlinear interaction between counterpropagating
waves in a finite Kerr medium has been studied
extensively.1–5 In part I of this set of two papers,6 we de-
veloped a theoretical model to study the instabilities of
counterpropagating waves in a finite, dispersive, Kerr
medium and showed how the effects of boundary reflec-
tions can be included. At high modulation frequencies
for which the effects of group-velocity dispersion (GVD)
are important, the results can be interpreted in terms of
an analogy to a highly detuned, distributed feedback
(DFB) laser7 (except that photon pairs corresponding to
the two spectral sidebands are involved). We showed in
part I (referred to hereinafter as Ref. 6) that the problem
can be further simplified by a classification of the param-
eter space in terms of the relative importance of the DFB
and boundary reflections. In practice, a finite Kerr me-
dium can be considered a Fabry–Perot (FP) cavity whose
mirror reflectivities are large enough that the DFB effects
can be neglected compared with the boundary effects.
Thus the problem becomes analogous to a doubly reso-
nant FP parametric oscillator,8 except that one must con-
sider the signal and idler pairs at the sideband frequen-
cies simultaneously. Such an approach is well suited for
the investigation of the GVD effects on the Ikeda instabil-
ity in a nonlinear FP cavity.
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The objective of this paper is to provide a detailed study
of this important case. After a brief review of the rel-
evant results of Ref. 6, the case of cw pump waves coun-
terpropagating in a FP cavity that contains a dispersive
Kerr medium is investigated theoretically in Section 2 by
studying the medium response to a weak probe beam.
The threshold condition for the absolute instability and
the growth rates of the unstable modes are obtained in
Section 3. The transmission and reflection coefficients of
the probe are calculated and analyzed in Section 4. Al-
though a silica fiber is used as an example, the results are
applicable to any dispersive Kerr medium.

2. THEORETICAL ANALYSIS
The equations used to model the system, the underlying
assumptions, and the technique used to solve them have
been discussed in Ref. 6 and need not to be repeated here.
The new feature is that the nonlinear medium is placed
inside a FP cavity. We assume for simplicity that the
nonlinear medium occupies the entire length l of the FP
cavity. The evolution of two counterpropagating pump
waves is described by a set of two coupled nonlinear
Schrödinger equations [see Ref. 6, Eqs. (1) and (2)]. The
counterpropagating cw pump fields in the medium are
represented by the steady-state solutions of these equa-
tions, given by
1998 Optical Society of America
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A1s~t, z ! 5 A10 exp@ig~ uA10u2 1 2uA20u2!z#, (1)

A2s~t, z ! 5 A20 exp@ig~ uA20u2 1 2uA10u2!~l 2 z !#.

(2)
Here g is the nonlinear coefficient, k0 is the linear wave
number, and the complex constants A10 5 uA10uexp(if10)
and A20 5 uA20uexp(if20) refer to the amplitudes of the
counterpropagating pump waves.

To study the stability of the steady-state solution, we
inject weak probe fields into the cavity and look at the re-
sponse of the system. With the same notation as in Ref.
6, the weak probe fields inside the cavity can be written
as

dA1~t, z ! 5 dA1~t, z ! exp@ig~ uA10u2 1 2uA20u2!z#, (3)

dA2~t, z ! 5 dA2~t, z ! exp@ig~ uA20u2 1 2uA10u2!~l 2 z !#.

(4)
Their evolution in the frequency domain is described by
Eq. (52) of Ref. 6 in terms of dA1(v, z) and dA2(v, z),
which are the Fourier transforms of dA1(t, z) and
dA2(t, z), respectively. For completeness, we reproduce
Eq. (52) of Ref. 6 here:

FdA1~v, z !

dA2~v, z !G 5 exp~ib1vz !F M f ~v, z !

M fb ~v, z !Gcf

1 exp@ib1v~l 2 z !#FMbf ~v, l 2 z !

Mb~v, l 2 z ! Gcb ,

(5)

where the vectors dA1 and dA2 are formed by use of the
two forward-propagating and two backward-propagating
sidebands, respectively. Each pair of sidebands consists
of Fourier components at the frequencies v and 2v.
Thus dAj(v, z) 5 @dAj(v, z),dAj* (2v, z)# is a column
vector with the two elements representing sideband am-
plitudes ( j 5 1, 2). The matrix elements for all matrices
appearing in Eq. (5) are given in Section 3 of Ref. 6.

