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This paper presents a comprehensive analytical study of temporal modulation instabilities in a finite, nonlin-
ear, dispersive medium in which two counterpropagating pump beams interact through a Kerr-type nonlin-
earity. The analysis includes self- and cross-phase modulations, group-velocity dispersion, four-wave mixing,
and reflections occurring at the two facets of the dispersive Kerr medium. The use of a new method based on
a small-parameter analysis has resulted in a physically transparent model in terms of a doubly resonant op-
tical parametric oscillator that allows characterization of the complicated nonlinear system in a familiar lan-
guage. The effects of boundary reflections are shown to be very important. In the low-frequency limit, in
which dispersive effects are negligible, our results reduce to those obtained previously. At high frequencies,
dispersive effects lead to new instabilities both in the normal- and anomalous-dispersion regions of the disper-
sive Kerr medium. The anomalous-dispersion case is discussed in detail after including weak boundary re-
flections. The growth rate and the threshold for the absolute instability are obtained in an analytical form for
arbitrary pump–power ratios. Our analytic results are in agreement with previous numerical work done by
neglecting boundary reflections and assuming equal powers for the counterpropagating pump beams. © 1998
Optical Society of America [S0740-3224(98)04202-7]
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1. INTRODUCTION
The nonlinear interaction between counterpropagating
waves in a finite Kerr medium has been studied
extensively1–6 because of its relevance to many practical
optical devices such as optical gyroscopes, lasers, fiber in-
terferometers, and optically bistable switches. Such in-
teraction exhibits rich nonlinear dynamics ranging from
bistability to optical chaos, since the Kerr nonlinearity
tends to destabilize the steady-state propagation of the
counterpropagating pump waves.

Instabilities are classified into two categories, known
as convective and absolute. Even for a Kerr medium
without group-velocity dispersion (GVD), an absolute
temporal instability of the counterpropagating pump
waves can occur in the presence of boundary reflections,
which effectively form a Fabry–Perot (FP) cavity.1,2 This
instability has been shown to be an FP-cavity version of
the Ikeda instability7 (first found in a ring cavity for a
unidirectional pump beam), and can be explained in
terms of a four-wave-mixing (FWM) process. The effects
of diffraction and dispersion were included later3–5 and
were found to affect the instability substantially.

Dispersive effects come into play at high temporal fre-
quencies and must be included if the Kerr medium is also
dispersive. Considerable attention has been paid to
0740-3224/98/020607-10$10.00 ©
studying the effects of GVD on optical instabilities occur-
ring in Kerr media. It is well known that the spectral
sidebands of a unidirectional pump wave can be amplified
by the convective modulation instability (MI) owing to the
combined effect of FWM and anomalous GVD.8 This MI
can become an absolute instability inside a ring cavity be-
cause of the feedback loop.9–11 In fact, MI lasers have
been proposed and demonstrated for the ring-cavity
configuration.12,13 Like the temporal GVD effects, spa-
tial diffractive effects have also been considered for the
ring cavity.14,15

Compared with the case of a unidirectional ring cavity,
the inclusion of GVD effects in a finite medium with coun-
terpropagating pump waves is much more difficult,
mainly because the nonlinear interaction involves two
pairs of sidebands (one pair for each pump wave). Such
interaction is induced by both self-phase modulation and
cross-phase modulation. Previous work has found that
even when the boundary reflections are neglected, the
counterpropagating pump waves in a finite medium can
become absolutely unstable.4,5 However, the treatment
was quite involved mathematically and did not provide
physical insight, since an eigenvalue problem in a four-
dimensional vector space has to be solved numerically.
Consequently, the studies were limited to the special case
1998 Optical Society of America
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of counterpropagating pump beams with nearly equal
power levels. It is thus desirable to establish an analytic
model that can give a clear physical picture and, at the
same time, provide an analytical result for the more gen-
eral case of unequal pump powers. Moreover, it is not
clear how the instability would be affected by the weak
boundary reflections that always exist in practice. The
nonlinear dynamics can become quite intriguing in such a
case since the boundary reflections provide additional
coupling between the two pairs of sidebands.

In this paper, we study the combined effects of GVD,
cross- and self-phase modulation, and boundary reflec-
tions on the stability of counterpropagating pump waves
in a dispersive Kerr medium. Although the case of silica
fibers is used as an example, the results are applicable to
any dispersive Kerr medium. A simple physical model is
proposed based on a small-parameter perturbation analy-
sis. It allows us to obtain the analytical expressions for
the threshold and the growth rate of the absolute insta-
bility. Our results agree with the previous work when
the boundary reflections are zero and the two pump pow-
ers are equal.

The paper is organized as follows. In Section 2, we
carry out a linear-stability analysis of the coupled nonlin-
ear Schrödinger equations, which describe the propaga-
tion of counterpropagating pump waves in a dispersive
Kerr medium, and obtain a general solution governing
the evolution of four sidebands. The theoretical model is
completed in Section 3, where boundary reflections are in-
corporated and the appropriate parameter regime is iden-
tified. The results are used in Section 4 to discuss abso-
lute instability in the case of weak reflections from the
boundary of the nonlinear medium. The main results
are summarized in Section 5.

