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Transfer-Matrix Analysis of Optical Bistability
in DFB Semiconductor Laser Amplifiers

with Nonuniform Gratings
Drew N. Maywar and Govind P. Agrawal,Fellow, IEEE

Abstract—We present a transfer-matrix method capable of
simulating the effects of nonuniform gratings on the filtering, am-
plification, and bistability characteristics of distributed feedback
(DFB) semiconductor laser amplifiers. The linewidth enhance-
ment factor is incorporated in a way that allows direct gain-
tuning of the bistability hysteresis. As an example, we compare
a �/4 phase-shifted DFB amplifier with and without spatial
chirp. For amplifiers driven to yield the same unsaturated peak
amplifier gain, positive linear chirp widens the spectral range of
low-threshold switching and increases the switching contrast.

Index Terms—Amplifiers, coupled-mode analysis, distributed
feedback devices, gratings, optical bistability, optical logic de-
vices.

I. INTRODUCTION

I NTEREST in utilizing optical bistability of semiconductor
laser amplifiers (SLA’s) for photonic switching and optical

memory applications has flourished in part because of the
development of semiconductor technology and its potential for
large-scale integration. Moreover, SLA’s exhibit exceptional
bistability characteristics such as low (microwatt) switching
powers, fast (nanosecond) switching speeds, inherent optical
gain, and wavelength compatibility with optical communica-
tion systems [1]. Researchers have utilized optical bistability
in SLA’s for optical logic (e.g., optical AND gate [2], optical
memory [3], and optical flip-flop [4]) and optical signal
processing (e.g., optical signal regenerator [5] and optical
cross-bar switching [6]). Since each application may have
unique requirements in terms of the amplifier’s bistability
hysteresis, it is advantageous to have a means of tailoring
the bistability characteristics to fit the application.

For distributed feedback (DFB) devices making use of a
built-in grating, one way of tailoring the general transmission
behavior is by introducing nonuniformities into the periodic
structure [7]. Such nonuniformities include spatial frequency
chirp, amplitude taper, and abrupt phase shifts of the grating
corrugation. To simulate the effects of these nonuniformities
on the transmission spectra of DFB devices with moderate
grating depth, it is common to use a transfer-matrix method
(TMM) based on the counterpropagating coupled-mode equa-
tions [8]–[14]. The TMM can simulate structures with com-
plicated grating nonuniformities while retaining physically
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intuitive parameters and remaining computationally inexpen-
sive (2 2 matrix multiplication). For these reasons, we want
to use the TMM to study the effects of grating nonuniformities
on optical bistability in DFB SLA’s.

The standard implementation of the TMM [8] for amplifiers
with nonuniform gratings is not, in general, appropriate for
bistability in semiconductor amplifiers because it fails to
take into account gain saturation and the strong coupling
that exists between changes in gain and the refractive index.
These processes give rise to an intensity-dependent refractive
index that is about three orders of magnitude larger than
that resulting from the third-order susceptibility (the Kerr
effect) of the semiconductor. The combination of this intensity-
dependent refractive index and distributed feedback leads to
regions of optical bistability.

Optical bistability in DFB SLA’s has been theoretically
studied for amplifiers with uniform gratings, where an average
intensity distribution was (appropriately) used [15]–[17]. Grat-
ing nonuniformities, however, cause the intensity distribution
to vary significantly within a DFB device. For example,
phase-shifted devices exhibit a strong localization of internal
intensity near the grating phase shift [12]. The nonuniform
intensity distribution resulting from grating nonuniformities
influences the bistability characteristics of the amplifiers and
requires a better approximation.

The object of this paper is to present a TMM capable of
simulating optical bistability in DFB SLA’s with nonuniform
gratings. In Section II, we incorporate within the transfer
matrix the effects of gain saturation and the coupling between
the gain and the refractive index that exists in active semicon-
ductors. In Section III, we show by including this coupling
how the small-signal amplification characteristics are affected
by grating nonuniformities. In Section IV, we use the internal-
intensity distribution provided by the TMM itself to calculate
the gain-saturation-induced optical bistability for nonuniform
amplifiers. Throughout this paper, the computational results
are presented for linearly chirped,/4-phase-shifted DFB
SLA’s with emphasis on improvements realized by the use
of these nonuniformities. Examples of such improvements
include a wider spectral range of low-threshold switching and
a higher on–off switching contrast.