We obtained Eq. (5) by linearizing the nonlinear Schrö-
dinger equations and using the small-parameter analysis
in terms of a small parameter e. To define the dimen-
sionless parameter e, we introduce several characteristic
lengths and frequencies. The walk-off length and the
dispersion length at a given modulation frequency v are
defined as lW 5 (b1v)21 and lD 5 (b2v2)21, where b1 ,
b2 are the inverse of group velocity and the GVD coeffi-
cient, respectively. Assuming that the pump–power ra-
tio S [ uA20u2/uA10u2 < 1 (without loss of generality), we
define the nonlinear length at a given power P 5 uA10u2 as
lN 5 (gP)21. We further define vW 5 gP/b1 and vD
5 (gP/b2)1/2 to represent the modulation frequencies at
which the walk-off length and the dispersion length, re-
spectively, become equal to the nonlinear length. For
modulation frequencies far below vW the effects of walk-
off are not important. Similarly, for modulation frequen-
cies far below vD the GVD effects become negligible.
With these definitions, the parameter

e 5 vW /vD 5 Aub2ugP/b1
2, (6)

is a small quantity even for materials with a relatively
large GVD coefficient and at relatively high power levels
since, in practice, the GVD effects are negligible simply
when the walk-off length is comparable to the nonlinear
length. In this paper, as well as in Ref. 6, the dispersive
and nonlinear effects are of main concern. We thus in-
troduce a normalized modulation frequency V 5 v/vD
and a normalized length L 5 l/lN . The GVD effect is
negligible when V ! 1, and the Kerr medium can be
treated as dispersionless by setting b2 5 0 (see Ref. 6,
Section 2 for more details).

By treating e as a small parameter, we concluded in
Ref. 6 that the cross matrices M fb and Mbf in Eq. (5) can
be ignored when V @ e (or v @ vW) and the amplitude-
reflection coefficients of the FP-cavity mirrors are much
larger than O(e/V). When the first condition is satisfied,
the forward- and backward-propagating pairs of side-
bands evolve independently as if the counterpropagating
pump wave were absent. The role of the counterpropa-
gating pump wave is to induce a weak scattering of the
propagating sidebands through cross-phase modulation
in the opposite direction. This scattering can be consid-
ered as a weak DFB of the magnitude O(e/V) and can be
neglected when FP reflection coefficients are @O(e/V).

When v < vW [i.e., V < O(e)], the above discussion in-
dicates that the GVD effects are negligible. This disper-
sionless case has been studied before.1 In this paper, we
concentrate on the case V @ e. As has been pointed out
in Ref. 6, for very small values of e, there can be a region,
1 @ V @ e that overlaps with the two cases considered in
this paper and Ref. 1. In this region, the frequency is low
enough that dispersion is not important, and yet high
enough that DFB is weak. Normally, the cavity-mirror
feedback is much stronger than the DFB so that the sec-
ond condition is easily satisfied. This is true even for
weak reflections such as those occurring at the uncoated
air–glass interface of an optical fiber having an
amplitude-reflection coefficient of ;0.2 (4% power reflec-
tivity).

Using silica fiber as an illustrative example,9 let us as-
sume a power of P 5 10 W, a nonlinear coefficient of g
5 10 W21 km21, a group velocity of 1/b1 5 0.2 mm/ps,
and a GVD coefficient of ub2u 5 20 ps2/ km. Then lN
; 10 m, and e is only ;1025. Further, the frequencies
vW and vD are ;20 ms21 (or 3 MHz) and 2 ps21 (or 0.3
THz), respectively.