2. GENERAL SOLUTION
The nonlinear system under investigation is illustrated in
Fig. 1. Two counterpropagating pump waves interact in
a dispersive Kerr medium of length l. The diffractive ef-
fects are ignored for simplicity, thereby reducing the
problem to only one spatial dimension. The analysis is
directly applicable to a single-mode waveguide such as an
optical fiber. It can also be used for bulk nonlinear me-
dia provided the beam size is large enough that the dif-
fraction length is much longer than the dispersion and
nonlinear lengths introduced later. When this condition
is not satisfied, new diffraction-induced transverse insta-
bilities can occur3 that are excluded from our analysis.

Fig. 1. Schematic illustration of a finite dispersive Kerr me-
dium of length l in which two counterpropagating pump waves
interact nonlinearly with each other. The front and back sur-
face are labeled f and b, respectively.
We also assume that the pump polarization is not affected
during propagation, thereby excluding polarization insta-
bilities. With these simplifications and making the
scalar-wave and the slowly-varying-envelope approxima-
tions, the nonlinear interaction of two counterpropagat-
ing optical waves in a dispersive Kerr medium is de-
scribed by the following two coupled nonlinear
Schrödinger equations8:
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where b1
21, b2 , and g are the group velocity, the GVD co-

efficient, and the nonlinear parameter, respectively. The
parameter g is related to the Kerr coefficient n2 as g
5 2pn2 /(laeff), where l is the optical wavelength and
aeff is the effective mode cross section. A1(t, z) and
A2(t, z) are the complex envelopes of the forward and
backward-propagating waves, respectively, and are re-
lated to the corresponding electric fields as

E1~t, z ! 5 Re$A1~t, z !exp~ik0z 2 iv0t !%, (3)

E2~t, z ! 5 Re$A2~t, z !exp@ik0~l 2 z ! 2 iv0t#%, (4)

where Re stands for the real part, v0 is the frequency of
the pump beams, k0 5 v0 /c is the corresponding propa-
gation constant, and l is the length of the Kerr medium.
The constant phase factor exp(ik0l) in Eq. (4) has been
sorted out for later convenience, and the fields have been
normalized such that uA1u2 and uA2u2 represent the pow-
ers of the two pump beams.

The counterpropagating cw pump fields in the medium
correspond to the steady-state solutions of Eqs. (1) and
(2), given by

A1s~t, z ! 5 A10 exp@ig~ uA10u2 1 2uA20u2!z#, (5)

A2s~t, z ! 5 A20 exp@ig~ uA20u2 1 2uA10u2!~l 2 z !#, (6)

where the constants A10 5 uA10uexp(if10) and A20
5 uA20uexp(if20) contain both the amplitude and phase
information for the two counterpropagating waves in the
medium. However, only their phase difference,
f202f10 , is of physical significance because we can al-
ways assume, without loss of generality, that one of the
phases is zero.

A. Linear-Stability Analysis
The stability of the steady-state solution is studied by
performing a standard linear-stability analysis. For this
purpose, we perturb the steady state slightly and write
the respective perturbations for the two pump waves as



Yu et al. Vol. 15, No. 2 /February 1998 /J. Opt. Soc. Am. B 609
dA1~t, z ! 5 dA1~t, z !exp@ig~ uA10u2 1 2uA20u2!z#, (7)

dA2~t, z ! 5 dA2~t, z !exp@ig~ uA20u2 1 2uA10u2!~l 2 z !#.

(8)
By inserting A1 5 A1s 1 dA1 and A2s 5 A2s 1 dA2 into
Eqs. (1) and (2), the linearized equations for dA1(t, z)
and dA2(t, z), written in the frequency domain, take the
form

~i]/]z 1 b1v 1 b2v2/2 1 guA10u2!dA1~v, z !

1 g@A10
2 dA1* ~2v, z ! 1 2A10 A20* dA2~v, z !

1 2A10 A20dA2* ~2v, z !] 5 0, (9)
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where dA1(v, z) and dA2(v, z) are the Fourier trans-
forms of dA1(t, z) and dA2(t, z), respectively.

The standard Fourier-transform technique used to
solve a set of coupled linear equations leads to the follow-
ing general solution of Eqs. (9)–(12):
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where the arbitrary constants c1 , c2 , c3 , and c4 repre-
sent the magnitudes of four independent eigenmodes of
the solution, while the rest of the coefficients are func-
tions of the modulation frequency v. The quantities k16
and k26 represent the dispersion relations for the corre-
sponding eigenmodes, and the coupling coefficients rij
and eijk with i51, 2 and j, k 5 1 or 2 govern relative
amplitudes of the four sidebands [dA1(v, z),
dA1* (2v, z), dA2(v, z), and dA2* (2v, z)] for each eigen-
mode.

B. Small-Parameter Analysis
It is generally difficult to obtain the exact analytical ex-
pression for the dispersion relations and other coefficients
in Eq. (13). For this reason, numerical studies have been
performed in the past.4,5 However, we show here that
approximate analytical expressions can be obtained with
sufficiently high precision by using a small-parameter
analysis.

Before writing down the approximate analytical ex-
pressions, we introduce several characteristic lengths and
frequencies. The walk-off length and the GVD length at
a given modulation frequency v are defined as lW
5 (b1v)21 and lD 5 (b2v2)21. Note that the walk-off
length for two counterpropagating waves is simply the
spatial scale of envelope variations for the fields. With-
out loss of generality, we assume the power ratio S
[ uA20u2/uA10u2 < 1 (i.e., the power of the backward-
pump wave is equal to or less than the forward one). The
nonlinear length at a given power of the forward-pump
wave, P 5 uA10u2, is defined as lN 5 (guA10u2)21. We fur-
ther define vW 5 gP/b1 and vD 5 (gP/b2)1/2 to represent
the required modulation frequencies at which the walk-off
length and the dispersion length are equal to the nonlin-
ear length, respectively. For modulation frequencies be-
low vW and vD , the effects of walk-off and GVD, respec-
tively, are not important.

