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We investigate analytically the occurrence of modulation instability in doped fiber lasers and amplifiers using
a Maxwell–Bloch description for the dopants and without making the usual parabolic-gain approximation.
We find a new modulation instability occurring near the Rabi frequency, which is not predicted by the conven-
tional complex Ginzburg–Landau model. We discuss the implications of this new instability for fiber ampli-
fiers and lasers and analyze the effects of the saturable host absorption on the laser instabilities. Atomic
detuning is shown to significantly enhance the new modulation instability, in both the normal- and the
anomalous-dispersion regimes. © 1997 Optical Society of America [S0740-3224(97)04610-9]
1. INTRODUCTION
The onset of instabilities in various kinds of lasers is gen-
erally studied by use of a rate-equation model based on
the Maxwell–Bloch equations suitable for a two-level
atomic system.1 Such a model, often referred to as the
(detuned) Lorenz–Haken model, includes atomic polariza-
tion dynamics and has been used extensively over the
past two decades. Its use leads to the concept of the sec-
ond laser threshold, defined as the pump level at which
the continuous-wave (cw) operation of the laser becomes
unstable through a Hopf bifurcation, resulting in a self-
pulsing output. At higher pump levels the laser can en-
ter into a chaotic regime through a period doubling or an-
other route to chaos.1,2

The advent of fiber lasers during the late 1980’s forces
several changes to this standard model of laser instabili-
ties, mainly because the optical fiber, acting as a host to
the dopants, introduces group-velocity dispersion (GVD)
and self-phase modulation (SPM), both of which must be
incorporated for a proper description of the onset of insta-
bilities in fiber lasers.3 In fact, these two phenomena
lead to an instability, known as the modulation instability
(MI), even in an undoped and unpumped optical fiber.4

It is therefore reasonable to expect that the presence of
GVD and SPM in the host fiber would change the nature
of instabilities in fiber lasers in comparison with other
kinds of lasers (gas and solid-state lasers) that are well
described by the standard Lorenz–Haken model. Apart
from this propagation-based instability, several other ex-
planations for the observed instabilities in rare-earth-
doped fiber lasers have been reported. It was shown
theoretically and experimentally that the existence of ion
clusters in heavily Er-doped fiber lasers leads to single-
mode cw or self-pulsing behavior, whereas the same
model is also applicable to dual-wavelength or bipolarized
lasers.5,6 Other theories and experiments on Er-doped fi-
ber lasers have shown self-pulsing, chaos, and antiphase
dynamics between the different polarization eigenstates
of the optical field.7,8 The explanation for the self-
pulsing behavior of Nd-doped fiber lasers has been re-
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ported to be driven by the dynamics of the two field-
polarization eigenstates that depend on the birefringence
of the fiber.9,10 In this paper, however, we focus on the
propagation-driven MI phenomenon, and do not consider
any field-polarization dynamics.

In recent years, the MI phenomenon has been investi-
gated in doped (active) fibers used to make lasers and
amplifiers.3,4,11,12 When doing so, one has to consider the
nonlinear interaction of the dopants with the optical field.
A natural choice is to model the dopants as a two-level
system with an atomic polarization dephasing time T2
and a population relaxation time T1 . By far, the most
popular model employs the parabolic-gain approximation,
leading to a complex Ginzburg–Landau (CGL) equation
for the optical field.3 One study showed that in erbium-
doped fiber amplifiers,11 the threshold for MI is consider-
ably lowered compared with that for undoped fibers. Re-
cently, Chen et al.12 included gain dynamics (governed by
T1) as well as a fast saturable absorber in the model and
discussed the implications of MI for passively mode-
locked figure-eight lasers. The full atomic polarization
dynamics (governed by T2) has, however, been neglected
so far.

In this paper we investigate the occurrence of MI be-
yond the Ginzburg–Landau approximation by considering
the full T2 dynamics. We introduce the theoretical
framework in Section 2 and discuss the consequences for
amplifiers in Section 3. There, we calculate the steady-
state solutions and derive a dispersion relation for MI.
The effect of the population relaxation damping time T1
and the dipole dephasing time T2 on MI are studied for
amplifiers. We find that by cooling the fiber amplifier,
the bandwidth and the strength of the MI can be greatly
reduced. In Section 4 we deal with fiber lasers and de-
rive the dispersion relation for MI at resonance. The role
of saturable absorption in fiber lasers is investigated, and
we focus on the possibility of MI occurring in the normal-
dispersion regime. We find indeed such an instability,
having its origin in the atomic coherence effects related to
the atomic polarization dynamics. This new instability is
found to occur at rather low frequencies (;50 MHz) and
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may explain the self-starting behavior of mode-locked Nd-
doped lasers. In Section 5 we discuss the effects of de-
tuning on the occurrence of MI and discuss the differences
between normal and anomalous operating regimes.