A. Sideband Amplitudes
As discussed above, we can generally neglect the effects of
DFB inside the Kerr medium placed in a FP cavity. This
observation simplifies the analysis considerably since by
ignoring the cross matrices in Eq. (5), the evolution of
each pair of sidebands can be studied independently. In
fact, one can use the transfer matrices Mf (v, l) and
Mb(v, l) for the sidebands of the two pump beams indi-
vidually, and write the solutions in the form

dA 1~v, l ! 5 exp~ib1vl !M f ~v, l !dA1~v, 0!, (7)

dA 2~v, 0! 5 exp~ib1vl !M b~v, l !dA 2~v, l !.
(8)

The transfer matrix for the modulation-instability (MI)
sidebands of an individual pump is well known,10 and the
two matrices Mf(v, l) and Mb(v, l) are given by Eqs. (34)
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and (35) of Ref. 6 in terms of Y1 , Y2 , r16 , and r26 . Since
rm1 5 rm2 (m 5 1, 2), if the pump phase is assumed to
be zero, we drop the subscript 6 on r1 and r2 . For com-
pleteness, we give here expressions of Y1 and r1 :

Y1~v! 5 A~b2v2/2 1 guA10u2!2 2 ~guA10u2!2, (9)

r1~v! 5 ~Y1 2 b2v2/2!/~guA10u2! 2 1. (10)

Similar expressions hold for the counterpropagating
pump beam.

It is easy to show that uM f u 5 1, and the transfer ma-
trix establishes a one-to-one correspondence between the
input and output amplitudes of the coupled sidebands.
Note also that M f

2(v, l) 5 M f (v, 2l) as required on a
physical basis. Similar expressions and properties hold
for M b . In analogy to a FP laser, the behavior of
M f (v, l) along the distance l gives the information on
the evolution of the coupled sidebands inside the cavity.
As has been pointed out in Ref. 6, its magnitude can ei-
ther increase linearly or exponentially, providing a linear
or exponential gain for the coupled sidebands. The latter
case occurs in the anomalous-dispersion regime only
when V ; (2)1/2, while the former happens whenever
uY1ul ! 1, translating into the requirement of V ! 1 (i.e.,
dispersionless propagation) in both the normal and the
anomalous regimes. Similar conditions apply to Mb .

B. Effects inside the Fabry–Perot Cavity
We now proceed to include the effects of mirror reflections
occurring inside the FP cavity on the single-pass solution
given by Eqs. (7) and (8). If the probe fields dAi(v) are
injected at the left mirror located at z 5 0, the boundary
conditions require that

dA1~v, 0! 5 Tf8dA i~v! 1 R fdA 2~v, 0!, (11)

dA 2~v, l ! 5 R bdA 1~v, l !, (12)

where

Rj 5 F rj exp~icrj! 0

0 rj exp~2icrj!
G ~ j 5 f, b !,

Tf8 5 F tf8 exp~if t8f! 0

0 tf8 exp~2if t8f!
G .

Here, crf 5 frf 1 D2 and crb 5 frb 1 D1 with D1 5 k0l
1 g(uA10u2 1 2uA20u2)l, and D2 5 k0l 1 g (uA20u2

1 2uA10u2)l are the propagation constants associated
with the pump waves. Further, r f exp(ifrf) and
rb exp(ifrb) are the reflection coefficients for the left and
right mirrors (0 , r f , 1 and 0 , rb , 1,) respectively,
and tf8 exp(ift8f) is the transmission coefficient into the
medium at the left mirror. Although we assume that the
cavity mirrors are in contact with the Kerr medium, a
similar treatment can be applied when the mirrors are lo-
cated away from the Kerr medium. Equations (11) and
(12) are the same as Eqs. (53) and (54) of Ref. 6 if we set
dA i 5 0. The simplification made by neglecting the
cross matrices allows us to consider the general case of
nonzero injection in our analytical study.

From Eqs. (7), (8), (11), and (12), the probe field inside
the cavity is related to the input as
dA1~v, 0! 5 @1 2 exp~2ib1vl !R f MbRbM f#
21Tf8dAi~v!,

(13)
where, and in the following, M f (v, l) and M b(v, l) have
been shortened to M f and M b to simplify the notation.
This equation is a coupled-sidebands version of a similar
equation relating the input and the output fields in an FP
cavity in which the vectors and matrices become scalar
quantities.