The ratio e 5 vW /vD 5 (ub2ugP/b1
2)1/2 is a small quan-

tity if the power P and the GVD coefficient are not too
large. Even for materials with a relatively large GVD co-
efficient and at relatively high powers, this ratio is still
quite small, since in practice, the GVD effect is simply
negligible when the walk-off length is comparable to the
nonlinear length. In this paper, the dispersive nonlinear
effects are of main concern, thus the normalized modula-
tion frequency V 5 v/vD and normalized length L5 l/lN
are often used. This means that the GVD effect is negli-
gible when V ! 1, and the Kerr medium can be treated as
dispersionless (b2 5 0). Another ratio, eV5 lW /lD
5 Ve, represents the relative importance of GVD over
the walk-off at a given modulation frequency. This is
also a small quantity since V ! 1/e is usually satisfied.

Using silica fiber as an illustrative example,8 we as-
sume a forward-pump power of P 5 1 kW, a nonlinear co-
efficient of g 5 10 W21 km21, a group velocity of 1/b1
5 0.2 mm/ps, and a GVD coefficient of ub2u5 20 ps2/km.
Then lN ; 10 cm. Although we have chosen a case of
high power with large nonlinear coefficient as the ex-
ample, e is only 1024. vW and vD are ;2 ns21 (320 MHz)
and ;20 ps21 (3.2 THz), respectively. Even for a large
modulation frequency ;40 ps21 (6.4 THz), eV is only
;1023.

By using the small-parameter analysis16 in e and eV ,
we obtain the following analytical expressions for the dis-
persion relations in Eq. (13):

k16~v! ' b1v 6 Y1~v!, (14)
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k26~v! ' b1v 6 Y2~v!, (15)

with

Y1~v! 5 A~b2v2/2 1 guA10u2!2 2 ~guA10u2!2, (16)

Y2~v! 5 A~b2v2/2 1 guA20u2!2 2 ~guA20u2!2.
(17)

The other coefficients in Eq. (13) are given by

r11~v! ' ~Y1 2 b2v2/2 2 guA10u2!/~gA10
2 !, (18)

r12~v! ' ~Y1 2 b2v2/2 2 guA10u2!/~gA10*
2!, (19)

r21~v! ' ~Y2 2 b2v2/2 2 guA20u2!/~gA20
2 !, (20)

r22~v! ' ~Y2 2 b2v2/2 2 guA20u2!/~gA20*
2!, (21)

e111~v! ' 2~Y1 2 b2v2/2!A20 /~b1vA10!, (22)

e112~v! ' ~Y1 2 b2v2/2!A20* /~b1vA10!, (23)

e121~v! ' 2~Y1 2 b2v2/2!A20 /~b1vA10* !, (24)

e122~v! ' ~Y1 2 b2v2/2!A20* /~b1vA10* !, (25)

e211~v! ' 2~Y2 2 b2v2/2!A10 /~b1vA20!, (26)

e212~v! ' ~Y2 2 b2v2/2!A10* /~b1vA20!, (27)

e221~v! ' 2~Y2 2 b2v2/2!A10 /~b1vA20* !, (28)

e222~v! ' ~Y2 2 b2v2/2!A10* ~b1vA20* !. (29)

The procedure leading to the above expressions con-
sists of solving Eqs. (9) and (10) for dA1(v, z) and
dA1* (2v, z) by first assuming dA2(v, z) 5 0 and
dA2* (2v, z) 5 0 and obtaining the dispersion relations
k1 6 (v) and the coupling coefficients r1 6 (v). Next, we
insert the obtained solutions for dA1(v, z) and
dA1* (2v, z) into Eqs. (11) and (12) to find dA2(v, z) and
dA2* (2v, z), which are related to the expressions for
e166(v). The small parameters e and eV have allowed us
to use Y1 ! b1v and b2v2 ! b1v to simplify expressions.
Thus the dispersion relations and all the coupling coeffi-
cients for the c1 and c2 modes in Eq. (13) are obtained.
The error introduced by this approximation is checked by
putting the resulting dA2(v, z) and dA2* (2v, z) (which,
although very small, are nonzero) back into Eqs. (9) and
(10) and verifying that the percentage error is relatively
small. A similar procedure is used for the c3 and c4
modes in Eq. (13) by starting with Eqs. (11) and (12).

It can be shown from Eqs. (16)–(29) that the r ’s can be
O(1) while the e ’s are at most O(e). The significance of
this observation can be seen by referring to Eq. (13). For
the c1 and c2 modes, the coupling between the two for-
ward sidebands is represented by r1 6 (v) while the cou-
pling to the two backward sidebands is represented by the
e166(v)’s. Comparing with the case of a single forward-
pump wave, it is worth noticing that r16(v) is not af-
fected by the presence of the backward pump. Also, the
dispersion relations k16(v) for the c1 and c2 modes are
the same as if the other pump wave did not exist. In the
case of a single forward-pump wave, it is well known that
the coupling between the the two forward sidebands is
caused by FWM between the sidebands and the forward
pump.8 Thus the presence of a counterpropagating
pump wave introduces backward coupling into the eigen-
modes through the coefficients e166 . The FWM picture
of this coupling has been described in Ref. 8. Similar
comments apply for the c3 and c4 modes with respect to
the backward-pump wave.