II. TRANSFER MATRIX FOR ACTIVE SEMICONDUCTORS

A single transfer matrix is used to transfer, or propagate,
an optical field through a uniform DFB structure, as depicted

0018–9197/97$10.00 1997 IEEE



2030 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 11, NOVEMBER 1997

(a)

(b)

Fig. 1. (a) Uniform DFB structure of grating period�. The parameters A
and B are the slowly varying forward- and backward-propagating fields,
respectively, and (b) the corresponding transfer-matrix representation of
propagation through the uniform DFB structure.

in Fig. 1. The quantities and in Fig. 1(a) are the
slowly varying amplitudes of the forward- and backward-
propagating fields, respectively. They are related to the optical
field via

(1)

where stands for the real part, is the unit vector
along the direction of polarization, is the transverse
modal distribution of the fundamental mode supported by the
active waveguide, and is the optical frequency. The Bragg
wavenumber is related to the period of the (first-order)
grating by

(2)

By using (1) together with a periodic form of the di-
electric function in Maxwell’s equations, the slowly varying
amplitudes and are found to satisfy the following
coupled-mode equations [18], [19]:

(3a)

(3b)

where is the detuning of the wavenumber
from the Bragg wavenumber andis the coupling coefficient
representing the strength of the coupling between the counter-
propagating fields. We simplify our discussion to athat is
due to an index grating and assume thatis a real constant
(we refer the reader to [20] for a more general form of).
Also, we neglect amplifier noise, assuming that the input field
is much stronger than the amplified spontaneous emission [21].

For constant parameters, the coupled-mode equations can be
solved analytically, and the solutions can be used to construct
a transfer matrix [8], [14]. The matrix elements [see Fig. 1(b)]
are given by

(4a)

(4b)

(4c)

where is the length of the uniform DFB structure. The
parameter represents the effective reflectivity due to the
distributed feedback and is given by [19]

(5)

The parameter is given by

(6)

with the sign of chosen such that . Since the product
of appears in (4), it is convenient to use the dimensionless
parameters and .

The use of the TMM for amplifiers requires that gain be
included in the expression for . For nonsemiconductor
amplifiers, this parameter is commonly expressed as

(7)

where is the modal power gain andis the detuning given as

(8)

The parameter is the real part of the spatially averaged
refractive index. The free-space wavelength is related to
the optical frequency by , where is the
speed of light in vacuum.

For semiconductorlaser amplifiers, a more appropriate form
of is given as

(9)

where is the internal loss mainly due to scattering and
free-carrier absorption [19]. The gainfor semiconductors is
typically expressed as

(10)

where is the differential gain parameter, is the charge-
carrier density, is the carrier density at transparency, and

is the optical confinement factor representing the fraction
of the optical mode power contained within the active region.
Equation (8) can also be used for SLA’s if we interpret
as the real part of the spatially averaged modal refractive
index at transparency ( ). The parameter is the
linewidth enhancement factor and governs the change in the
refractive index through variations in the carrier density [19].
It should be noted that although several parameters such
as and depend on the wavelength, they vary little
over a wavelength scale comparable to the stop band of the
grating. Also, although (10) is valid only at the gain peak, this
functional form varies little over the stop band. Therefore, we
neglect the wavelength dependence of these parameters in our
analysis.

The carrier density can be obtained by solving the rate
equation [19]

(11)

where is the current density in the active region of thickness
is the electron charge, is the carrier lifetime, is the
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photon energy, and is the optical intensity. We assume that
the incident signal is either time-independent (CW signal) or
pulsed such that the pulsewidth is much larger than the carrier
lifetime . In that case, the carrier density reaches a steady
state with the value

(12)

where is the optical intensity normalized to the
saturation intensity , and is the
current density normalized to its value required to achieve
transparency . Substituting (12) into (10) gives
the following expression for the power gain:

(13)

where is the unsaturated value of. If
needed, one can relate the saturation intensity to the saturation
power by , where is the width of the active
region.

In solving (11), we neglected carrier diffusion by assuming
that its effect is to average any variations in carrier density
which occur over distances smaller than the diffusion length
( 2 m). For this same reason, the optical intensityin (13)
can be represented as

(14)

The neglected interference terms burn spatial holes in the
carrier density with a period that is much smaller than the
diffusion length. We assume that carrier diffusion washes out
these holes and produces a carrier density that is uniform over
a few optical cycles.