An absolute instability occurs when the field inside the
cavity dA 1(v, 0) can build up from noise even in the ab-
sence of external injection dA i(v). Such instabilities
can be studied by solving the eigenvalue problem

@1 2 exp~2ib1vl !R f M bR bM f#dA 1~v, 0! 5 0 (14)

in the complex v plane. The frequencies at which an ab-
solute instability occurs are found by setting the determi-
nant

D~v! 5 u1 2 exp~2ib1vl !R f M bR bM f u 5 0. (15)

Multiple solutions for v represent different longitudinal
‘‘supermodes’’ of the system, with the real and imaginary
part providing the frequency and growth (or damping)
rate of each supermode. Therefore an absolute instabil-
ity occurs whenever Eq. (15) permits solutions with
Im(v) . 0. This can happen above certain pump power.
The eigenvectors give the longitudinal supermodes for the
doubly resonant FP parametric oscillator.

Below the absolute-instability threshold, our general
solution can be used to obtain the reflected and transmit-
ted fields through the FP cavity containing a dispersive
Kerr medium by using the relations

dA t~v! 5 TbdA 1~v, l !, dA r~v! 5 TfdA 2~v, 0!,
(16)

where

Tj 5 F tj exp~if tj! 0

0 tj exp~2if tj!
G , ~ j 5 f, b !,

and tf exp(iftf) and tb exp(iftb) are the transmission coef-
ficients out of the medium for the front boundary and rear
boundary, respectively. By use of Eqs. (7), (8), (11), and
(12), the transmitted and reflected fields are related to the
input field as

dA t~v! [ TdA i~v!,

5 exp~ib1vl !TbM f

3 ~1 2 exp~i2b1vl !R f MbRbM f!
21Tf8dAi~v!,

(17)

dA r~v! [ RdA i~v!,

5 exp~i2b1vl !Tf M bR bM f ~1 2 exp~i2b1vl !

3 R f M bR bFM f!
21Tf8dA i~v!, (18)

where T and R are defined as the transmission and reflec-
tion matrices for the nonlinear FP system. They satisfy
the symmetry relations between 2v and v so that T21
5 T12* , T22 5 T11* , R21 5 R12* , and R22 5 R11* . Physi-
cally T11 and T12 indicate the transmission coefficients at
the input frequency and at the four-wave-mixing fre-
quency, respectively.
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3. ABSOLUTE INSTABILITY
We now proceed to describe the absolute instability of a
FP cavity containing a dispersive Kerr medium. The cal-
culation of D(v) from Eq. (15) is straightforward, result-
ing in

D~v! 5 1 2 rf rb exp~i2b1vl !G~v!

1 @rf rb exp~i2b1vl !#2 5 0, (19)

where

G~v! 5 Mf 11Mb11 exp@i~crf 1 crb!#

1 Mf 21Mb12 exp@i~crf 2 crb!# 1 c.c. (20)

Equation (19) can be recast in a familiar form of the
threshold condition for a laser,

rf rbG6
eff~v!exp~2ib1vl ! 5 1, (21)

where the effective gain is defined as

G6
eff~v! 5 ~G 6 AG2 2 4 !/2. (22)

Since G1
effG2

eff 5 1, either G1
eff > 1 or G2

eff > 1. For an un-
stable supermode, the gain should overcome the loss, i.e.,

uG6
eff~v!u . 1/~rf rb!. (23)

For rf rb ! 1, uG6
effu @ 1 is needed for instability, which in

turn requires uGu @ 1. In this case, Eq. (22) simplifies to
yield G1

eff ' G, while G2
eff can be neglected. In the follow-

ing, we use the convention that the subscript 1 denotes
the branch with higher gain. Under this convention,
lnuG1

effu 5 2lnuG2
effu > 0, and the net gain g(v) used in Ref.

6 is simply rf rbG1
eff(v).

To gain some physical insight, let us start with the spe-
cial case of equal pump powers (uA10u 5 uA20u) so that Y1
5 Y2 , r1 5 r2 . By expressing the transfer matrices in
terms of Y1 , Y2 , r1 , and r2 , Eq. (20) becomes

G 5 (exp@i~2Y1l 1 crf 1 crb!#

3 $1 2 r1
2exp@2i2~crf 1 crb!#%

1 exp@2i~2Y1l 1 crf 1 crb!#

3 $1 2 r1
2 exp@i2~crf 1 crb!#%)/~1 2 r1

2!