C. Sideband Amplitudes
The above discussion indicates that the evolution of side-
bands associated with the forward-pump wave, dA1(v, z)
and dA1* (2v, z), is affected only by the relatively weak
additive contributions from the distributed feedback
(DFB) occurring because of the presence of a backward-
pump wave, and vice versa. However, when Y1 and Y2
become very small, the c1 and c2 modes (or c3 and c4
modes) become degenerate. This degeneracy suggests
that Eq. (13) is not in a proper form to represent the gen-
eral solution of Eqs. (9)–(12) in such a situation. Thus it
is not clear what would be the magnitude of the back-
scattering contribution in general.

An answer is provided by the theory of Bragg gratings
based on the coupled-mode equations.8 Because of the
DFB, each forward-propagating wave also has a contribu-
tion from the backward-propagating waves. To find a
proper general solution that can include such a DFB, we
transform the four constants c1 , c2 , c3 , and c4 into cf1 ,
cf2* , cb1 , and cb2* by using the linear combinations

cf1 5 c1 1 r12c2 , cb1 5 c3 1 r22c4 , (30)

cf2* 5 r11c1 1 c2 , cb2* 5 r21c3 1 c4 . (31)

Physically, cf1 and cf2* represent the combinations of two
forward-propagating sidebands, while cb1 and cb2* repre-
sent the combinations of two backward-propagating side-
bands. The general solution given by Eq. (13) can be
written in terms of the new constants as

dA1~v, z ! 5 exp~ib1vz !Mf~v, z !cf

1 exp@ib1v~l 2 z !#Mbf~v, l 2 z !cb , (32)

dA2~v, z ! 5 exp@ib1v~l 2 z !#Mb~v, l 2 z !cb

1 exp~ib1vz !Mfb~v, z !cf , (33)

where cf is the column vector formed by use of cf1 and cf2*
as its two elements and cb is another column vector
formed by use of cb1 and cb2* . The vectors dA1 and dA2
are formed by use of the two forward and the two
backward-propagating sidebands, respectively. The 2
3 2 matrices appearing in Eq. (32) are defined as

Mf~v, z ! 5
1

1 2 r11r12
F 1 r12

r11 1 G
3Fexp~iY1z ! 0

0 exp~2iY1z !
G

3F 1 2r12

2r11 1 G , (34)
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Mfb~v, z ! 5
1

1 2 r21r22
F e111 e121

e112 e122
G

3 Fexp~iY1z ! 0

0 exp~2iY1z !
G

3 F 1 2r12

2r11 1 G . (35)

The matrix elements of M f are found to be

Mf11~v, z ! 5 @exp~iY1z ! 2 r11r12

3 exp~2iY1z !#/~1 2 r11r12!, (36)

Mf12~v, z ! 5 r12@2exp~iY1z !

1 exp~2iY1z !#/~1 2 r11r12!, (37)

Mf21~v, z ! 5 r11@exp~iY1z !

2 exp~2iY1z !#/~1 2 r11r12!, (38)

Mf22~v, z ! 5 ~2r11r12 exp~iY1z !

1 exp~2iY1z !!/~1 2 r11r12!, (39)

and the matrix elements of M f b are

M f b11~v, z ! 5 @e111 exp~iY1z ! 2 e121r11

3 exp~2iY1z !#/~1 2 r11r12!, (40)

M f b12~v, z ! 5 @2e111r12 exp~iY1z ! 1 e121

3 exp~2iY1z !#/~1 2 r11r12!, (41)

M f b21~v, z ! 5 @e112 exp~iY1z ! 2 e122r11

3 exp~2iY1z !#/~1 2 r11r12!, (42)

M f b22~v, z ! 5 @2e112r12 exp~iY1z ! 1 e122

3 exp~2iY1z !#/~1 2 r11r12!. (43)

The expressions for M b and M bf are similar to M f and
M f b , respectively, because of the symmetry. Note
M f (v, 0) 5 1 and M b(v, l) 5 1.

The two parts of the general solution, Eqs. (32) and
(33), have a clear physical meaning. The forward- and
backward-transfer matrices M f and M b give the transfor-
mation of the sidebands of the forward- and the
backward-pump waves along their respective propagation
distance as if the other pump wave did not exist, while
the cross matrices M bf and M f b give the contribution to
their evolution, from the other pump wave, that is due to
backscattering (or DFB). Equations (32) and (33) are the
main results of this section since they provide a simple
model to describe evolution of the sidebands resulting
from different physical mechanisms.