III. SMALL -SIGNAL AMPLIFICATION

In this section, we study how the small-signal filtering and
amplification characteristics of DFB SLA’s are affected by
nonuniform gratings. Since gain saturation can be neglected,
all device characteristics become intensity-independent in this
linear regime. To take into account nonuniformities, we con-
sider the amplifier of length as being composed of several
uniform subsections of length [8]. Each subsection can
therefore be represented mathematically by a transfer matrix
of the type described in Section II. The product of all transfer
matrices yields a total transfer matrix which characterizes
propagation through the entire amplifier. Although we neglect
facet reflections throughout this paper, nonzero facet reflec-
tivities can be included in a straightforward manner [14],
[17].

To incorporate grating-phase shifts, a matrix designed to
shift the phase of the optical field is inserted between two
transfer matrices corresponding to uniform subsections on each
side of the phase shift [11]. As an example, consider a/4
phase-shifted DFB amplifier. The total transfer matrix of this
device can be written as

where is the phase shift experienced by the field at
the center of the amplifier. The transfer-matrix elements are
obtained from (4) by using .

Before considering a semiconductor DFB amplifier, it is
instructive to discuss results for a nonsemiconductor device
for which 0. The wavelength dependence of the amplifier
gain of a /4 phase-shifted DFB nonsemi-
conductor amplifier is shown in Fig. 2(a). For this device, we
have chosen 3 and 0, values that we maintain
throughout this paper. The transmission peak centered at
0, caused by the abrupt phase shift in the grating, benefits the
most from the distributed feedback; as is increased (by
increasing the pump current), the central transmission peak
grows significantly more than any other spectral region. In
the figure, we use values of that yield peak values
of 10, 20, and 30 dB ( 0.4360, 0.5854, and 0.6339,
respectively). As a reference, a spectral width of 1
corresponds to a wavelength band of 0.45 nm (about 60 GHz)
for a 250- m-long DFB amplifier operating near 1.55m.

The effect of the linewidth enhancement factor on the
transmission spectrum is to produce a shift in the spectrum
proportional to the change in gain ( ). This shift is apparent
in Fig. 2(b), where we have used the same values of the device
parameters as in Fig. 2(a) except that 5. The spectral shift
is easily understood by noting that an increase in gain for a
semiconductor amplifier results in a decrease in the refrac-
tive index. Consequently, the transmission spectrum shifts to
higher values of [see (9)]. The shift between transmission
peaks decreases for higher values ofbecause less increase
in is needed for a 10-dB increase in [see inset of
Fig. 2(b)]. The capability of tuning the transmission peak via
direct variation of (i.e., pump current) enriches the device
applications of semiconductor amplifiers. For example, this
tunability has been used as the basis for a wavelength-division
demultiplexer [22]–[24].

To further exploit the effects of grating nonuniformities, we
now consider how the small-signal amplification spectrum is
affected by linear spatial chirp. Spatial chirp can be introduced
into a grating by several methods such as varying the grating
pitch or bending the active waveguide [25], [26]. The Bragg
wavenumber is represented by

(15)

where is the average value of the Bragg wavenumber
and the chirp parameter is related to the rate at which
the grating period varies along the amplifier length. The
TMM approximates the continuous variation in the Bragg
wavenumber by a step-like distribution and therefore the
accuracy of this approximation is improved by increasing the
number of subsections. However, the TMM requires that the
length of each subsection be chosen such that [8],
and therefore limits the number of subsections for a given
device. Nonetheless, in practice we are able to reproduce
results for a continuously chirped structure with as few as
eight subsections.

As an example of the effect of linear spatial chirp on the
transmission spectra of DFB SLA’s, we add this nonuniformity
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(a)

(b)

Fig. 2. (a) Wavelength dependence of the amplifier gainG for a �=4 phase-shifted DFB nonsemiconductor amplifier (� = 0) with �L = 3 and
�intL = 0, for values ofgoL corresponding to peakG values of 0, 10, 20, and 30 dB. See (8) for the relation between� and the free-space wavelength
and (b) wavelength dependence of the amplifier gainG for a �=4 phase-shifted DFB SLA with� = 5, �L = 3, and�intL = 0, for values
of goL corresponding to peakG values of 0, 10, 20, and 30 dB. Insert shows the value ofgoL required to obtain a certain value ofG, where the
right-hand-side cut-off corresponds to the lasing threshold of the device.

to the grating of the /4 phase-shifted amplifier considered
above. For the unchirped case, the wavelength corresponding
to the Bragg wavenumber experiences the greatest feedback
and exhibits the most amplifier gain. Feedback for this wave-
length, though, is reduced when chirp is introduced because the
Bragg condition is satisfied only over a portion of the device.