1 2@cos~u f 2 ub! 2 cos~crf 1 crb!#

3 ~guA10u2l !2 sinc2~Y1l !, (24)

where u f 5 crf 1 f20 2 f10 , ub 5 crb 1 f10 2 f20 , and
sinc(x) 5 sin x/x. When crf 1 crb and u f 2 ub are mul-
tiples of 2p, G in Eq. (24) is considerably simplified and
Eq. (22) becomes

G6
eff 5 exp~7i2Y1l !. (25)

This equation has a very simple physical meaning if we
note that 2iY1 is just the gain from MI in the case of
anomalous dispersion, and Y1 is imaginary with a maxi-
mum magnitude of guA10u.9

In the normal-dispersion regime, b2 > 0, and Y1 is
real. Thus Eq. (21), when combined with Eq. (25), does
not have solutions with Im v > 0, and the system is
stable. However, in the case of anomalous dispersion
(b2 , 0), the MI gain can overcome the reflection loss,
and the system can become unstable. This instability
does not correspond to the conventional Ikeda instability
in a FP cavity since it does not exist for dispersionless me-
dium. Figure 1(a) shows the gain spectra of MI for b2
, 0 by plotting lnuG1

effu as a function of the normalized fre-
quency for two values of the normalized length L.

We determine the frequencies and the growth rates for
different unstable supermodes by using Eq. (25) in Eq.
(21) and solving for V the following relation:

exp$iL@2V/e 7 As~V2/2 1 1 !2 2 1#% 5 1/~rf rb!,
(26)

where s 5 sign(b2) 5 61 and e 5 (ub2uguA10u2/b1
2)1/2 is

the small quantity introduced in Eq. (6). This equation
can be solved by treating e as a small parameter. In a
typical case in which 1 2 rfrb is not a small quantity we
come to the conclusion that mode spacing is so small that
Vr [ Re V varies almost continuously within the MI gain
spectrum. The growth rate V i [ Im V is a small quan-
tity and is given by

V i 5 e@lnuexp@6iLAs~Vr
2/2 1 1 !2 2 1#u

1 ln~rf rb!#/~2L !. (27)

In terms of physical units, this equation can be written as

v i 5 @lnuG1
eff~vr!u 1 ln~rf rb!#/~2lb1!. (28)

Apparently, the mode spacing is O(e) ! 1, while the scale
of variation of the gain curves is O(1) in the normalized
frequency.

Although the above conclusions are drawn under the
special case of equal pump powers with crf 1 crb and u f
2 ub being multiples of 2p, they are valid in general
since a similar analysis can be applied. Thus the gain
spectrum uG1

eff(vr)u gives almost all the needed informa-
tion. According to Eq. (28), the gain has to exceed the
cavity loss 2ln(rf rb) . 0 for an instability to occur, and
their difference determines the growth or damping rate of
each supermode. The threshold condition around fre-
quency vr is lnuG1

eff(vr)u > 2ln(rf rb). The other branch of
the gain curve, lnuG2

effu, is always below threshold (it is ac-
tually below zero). The growth or damping rate is on the
scale of 1/(2lb1), which is ;10 ms21 if we use l
5 1/(gP) as a typical value and use the values of Section
2 for g, P, and b1 . For these parameters, the gain varies
on the scale of 2 ps21, and the mode spacing is on the
scale of 10 ms21. Generally, the mode spacing is ;vW ,
and the growth rate varies on the scale of vD .