From Eqs. (34) and (35), it is easy to see that the rela-
tive magnitudes of M f b and M f are normally O(e) unless
the denominator 1 2 r1 1 r1 2 is very small. A careful
analysis shows that this would occur only when
uY1u/(guA10u2) ! 1, a condition equivalent to requiring ei-
ther V ! 1 for both the normal and anomalous dispersion
or V 2 2 ! 1 for anomalous dispersion. Under these
circumstances, the c1 and c2 modes are degenerate.
However, because of our choice of the new set of con-
stants, Eqs. (32) and (33) remain a valid form of the gen-
eral solution since the matrices elements are finite. In
fact, it can be shown that when V ! 1, Eqs. (36)–(43) are
reduced to

Mf11 5 1 1 iguA10u2z, (44)

Mf12 5 igA10
2 z, (45)

Mf21 5 2igA10*
2z, (46)

Mf22 5 1 2 iguA10u2z, (47)

Mfb11 5 2gA10* A20 /~b1v!, (48)

Mfb12 5 2gA10 A20 /~b1v!, (49)

Mfb21 5 gA10* A20* /~b1v!, (50)

Mfb22 5 gA10 A20* /~b1v!. (51)

Similar expressions hold for M b and M bf . It turns out
that these solutions exactly satisfy Eqs. (9)–(12) for b2
5 0, which is not surprising because the condition V ! 1
implies that GVD is not important. Thus our general so-
lutions, Eqs. (32) and (33), include the dispersionless
case. This case has been studied previously,1 and our re-
sults reduce to those obtained there. Equations (44)–(51)
show that even in the degenerate case, the magnitude of
the feedback matrix M fb compared with that of the trans-
fer matrix M f is no more than O(e/V), and the same is
true for M bf and M b . This conclusion is quite general
since it also holds when V ! 1 is not satisfied (including
the case V 2 2 ! 1 in the anomalous-dispersion regime).

The solution given by Eqs. (32) and (33) can also be
written as

FdA1~v, z !

dA2~v, z !G 5 exp~ib1vz !FM f ~v, z !

M fb~v, z !Gcf

1 exp@ib1v~l 2 z !#

3 FM bf ~v, l 2 z !

M b~v, l 2 z ! Gcb . (52)

The form of Eq. (52) shows that the general solution is the
superposition of two modes represented by cf and cb . In
the case e/V ! 1 or v @ vW , the cf mode is primarily for-
ward propagating with weak backscattering, and the cb
mode is primarily backward propagating with weak for-
ward scattering. In fact, Eq. (52) is the analog of a simi-
lar equation found in the theory of Bragg gratings8 or
DFB semiconductor lasers17 in the limit of large detuning,
except that Mj , Mjk , and cj ( j and k 5 f or b) are scalar
quantities in the later case. It is well known that in a
largely detuned DFB structure, the cf term describes the
forward-propagation mode, with Mf and Mfb indicating
the relative amplitudes of the forward-propagating and
backscattered components, and a similar interpretation
holds for the cb term. Thus Eq. (52) is a generalized form
that is appropriate when light at two different frequen-
cies propagates through a Bragg grating. A large detun-
ing is known to decrease the DFB. Similarly, a large
walk-off effect for v ! vW reduces the backscattering.

Equations (36)–(43) can be used to deduce several prop-
erties of the matrices M f and M fb . In particular, note
that Mf11* (2v, z) 5 Mf22(v, z), Mf12* (2v, z)
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5 Mf21(v, z), M fb11* (2v, z) 5 Mfb22(v, z), and
M fb12* (2v, z) 5 M fb21(v, z), as required by the symme-
try between v and 2v. Furthermore, it can be shown
that M f(2v, z) 5 M f(v, z) and M fb(2v, z)
5 2M fb(v, z). Similar properties hold for M b and
M bf .

Examining the asymptotic behavior of M f(v, z) over a
distance l, we notice that besides oscillations, its magni-
tude can increase either linearly as l/lN or exponentially
as exp(l/lN). The latter case occurs in the anomalous-
dispersion regime when V ; (2)1/2 while the former hap-
pens whenever uY1(v)ul ! 1, translating into the require-
ment of V ! 1 (i.e., nondispersive propagation) for both
normal and anomalous regimes or V 2 2 ! 1 for the
anomalous regime. It is easy to see that the exponential
growth is due to MI in the anomalous-dispersion regime.
Similar properties hold for M b in the backward direction.
The amplification property of these transfer matrices is
important because it leads to absolute instabilities when
the system is subjected to external feedback. The next
section considers the effect of boundary reflections that
occur naturally in a FP cavity.

3. BOUNDARY REFLECTIONS
Before discussing the instabilities of counterpropagating
pump waves in a dispersive Kerr medium, we generalize
the analysis of Section 2 to include the feedback occurring
at mirrors of a FP cavity. For simplicity, we assume that
the two facets of the finite Kerr medium form the FP cav-
ity (see Fig. 1) and write the boundary conditions at the
front and rear surfaces of the Kerr medium as

dA1~v, 0! 5 R fdA2~v, 0!, (53)

dA2~v, l ! 5 R bdA1~v, l !, (54)

where

R f 5 F rf exp~icrf! 0

0 rf exp~2icrf!
G , (55)

with a similar expression for R b obtained by replacing
the subscript f with b. Here, crf 5 frf 1 D2 and crb
5 frb 1 D1 , where D1 5 k0l 1 g(uA10u2 1 2uA20u2)l and
D2 5 k0l 1 g(uA20u2 1 2uA10u2)l are the linear and non-
linear phases associated with the propagation of the
forward- and backward-pump waves, respectively. Fur-
ther, rf exp(ifrf) and rb exp(ifrb) are the reflection coeffi-
cients for the front and rear boundaries.

By using Eqs. (32) and (33), we transform Eqs. (53) and
(54) into

@1 2 R f M fb~v, 0!#cf 5 exp~ib1vl !@R f M b~v, l !

2 M bf ~v, l !#cb , (56)

@1 2 R bM bf ~v, 0!#cb 5 exp~ib1vl !@R bM f ~v, l !