As a result of lower feedback, higher values of are
required to realize peak values of 10, 20, and 30 dB
( 1.4200, 2.1912, and 2.4914, respectively). The
transmission spectrum is consequently shifted to higher values
of compared to the case 0 [Fig. 2(b)]. This effect can
be seen in Fig. 3, where we show the wavelength dependence
of the amplifier gain for a linearly chirped, /4 phase-
shifted DFB SLA with 20. The wide transmission
peaks of Fig. 3 can be understood as follows. Since the Bragg
wavenumber varies along the length of the device, a range of
wavelengths experience strong feedback, thereby widening the

transmission peak. Thus, spatial chirp allows amplification of
(temporally) narrower pulses.

When comparing Figs. 2(b) and 3, note that the corre-
sponding wavelengths can be chosen by varying either the
grating pitch or the average refractive index [see (8)].
Thus, the wavelength of any peak from Fig. 3 can be made
to coincide with the wavelength of any peak from Fig. 2(b)
by considering, for example, devices of two different grating
pitches.

However, the spacing (in ) between peaks is different for
Figs. 2(b) and 3, and this prevents more than one peak from
coinciding. For example, if the 30-dB peaks of Figs. 2(b) and
3 are made to coincide to the same wavelength, the 20-, 10-
and 0-dB peaks do not coincide. The wider peak spacing for
the case of 20 is a result of the difference between the
slopes of as a function of , as shown in the inset of
Fig. 3. It is interesting to note that higher discrimination (i.e.,
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Fig. 3. Wavelength dependence of the amplifier gainG for a linearly chirped,�/4 phase-shifted DFB SLA withC = 20, � = 5, �L = 3, and
�intL = 0, for values ofgoL corresponding to peakG values of 0, 10, 20, and 30 dB. Insert shows the value ofgoL required to obtain a certain
value of G for the casesC = 0 (left) and C = 20 (right).

wider peak separation) exists between adjacent transmission
peaks for 20, even though the peaks are wider than
for the case of 0. Thus, the introduction of linear
spatial chirp allows the amplification of narrower pulsesand
may improve discrimination between different channels in
wavelength-division demultiplexing applications.

IV. OPTICAL BISTABILITY

All amplifiers are inherently nonlinear because of gain sat-
uration occurring in the large-signal regime. In semiconductor
amplifiers, this gain saturation is accompanied by a nonlinear
index change. This intensity-dependent refractive index works
together with distributed feedback to produce regions of dis-
persive bistability (originally studied theoretically by Winful
et al. [27] for Kerr-type nonlinear media). In this section, we
study how the optical bistability characteristics of DFB SLA’s
are affected by nonuniform gratings.

One effect of nonuniformities is to alter the intensity dis-
tribution within the amplifier. The optical field distribution is
calculated by assuming an initial field at one facet and applying
one transfer matrix at a time until the other facet is reached.
Each application of a transfer matrix yields a value of the
internal field. The corresponding effective optical intensity is
computed using (14).

For a /4 phase-shifted DFB SLA, the small-signal intensity
distribution of the wavelength that experiences the largest
amplifier gain is strongly localized at the location of the
phase shift. Detuning away from this wavelength results in the
reduction of the intensity peak within the device, as shown in
Fig. 4(a). The intensity within the amplifier is further distorted
by the incorporation of linear spatial chirp. For 20, the
phase-shift-induced peak of the wavelength with the largest
amplifier gain is almost completely flattened, and the intensity
near each amplifier facet is higher than that of the center. In
addition, the small-signal intensity distribution is asymmetric
about the wavelength with the largest amplifier gain. As seen

in Fig. 4(b), the short-wavelength side recovers a prominent
central peak, whereas the long-wavelength side obtains its
lowest value at the center of the amplifier and exhibits higher
intensities near both amplifier facets.

The nonuniform intensity profile in an active semiconductor
will create a nonuniform gain profile via saturation. The gain,
however, is used in the calculation of the transfer-matrix
elements [see (5), (6) and (9)], which are in turn used to
compute the optical intensity distribution. To account for
this nonlinear behavior, we solve for the gain and intensity
distributions using the following iterative approach.

1) A first-order approximation of the internal-intensity dis-
tribution is calculated assuming no intensity dependence
of the gain.

2) An approximate value of the intensity within each sub-
section is calculated by averaging the intensity values at
both ends of the subsection.