To show how the MI gain changes with unequal pump
powers, Figs. 1(b)–1(d) show the gain spectra by use of
Eqs. (22) and (20) for unequal pump intensities and dif-
ferent values of the phases. Multiple gain regions are
due to the constructive or destructive interference effects
induced by the nonlinear phase shifts. The three hori-
zontal loss lines represent the mirror loss 2ln(rf rb) for
rf rb 5 4% (upper line), 30% (middle line) and 50% (lower
line). The difference between the gain curve and the loss
line indicates the growth rate of the sideband amplitudes
in units of 1/(2lb1) 5 vW /(2L). As expected, as the mir-
ror loss is reduced by increasing the mirror reflectivities,
the MI sidebands grow more rapidly because of the in-
creased feedback.
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Fig. 1. Gain spectra of modulation instability in the case of anomalous dispersion obtained by plotting lnuGeff(Vr)u as a function of Vr .
(a) Pump–power ratio S 5 uA20u2/uA10u2 5 1, and crf 1 crb , f20 2 f10 , and crf 2 crb are multiples of 2p. L 5 lguA10u2 5 1 and L
5 1.7 for the solid and dashed curves, respectively. (b) Same as (a) except that S 5 1/3, and the solid and the dashed curves are for
L 5 1.7 and 2.6, respectively. (c) Same as (a) except that L 5 1, and the solid and the dashed curves are for f20 2 f10 5 p/4 and p/2,
respectively. (d) Same as (a) except that L 5 1, and the solid and the dashed curves are for crf 1 crb 5 p/2 and p, respectively. In all
cases, the three horizontal loss lines represent the mirror loss 2ln(rfrb) for rfrb 5 4% (upper line), 30% (middle line), and 50% (lower
line).
The absolute instability can exist even in the normal-
dispersion regime of a dispersive Kerr medium. This in-
stability has its origin in the feedback provided by the
mirrors of a FP cavity and is analogous to the Ikeda in-
stability. Figure 2 shows the gain spectra for b2 . 0 for
several different parameter combinations. From the dis-
cussion of Section 2, it should be noted that the gain-
curve picture does not apply around the zero-modulation
frequency within a bandwidth covering several vW . In
this region, the results from the dispersionless treatment1

indicate that the growth rate in the presence of the Ikeda
instability can vary on the scale of mode spacing. How-
ever, the high-frequency limit of the dispersionless treat-
ment can still be described by the method used here and
corresponds to our gain curve at the low-frequency end.
In fact, the low-frequency limits of the gain curves in Fig.
2(b) correspond to the Ikeda instability. The same is true
for the highest gain curves in Figs. 2(a) and 2(c). There
is no correspondence to the conventional Ikeda instability
for the rest of gain curves shown in Figs. 1 and 2, where
the instabilities are due solely to the presence of the dis-
persive effects.

Since G1
eff ' G can be used for large gain, Eq. (24) indi-

cates that large pump powers or long Kerr media (or both)
are needed. In such a limit, the MI gain contributes
most to the gain curve in the anomalous-dispersion re-
gime because of its exponential dependence on both pa-
rameters. In fact, it can be shown that

G1
eff ' G

5 $exp~2iY2l !@r1r2 exp~iu f!

2 exp~2iu f!#@r1r2 exp~iub! 2 exp~2iub!#

2 exp~iY2l !@r1 exp~iu f! 2 r2 exp~2iu f!#

3 @r1 exp~iub! 2 r2 exp~2iub!#%

3 exp~2iY1l !/@~1 2 r1
2!~1 2 r2

2!#, (29)

for the gain curve around its peak, where we have ne-
glected exp(iY1l) 5 exp(2uY1ul) compared with exp(2iY1l).
We have kept exp(7iY2 l) since Y2 can either be imagi-
nary or real within the frequency range 0 , Vr , 2,
where Y1 is purely imaginary. In the large-gain limit in
the normal-dispersion case, however, the gain value at
the low-frequency end increases at most quadratically
(due to the double-pass nature) with both of the param-
eters.

For a dispersionless Kerr medium, the results of this
section reduce to those obtained previously by Firth,1 who
studied this special case in 1981. When GVD is included
but the feedback effects are removed by setting the mirror
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reflectivities to zero, our results reduce to those of Law
and Kaplan,4 as discussed in Ref. 6.