2 M fb~v, l !#cf . (57)
As a standard treatment, the solutions of Eqs. (56) and
(57) in the complex-frequency domain v represent an ei-
genvalue problem. In fact, similar equations can be
found in the treatment of DFB lasers in the limit of large
detuning, except that the vectors and matrices in the
above are replaced by scalar quantities there. From a
physical standpoint, the problem can be considered as a
doubly resonant parametric oscillator18 with the DFB in-
cluded. The following algebraic equation for v has to be
satisfied for nontrivial solutions of cf and cb:

D~v! 5 u1 2 exp~i2b1vl !@R f M b~v, l ! 2 M bf ~v, l !#

3 @1 2 R bM bf ~v, 0!#21@R bM f ~v, l !

2 M fb~v, l !] 3 @1 2 R f M fb~v, 0!#21u 5 0.
(58)

The multiple solutions vn (n is an integer) of Eq. (58)
stand for different longitudinal ‘‘supermodes’’ of the sys-
tem. The real part of each solution gives the mode posi-
tion and the imaginary part gives the growth or damping
rate. Absolute instability occurs whenever vn has a posi-
tive imaginary part. By substituting cfn and cbn , ob-
tained by substituting Eqs. (56) and (57) into Eq. (52), we
can calculate the eigenfields corresponding to each super-
mode. It is evident that there are generally two counter-
propagating pairs of sidebands for each longitudinal
mode. Therefore the eigenfields correspond to pulsing in
the spatiotemporal domain.

Equation (58) can be simplified by dividing the param-
eter space into several regions. From the discussion in
Section 2, we know that if V ! 1, this equation will re-
duce to the dispersionless case, which has been studied
before.1 Therefore we assume V @ e so that the magni-
tudes of M fb(v, 0) and M bf(v, 0) are much less than
unity. Then the two inverse matrices in Eq. (58) can be
approximated by unity, and we obtain

D~v! 5 u1 2 exp~i2b1vl !@R f M b~v, l ! 2 M bf ~v, l !#

3 @R bM f ~v, l ! 2 M fb~v, l !#u 5 0. (59)

For very small e, there can be a region, 1 @ V @ e, over-
lapped by the cases considered in this paper and in Ref. 1.
In this region, the frequency is low enough that disper-
sion is not important, yet high enough that cross coupling
or DFB is weak.

4. WEAK BOUNDARY REFLECTIONS
The solutions of Eq. (59) can be divided into two catego-
ries. If the magnitudes of boundary-reflection coeffi-
cients are much larger than O(e/V), the cross-matrix
terms in Eq. (59) are much smaller than the transfer-
matrix terms and can therefore be neglected. Physically,
the localized feedback at the facets is much stronger than
the weak DFB, and the latter effect can be ignored.
Since e is quite small, even relatively weak reflections
such as those occurring at the uncoated air–glass bound-
ary (power reflectivity of ;4%) fit into this category.
This case is discussed in part II (the accompanying paper
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in this issue19). Here, we discuss the case occurring
when the boundary-reflection coefficients are comparable
to or less than O(e/V). This case may occur in practice
even when antireflection coatings are used to suppress
facet reflections.

In the case of weak reflections, Eq. (59) can be further
simplified by using the relation

u1 2 exp~i2b1vl !Uu 5 1 2 exp~i2b1vl !TrU

1 exp~i4b1vl !uUu, (60)

where the 2 3 2 matrix U is defined as

U 5 @R f M b~v, l ! 2 M bf ~v, l !#@R bM f ~v, l !

2 M fb~v, l !#. (61)

It is useful to introduce a scalar quantity g(v) 5 Tr U
and write Eq. (59) as

D~v! 5 1 2 exp~i2b1vl !g~v! 5 0, (62)

where

g~v! 5 ~Rf11Mb11 2 Mbf11!~Rb11Mf11 2 Mfb11!

1 ~Rf11Mb12 2 Mbf12!~Rb11* Mf12* 1 Mfb12* !

1 ~Rf11* Mb12* 1 Mbf12* !~Rb11Mf12 2 Mfb12!

1 ~Rf11* Mb11* 1 Mbf11* !~Rb11* Mf11* 1 Mfb11* !.

(63)

For consistency, we have neglected uUu since, by using
Eqs. (34) and (35), we conclude that its amplitude is inde-
pendent of l and is at most O(e/V)4 (for urfu, urbu ' e),
which is much smaller than unity. Actually, one can
prove that uUu can be neglected as long as urfu, urbu ! 1.
Equation (62) is in a standard form for the laser threshold
condition with g(v) representing the net gain. Thus
ug(v)u . 1 is required for an absolute instability to occur.

From Eq. (63), it is evident that for the case of weak
boundary reflections (urfu, urbu ; e) under consideration,
ugu is at most O(e/V)2 when the normalized length L
5 l/lN < 1, and the system is below instability thresh-
old. As L increases, ugu can increase either as L2 (for
both the normal- and anomalous-dispersion regimes) or
as exp(2L) in the anomalous-dispersion regime when V
; (2)1/2. For the case of quadratic amplification that oc-
curs when GVD is negligible, previous results1 indicate
hand, the exponential amplification in the anomalous re-
gion requires L to be O@ln(V/e)# to reach threshold, a con-
dition much easier to satisfy. For this reason, we concen-
trate on the anomalous-dispersion case with V ' O(1).
By use of Eqs. (36)–(43), Eq. (63) becomes

g~v! 5 $exp~2iY2l !@r1e2 1 e2 1 r1r2rf exp~iu f!