3) The modal gain for each subsection is recalculated using
(13) and the intensity values from Step 2.

4) New intensity-modified transfer matrices are calculated
for the amplifier by using the gain from Step 3 and (5),
(6), and (9).

5) The internal-intensity distribution is recalculated using
the transfer matrices from Step 4.

6) Steps 2–5 are repeated until the deviation from the
previous intensity distribution is smaller than the desired
error. We find that 15 iterations are enough to obtain less
than 0.1% deviation in the optical intensity.

For regions of optical bistability, the initial field used to
compute the internal-intensity distribution is not taken to be
the input field, since it leads to two stable solutions of the
output field. Instead, the intensity computation (Steps 1 and 5
above) begins with an assumed output field and the inverse of
each transfer matrix is applied until the input field is reached.
This method readily calculates the bistability hysteresis. Since
the intensity distribution within the nonuniform device is
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(a)

(b)

Fig. 4. (a) The small-signal intensity distribution within a�/4 phase-shifted
DFB SLA with �L = 3, � = 5, �intL = 0, and goL = 0.6339
(corresponding to a peakG value of 30 dB) for three values of��L. The
parameter��L is given by��L = �L� �L, where�L is the value of
�L that yields the highest amplifier gain; in this case,�L = 1.58. (b) The
small-signal intensity distribution within a linearly chirped,�/4 phase-shifted
DFB SLA with �L = 3, � = 5, �intL = 0, and goL = 2.4914
(corresponding to a peakG value of 30 dB) for three values of��L with
�L = 6.2.

typically nonuniform, an accurate calculation of the bistability
hysteresis requires many values of the internal intensity.
However, for some arrangement of grating nonuniformities,
it seems possible to flatten the internal intensity completely,
so that a single averaged intensity may be used. For the grating
nonuniformities considered in this paper, we find that the
hysteresis computation converges at about eight values of the
internal intensity.

Bistability exists for values of less than those corre-
sponding to the transmission peaks. Within this region, a given
value of supports a range of input intensities that produce
three values of the output intensity, the middle of which is
unstable. The high bound of this range is the input intensity
for which switch-on occurs, and the low-bound corresponds to
the switch-off intensity. Starting from a value of near the
onset of bistability, decreasing will increase the bistable
region of input intensities and increase the contrast between

the top and the bottom of the hysteresis. This is evident in
Fig. 5(a), where we plot the hysteresis for the same device
parameters as Fig. 2(b). The value of is chosen to yield
an unsaturated peak value of 30 dB, and is decreased
from 1.5 until the switch-on input intensity reaches an
upper limit of 1% of the saturation intensity. As apparent from
Fig. 5(a), a detuning range of approximately 0.3 exists for
this region of low-threshold bistable switching. Using typical
values of 1 MW/cm , 2 m, and 0.1 m,
the required optical power in this low-threshold region is less
than 0.1 mW.

The addition of positive linear spatial chirp to the grating
of a /4 phase-shifted DFB SLA increases the range of
wavelengths that support low-threshold bistable switching for
an amplifier driven to provide the same unsaturated peak
amplifier gain. This is seen clearly in Fig. 5(b), where we
show the bistability hysteresis for a linearly chirped,/4 phase-
shifted DFB SLA with 20. As in Fig. 5(a), the highest
value of the ( 6.0) is chosen to be near the onset
of bistability and is decreased until the switch-on input
intensity reaches 1% of the saturation intensity. The range
of values is now 0.9, three times wider than that of the
nonchirped case. The contrast is also significantly increased.

These improvements may be understood as follows. The
reduction of feedback to the wavelength with the lowest lasing
threshold requires the SLA to be pumped at a higher gain to
achieve the same unsaturated peak amplifier gain. This addi-
tional gain increases the switching contrast. Moreover, a wider
range of wavelengths exhibit low-threshold switching because
the increased gain raises the intensities at these wavelengths
and because the Bragg wavenumber, for which feedback is the
greatest, now extends over a range of wavelengths.

Since the transmission spectrum of DFB SLA’s shifts with
the direct variation of gain (see Figs. 2 and 3), it is possible
to tune the bistability hysteresis for a given wavelength. To
illustrate this, we first consider a/4 phase-shifted amplifier
and choose the value of that is 0.3 less than the value for
which bistability begins. Fig. 6(a) shows the hysteresis of this
amplifier for four values of gain, beginning from the value of

that yields an unsaturated peak of 30 dB. As seen in
the figure, it is possible to select different switching intensities
and switching contrasts.