4. PROBE TRANSMISSIVITY AND
REFLECTIVITY
In pump–probe types of experiments, an external probe,
shifted from the pump frequency by v, is injected into the
cavity together with the counterpropagating pump
beams, and information about the nonlinear system is

Fig. 2. Gain spectra of modulation instability in the case of nor-
mal dispersion. (a) Pump–power ratio S 5 uA20u2/uA10u2 5 1,
the phases crf 1 crb and crf 2 crb are multiples of 2p, and f20
2 f10 5 p/2. The dashed and the solid curves are for L 5 1
and 2.6, respectively. (b) Same as (a) except that S 5 1/3, and
the dashed and the solid curves are for L 5 2.6 and 5, respec-
tively. (c) Same as (a) except that L 5 1, crf 1 crb 5 p/2, and
the dashed and the solid curves are for f20 2 f10 5 0 and p/2
respectively. In all cases, the three horizontal loss lines are the
same as in Fig. 1.
gathered by measuring probe transmissivity and reflec-
tivity below the instability threshold of the system. The
transmission and reflection matrices can be calculated in
a straightforward manner from Eqs. (17) and (18), and
the results are given by

T11~v! 5 exp@i~b1vl 1 f tb 1 f t8f!#tbtf8$Mf 11 2 rf rb

3 exp@i~2b1vl 2 crf 2 crb!#Mb22%/D~v!,

(30)

T12~v! 5 exp@i~b1vl 1 f tb 2 f t8f!#tbtf8$Mf12 1 rf rb

3 exp@i~2b1vl 1 crf 2 crb!#Mb12%/D~v!,

(31)

R11~v! 5 exp@i~2b1vl 1 f tf 1 f t8f!#tf tf8rb

3 $exp~2icrb!Mf21Mb12 1 exp~icrb!Mf11Mb11

2 exp@i~2b1vl 2 crf!#rf rb%/D~v!, (32)

R12~v! 5 exp@i~2b1vl 1 f tf 2 f t8f!#tf tf8rb

3 @exp~2icrb!Mf22Mb12

1 exp~icrb!Mf12Mb11#/D~v!, (33)

together with T21 5 T12* , T22 5 T11* , R21 5 R12* , and
R22 5 R11* .

There are two frequency scales over which the trans-
mission and reflection coefficients vary with frequency.
In the normalized variables V and L, the fast scale of V is
in the term exp(i2b1vl) [ exp(i2VL/e), resulting in
O(e)-scale oscillations corresponding to mode spacing.
The other terms in Eqs. (30)–(33) and (19) depend on fre-
quency on the O(1) scale. The behavior on both scales
can be studied independently.

Considerable simplification occurs for the case in which
rf rb ! 1. In this limit, Eqs. (30)–(33) become

T11~v! 5 exp@i~b1vl 1 f tb 1 f t8f!#tbtf8Mf11 /

3 @1 2 rf rbexp~i2b1vl !G#, (34)

T12~v! 5 exp@i~b1vl 1 f tb 2 f t8f!#tbtf8Mf12 /

3 @1 2 rf rbexp~i2b1vl !G#, (35)

R11~v! 5 exp@i~2b1vl 1 f tf 1 f t8f!#tf tf8rb

3 @exp~2icrb!Mf21Mb12

1 exp~icrb!Mf11Mb11#/@1 2 rf rb

3 exp~i2b1vl !G#, (36)

R12~v! 5 exp@i~2b1vl 1 f tf 2 f t8f!#tf tf8rb

3 @exp~2ivrb!Mf 22 Mb12

1 exp~icrb!Mf 12 Mb11#/@1 2 rf rb

3 exp~i2b1vl !G#. (37)

It is easy to see that the frequency response of these co-
efficients consists of fast oscillations at the mode spacing
determined by the term exp(i2b1v l ) in the denominator
while the upper and lower bounds are determined by set-
ting the denominator to 1 7 rf rbuG(v)u, respectively.
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Fig. 3. The transmissivity and reflectivity of an external probe plotted as a function of the pump–probe detuning. Only the upper and
lower envelopes, associated with fast oscillations on the scale of mode spacing, are shown for a FP cavity with rf rb 5 4%. The solid and
dashed curves are for L 5 1 and L 5 1.5, respectively. Other parameters are the same as in Fig. 1(a). (a) Probe transmissivity; (b)
transmissivity of the four-wave-mixing frequency component; (c) probe reflectivity; and (d) reflectivity of the four-wave-mixing frequency
component.
Figure 3 shows the upper and lower bounds of the fre-
quency response of these coefficients by plotting
uT11(v)u/(tbtf8), uT12(v)u/(tb tf8), uR11(v)u/(tf tf8rb), and
uR12(v)u/(tf tf8rb) for the case rf rb 5 4%. As the instabil-
ity threshold is approached, the upper bound goes to in-
finity, resulting in large amplification of the probe field.