2 rf exp~2iu f!#@r2e1 1 e1 1 r2r1rb exp~iub!

2 rb exp~2iub!# 2 exp~iY2l !@r1e2 1 e2

1 r1rf exp~iu f! 2 r2rf exp~2iu f!#@r2e1 1 e1

1 r1rb exp~iub! 2 r2rb exp~2iub!#%

3 exp~2iY1l !/@~1 2 r1
2!~1 2 r2

2!#, (64)

with

r1~v! 5 ~Y1 2 b2v2/2!/~guA10u2! 2 1, (65)

r2~v! 5 ~Y2 2 b2v2/2!/~guA20u2! 2 1, (66)

e1~v! 5 ~r1 1 1 !guA10A20u/~b1v!, (67)

e2~v! 5 ~r2 1 1 !guA10A20u/~b1v!, (68)

u f 5 frf 1 k0l 1 g~ uA20u2 1 2uA10u2!l

1 f20 2 f10 , (69)

ub 5 frb 1 k0l 1 g~ uA10u2 1 2uA20u2!l

1 f10 2 f20 , (70)

where we have ignored exp(2uY1ul) compared with
exp(uY1ul) since exp(uY1ul) ' V/e for reaching the MI
threshold. However, 6iY2(v) can be imaginary within
the MI frequency range of the forward pump since we
have assumed that the ratio S of the backward- and
forward-pump powers satisfies S 5 uA20u2/uA10u2 < 1.

Equation (64) can be further simplified when the
boundary reflections can be completely ignored for
urfu, urbu ! e. The instability gain is then given by

g~v! 5 2i
g2uA10u2uA20u2b2

2v2

2b1
2Y1Y2

exp~2iY1l ! sin~Y2l !.

(71)

In terms of the normalized frequency V and the normal-
ized length L, g(v) becomes

g~v! 5 e2ḡ~V, L !, (72)

where
ḡ~V, L ! 5 2
SV2 exp@LA1 2 ~V2/2 2 1 !2# sin@LA~V2/2 2 S !2 2 S2#

2A1 2 ~V2/2 2 1 !2A~V2/2 2 S !2 2 S2
. (73)
that the threshold condition requires L to be
O@1/(urfrbu)1/2#. This represents a very high threshold in
the case of weak boundary reflections. On the other
Equation (62) can then be written as

1 2 e2 exp~i2VL/e!ḡ~V, L ! 5 0. (74)
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Equation (74), which is still in a standard form to de-
scribe the threshold of DFB lasers, can be easily analyzed
since e is a small parameter. Different values of V for
which Eq. (74) is satisfied correspond to the various lon-
gitudinal supermodes mentioned earlier. First, we note
that the mode spacing is only ;e/L, while the gain
ḡ(V, L) varies on the frequency scale of 1/L. Thus vari-
ous modes can be considered continuously distributed un-
der the gain curve. Then, for any mode frequency Vr ,
the growth (or damping) rate is a small quantity given by

V i 5 e ln@e2uḡ~Vr , L !u#/~2L !. (75)

When written in terms of the physical units, the growth
rate becomes

v i 5 lnug~vr!u/~2lb1!. (76)

When compared with the previous numerical work,4

Eqs. (71)–(76) not only give analytic results that are valid
for arbitrary power ratios, but also provide a simple
physical characterization of the instability in terms of the
familiar language of laser oscillation. By using Eq. (75),
Fig. 2(a) shows, as a numerical example, the MI growth
rate as a function of the perturbation frequency for two
different lengths of the Kerr medium corresponding to L
5 9 (dashed curve) and L 5 12 (solid curve) assuming
equal pump powers (S 5 1). Figure 2(b) is obtained un-
der the identical conditions except that the power ratio
S 5 0.5. The oscillatory behavior in Fig. 2(b) occurs
when Y2 is real in the frequency region where the less in-
tense backward-pump wave is modulationally stable. In
such a region, the nonlinear phase shift Y2(v)l can cause
constructive or destructive interference.

Fig. 2. Normalized growth rate V i /e of the absolute instability
plotted as a function of normalized frequency Vr for e 5 1
3 1024. (a) S 5 1 (equal pump powers) with L 5 9 (dashed
curve) and L 5 12 (solid curve). (b) S 5 0.5 (unequal pump
powers) with L 5 12 (dashed curve) and L 5 20 (solid curve).
The threshold condition for the onset of the absolute in-
stability is obtained by finding the parameters for which
the instability growth rate first becomes positive, i.e., by
setting the right side of Eq. (75) or Eq. (76) to zero. Thus
the threshold condition is just given by ue2ḡ(Vr , L)u
5 1. Figures 3(a) and 3(b) show the threshold curves
for two different power ratios by use of Eq. (73). In each
case, the area above the curve indicates the instability re-
gion. Oscillation in Fig. 3(b) is caused by similar condi-
tions as for Fig. 2(b).

For an order-of-magnitude estimate of the instability
threshold, let us assume equal pump powers. This case
has been numerically investigated previously4 and allows
a comparison with the previous work. Setting S 5 1, the
threshold condition can be written as

L 5
ln~4 2 V2! 2 2 ln e

V~4 2 V2!1/2 , (77)

where we have used sin$L@(V2/2 2 S)2S2#1/2%
' i exp$L@S22(V2/2 2 S)2#1/2%/2 in Eq. (73). From Eq.