Using the additional degree of freedom provided by gain-
tuning, we can compare the bistability characteristics with
and without spatial chirp by maintaining a fixed value of
and varying (in contrast to Fig. 5, where the opposite
was performed). Using the value of that is 0.3 less than
the value for which bistability begins, the switch-on input
intensity is much lower for the case 20 than for the
nonchirped device, if each device is driven to provide a 30-
dB unsaturated transmission peak (compare the solid lines of
Fig. 6). The switch-on input intensities of the two devices can
be set equal by varying the gain of each amplifier. As shown
in Fig. 6, approximately equal switch-on intensities exist for
the two devices at input intensities just higher than 0.2% of
the saturation intensity. In this case, the chirped amplifier
is (again) found to have a much larger switching contrast.
Another difference between the bistability characteristics is
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(a)

(b)

Fig. 5. (a) The bistability hysteresis for a�/4 phase-shifted DFB SLA with�L = 3, � = 5, �intL = 0, andgoL = 0.6339 (corresponding to an
unsaturated peakG value of 30 dB) for many values of�. The parameter� is given by� = �L0

� �L, where�L0 is the value of�L chosen to be near
the onset of bistability; in this case,�L0 = 1.5. (b) The bistability hysteresis for a linearly chirped,�/4 phase-shifted DFB SLA with�L = 3, � = 5,
�intL = 0, andgoL = 2.4914 (corresponding to an unsaturated peakG value of 30 dB) for many values of� with �L0 = 6.0.

that the top of the hysteresis is flatter for the chirped case.
This behavior can be utilized in bistability-based optical signal
regenerators [5] to produce pulses with flatter peaks.

V. CONCLUSION

In this paper, we presented a TMM capable of simulating
optical bistability in DFB SLA’s with nonuniform gratings.
Computations required a small, initial set of five dimensionless
parameters: and . The linewidth enhance-

ment factor has been incorporated in a way that takes
into account the shift of the transmission spectrum resulting
from direct gain variation. This additional degree of freedom
allowed us to study the current-induced tuning of the bistability
hysteresis (as depicted in Fig. 6). The computation of the
bistability characteristics required the calculation of the uneven
intensity distribution resulting from grating nonuniformities.
We outlined a simple way to perform this computation, in-
cluding how to account for the nonlinear behavior of gain
saturation.
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(a)

(b)

Fig. 6. (a) The bistability hysteresis for a�/4 phase-shifted DFB SLA with�L = 3, � = 5, and�intL = 0 as a function of�goL. The parameter
�goL = goL� goL, wheregoL is the value which yields an unsaturated peakG value of 30 dB; in this casegoL = 0.6339. The parameter�L is chosen
to be 0.3 less than its value at the exact onset of bistability; in this case�L = 1.25. (b) The bistability hysteresis for a linearly chirped,�/4 phase-shifted
DFB SLA with �L = 3, � = 5, and�intL = 0 for many values of�goL with goL = 2.4914 and�L = 5.73.

Each nonuniformity considered in this paper increased the
number of required parameters by one. The linearly chirped,

/4 phase-shifted DFB SLA required a value of the phase shift
and a value of the chirp parameter. For small-signal amplifi-
cation, we found that linear chirp simultaneously widened the
transmission peak and increased the discrimination between
transmission peaks of different amplifier gains. Therefore, we
believe these devices may find application as demultiplexers
for high-capacity (i.e., short pulse) WDM communication
systems.

Within the regime of optical bistability, we found that linear
chirp extended the spectral range of low-threshold bistable
switching for /4 phase-shifted DFB amplifiers driven to yield
the same unsaturated peak amplifier gain. Linear chirp also
increased the switching contrast and reduced the slope of the
top of the bistability hysteresis. In addition, since the active
semiconductor transmission spectra can be tuned by adjusting

the gain, this novel grating structure provides a tunable, low-
threshold bistable amplifier.

In our steady-state analysis, we did not address the switching
speed of the DFB SLA. The study of pulse evolution through
nonuniform grating amplifiers should also yield interesting
behavior; we are currently investigating these topics. In ad-
dition, we are also using the TMM to study the effects
of nonuniform gratings for specific applications in optical
logic, optical communications, and optical signal processing.
We believe that the TMM provides a simple and insightful
means of studying this unique way of tailoring the bistability
characteristics of DFB SLA’s.
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