It should be noticed that A10 and A20 refer to the
steady-state fields inside the cavity, which are related to
the input pump fields A1i and A2i outside the cavity by
the boundary conditions

A10 5 A1it f8 exp~if t8f! 1 A20 exp~ilD2!rf exp~ifrf!,

(38)

A20 5 A2itb8 exp~if t8b! 1 A10 exp~ilD1!rb exp~ifrb!.

(39)
These relations can be used to calculate A1i and A2i from
A10 and A20 , or vice versa. The multistability nature of
this type of equation has been studied extensively11,12 and
is not the main focus here. When the boundary reflec-
tions are relatively weak, A10 5 A1it f8 exp(ift8f) and A20
5 A2itb8 exp(ift8b), where we have assumed uA2iutb8rf
! uA1iutf8 , uA1iutf8rb ! uA2iutb8 , and rf rb ! 1.

5. CONCLUSIONS
The main objective of this paper has been to study ana-
lytically the effects of GVD on the stability of a nonlinear
FP cavity. For this purpose, we have concentrated on the
modulation frequency range for which the walk-off length
is much larger than the nonlinear length. For the per-
turbative fields propagating inside the cavity, the DFB in-
duced by the counterpropagating pumps waves is often
negligible compared with the localized feedback at cavity
mirrors. The system behavior is then governed by the
coupling of copropagating sidebands and the boundary re-
flections. Such a nonlinear system can be interpreted in
terms of a doubly resonant parametric oscillator, with the
signal and idler fields playing the role of coupled side-
bands in our model. This physically transparent model
allows the complicated nonlinear system to be character-
ized in a simple and familiar language.

Absolute instabilities are found to occur in both the
normal- and the anomalous-dispersion regimes and are
described by the gain spectra plotted as a function of the
modulation frequency. The discrete supermode frequen-
cies likely to become unstable are almost continuously
distributed under the gain curve. The analytical expres-
sions are derived for both the growth rate and the fre-
quency of various supermodes. For each unstable super-
mode, there are generally two sidebands (corresponding
to the signal and idler fields in the language of parametric
oscillators), which beat to cause pulsing in the output in-
tensity. While the instability at low modulation frequen-
cies corresponds to the conventional Ikeda instability,
new instability regions are found owing to the finite dis-
persion of the Kerr medium. For high pump powers or
large medium lengths, the instability in the anomalous-



624 J. Opt. Soc. Am. B/Vol. 15, No. 2 /February 1998 Yu et al.
dispersion regime is driven by the MI gain because of the
exponential dependence of the MI gain on these param-
eters. In the normal-dispersion regime, the contribution
of the Kerr or four-wave-mixing effects to the gain de-
pends at most quadratically on these parameters. In the
absence of GVD, our results reduce to those previously ob-
tained by Firth.1 When GVD is included but the feed-
back effects are removed by setting the mirror reflectivi-
ties to zero, our results reduce to those of Law and
Kaplan,4 as discussed in Ref. 6.

Below threshold, we studied the transmission and re-
flection characteristics of the nonlinear system for a weak
probe. The transmitted and reflected beams appear not
only at the original frequency of the probe but also at the
phase-conjugate (or idler) frequency owing to the coupling
between them induced by the nonlinear process of four-
wave-mixing. The transmission and reflection coeffi-
cients are analytically obtained. Their frequency re-
sponse consists of fast oscillations at the mode spacing of
the nonlinear system with an envelope slowly varying on
the same scale as the gain curve. As the threshold ap-
proaches, the amplitude of the envelope goes to infinity,
resulting in large amplification.
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3. W. J. Firth and C. Paré, Opt. Lett. 13, 1096 (1989); W. J.
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