Fig. 3. Threshold condition for absolute instability to occur plot-
ted in the Vr –L plane by use of e 5 1 3 1024 for (a) S 5 1 and
(b) S 5 0.5.
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(77), the minimum L, or the threshold of the instability,
occurs at V 5 (2)1/2, which is the frequency for the maxi-
mum MI gain at a given pump power. In general, L is
approximately 2ln(e). This is in agreement with the pre-
vious work.4,5 For the numerical values of e ' 1024 used
in Figs. 2 and 3, L ' 9 corresponding to a physical length
of the Kerr medium of l ' 1 m. In the normalized units,
the mode spacing is ;eVD /L. In frequency units, mode
spacing becomes 0.2 3 109 rad/s or ;30 MHz for our ex-
ample. The growth rate is of the same order of magni-
tude as the mode spacing as seen from Eq. (75).

Although the above conclusions [including Eq. (76)]
were drawn under the special case of negligible boundary
reflections, they are valid in general since a similar analy-
sis can be applied even when boundary reflections are in-
cluded. The only difference is that we have to use Eq.
(64) instead of Eq. (71) to include the effects of weak
boundary reflections. Figure 4(a) shows the effects of
boundary reflections on the growth rate under conditions
identical to those of Fig. 2(a) except that both facets of the
dispersive Kerr medium are assumed to have an
amplitude-reflection coefficient of 5 3 1024. Figure 4(b)
shows changes in the threshold curve and should be com-
pared with Fig. 3(a). It is evident from Fig. 4 that a

Fig. 4. Effects of weak boundary reflections on the absolute in-
stability shown in Figs. 2 and 3 for e 5 1 3 1024, rf 5 rb 5 5
3 1024, and S 5 1. (a) V i /e versus frequency Vr for L 5 9,
u f 5 ub 5 p/2 (dashed curve), and u f 5 ub 5 0 (solid curve). (b)
Threshold curves in the Vr –L plane, for frf 5 frb 5 k0l 5 0
and f20 5 f10 .
power reflectivity as small as 2.5 3 1027 produces signifi-
cant changes in the instability domain, indicating that
one must include the effects of residual reflectivity even
when antireflection coatings or isolators are used experi-
mentally to reduce the effects of feedback.

The reason why even weak boundary reflections can
substantially affect both the instability region and the
growth rate of the instability can be understood by noting
that the parameter e is quite small under typical experi-
mental conditions. If the amplitude reflection coeffi-
cients of the two facets are comparable to e (which is
;1024 in the example used here), the DFB and the facet
feedback can become in phase or out of phase with respect
to each other, depending on the modulation frequency.
Such interference effects are responsible for the drastic
changes occurring with weak boundary reflections. Un-
like the Ikeda instability, which vanishes when the feed-
back becomes negligible, the above instability exists and
cannot be avoided by use of antireflection coatings on the
boundaries. While Ikeda instability draws on the linear
or quadratic spatial growth of dispersionless FWM, the
absolute instability discussed here results from the expo-
nential spatial growth of MI occurring in the anomalous-
GVD regime. The normal-dispersion case with relatively
strong boundary reflections is discussed in part II.19

The treatment in this section is valid as long as the
boundary reflection coefficients are much smaller than
one. The case of strong boundary reflections with
amplitude-reflection coefficients much larger than e is
treated in part II.19 Most experiments with fibers are
likely to fall under the category of strong reflections, and
the results of part II are more realistic for them. How-
ever, the results of this section can be important when ap-
plied to materials with a relatively large e (but still much
smaller than unity).

5. CONCLUSIONS
In this paper, the interaction of cw counterpropagating
pump waves in a finite-size dispersive Kerr medium has
been analytically studied. We have shown that, for small
modulation frequencies such that the walk-off length is
less than or comparable to the nonlinear length, the sys-
tem can be considered dispersionless since the dispersion
length is normally much longer than the nonlinear length
in such cases.

To study the effect of GVD, we concentrated on the case
when this condition is not satisfied and find that the cou-
pling between the two counterpropagating pairs of side-
bands is very weak. This is because when dispersion is
important (i.e., when the dispersion length is comparable
to the nonlinear length), the walk-off length is so short
that the counterpropagating sidebands cannot interact
over a long duration. Consequently, the evolution of
each pair of sidebands is mostly determined by the corre-
sponding pump wave alone, which provides a coupling be-
tween its two sidebands through the combined action of
self-phase modulation and GVD. The effect of the coun-
terpropagating pump wave is to provide a weak back-
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scattering (or DFB) induced by cross-phase modulation to
the propagation of two sidebands. Based on this physical
insight, we have developed a model that turns out to be a
generalization of the treatment of DFB lasers with a large
detuning. The model also applies to the interaction of
two beams in a doubly resonant parametric oscillator.18

In this first of a series of two papers we have focused on
the case in which weak boundary reflections are as impor-
tant as the DFB. We find that for absolute instabilities
to occur, the anomalous dispersion is needed to provide
sufficient gain from MI. Each longitudinal supermode of
the absolute instability consists of two counterpropagat-
ing pairs of sidebands, corresponding to self pulsing in the
output. Analytical results for both the growth rate and
the threshold conditions for the instability are obtained
easily from the simple physical model constructed. In
the special case of equally intense counterpropagating
pump beams and no boundary reflections, our results are
in complete agreement with previous numerical work.
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