2. THEORETICAL FRAMEWORK
Our starting point is a set of Maxwell–Bloch equations
that describe the propagation of optical fields in a nonlin-
ear, dispersive medium doped with two-level atoms (or
ions). We write the electrical field E (x, y, z, t) and the
induced material polarization P (x, y, z, t) as

E~x, y, z, t ! 5
1
2 x̂F~x, y !A~z, t !

3 exp@i~b0z 2 v0t !# 1 c.c., (1)

P ~x, y, z, t ! 5
1
2 x̂F~x, y !B~z, t !

3 exp@i~b0z 2 v0t !# 1 c.c., (2)

where x̂ is the polarization unit vector of the light as-
sumed to be linearly polarized along the x axis, F(x, y) is
the fiber-mode profile, and b0 is the wave number corre-
sponding to the carrier frequency v0 . We assume that
the field-polarization direction is preserved upon propaga-
tion and that we are dealing with a polarization-
preserving single-mode fiber. However, most of the re-
sults are expected to remain qualitatively valid for
conventional optical fibers. After substituting Eqs. (1)
and (2) into Maxwell’s equations, and making the slowly-
varying-envelope and rotating-wave approximations, we
obtain the following equations for the slowly varying com-
plex amplitudes A and B (Ref. 4):

]A

]z
5

i

2
B 2

1

2
aA 2

ib2

2

]2A

]t2

1 ~u 1 ig!uAu2A, (3)

T2
dB
dt

5 ~id 2 1 !B 2 iAg, (4)

T1
dg
dt

5 g0 2 g 1 Im~A* B !/Psat , (5)

where g is the gain realized by pumping the dopants, a is
the optical loss, b2 is the GVD coefficient of the host fiber,
u accounts for saturable host absorption, g is the fiber
nonlinearity, d 5 (v0 2 v̄)T2 is the scaled detuning be-
tween the carrier frequency v0 and the atomic resonance
frequency v̄, g0 is the unsaturated gain, and Psat is the
saturation power for the dopants modeled as a homoge-
neously broadened two-level system. We have written
Eqs. (3)–(5) in such a way that A has units of AW, B has
units of AWL21, and g has units of L21, where L is the
length of either the amplifier or the laser cavity.

It is important to note that Eqs. (3)–(5) are based on a
traveling-wave description rather than a standing-wave
approach that is employed in the conventional rate-
equation analysis. Since we adopt a traveling-wave ap-
proach, the optical field A(z, t) in Eqs. (3)–(5) in principle
can represent a very wide spectrum (or many longitudinal
modes). The detuning parameter d is thus interpreted as
the mismatch between the gain peak and the dominant
frequency of the laser spectrum. The main assumptions
in our model are the homogeneously broadened gain me-
dium and the neglect of spontaneous emission. The
former is not valid for all doped fibers, but for some types
of glass hosts it is a reasonable assumption.4 Since we
are interested in deterministic instabilities, spontaneous
emission can be neglected without loss of generality.

There are two distinct origins of the nonlinear effects in
Eqs. (3)–(5). The fiber nonlinearity g 5 n2v0 /cAeff ac-
counts for SPM effects induced by the host, where n2 is
the nonlinear refractive index (units m2/W), c is the speed
of light in vacuum, and Aeff is the effective fibercore area.
For completeness we give the relation between n2 and the
nonlinear susceptibility x̃ (3) (units of meters squared per
volt squared) of the fiber

n2 [
3

4e0n2c
Re@ x̃~3 !~v0!#, (6)

where n is the background refractive index and e0 is the
permittivity of the vacuum. The dopant-induced nonlin-
ear effects are governed by the saturation power Psat , de-
fined as

Psat [
\2cne0Aeff

2m2T1T2
, (7)

where \ is Planck’s constant divided by 2p and m is the
dipole moment of the atomic transition. Note that Eqs.
(3)–(5) are written in the frame of reference moving with
group velocity vg [ b1

21, which means that t 5 T
2 b1z, where T is the time in the rest frame. By doing
this, we eliminate the term b1(]A/]T) from the left-hand
side of Eq. (3).

We now briefly discuss the relation of Eqs. (3)–(5) with
the CGL model.4,12 When the assumption is made that
the population relaxation time T1 is much longer than all
other lifetimes, we can approximate the actual gain g by
its steady-state value gs . This allows Eq. (4) to be ex-
pressed in the Fourier domain as the well-known
Lorentzian-shaped nonlinear susceptibility:

B̃~Dv!

Ã~Dv!
5

2igs

1 2 i~DvT2 1 d!
, (8)

where Dv 5 v 2 v0 is the detuning of the spectral com-
ponent from the carrier frequency. In the CGL model,
polarization equation (8) is approximated by a Taylor ex-
pansion near Dv 5 0 up to second order, leading to the
parabolic-gain approximation that is reasonably accurate
for small values of T2 . In the time domain this corre-
sponds to (generally complex) corrections Db1 and Db2 of
the inverse group velocity b1 and the GVD coefficient b2
(Ref. 3):

Db1~d! 5
1

2
g2T2

1

~1 2 id!2 , (9)

Db2~d! 5 gsT2
2

i

~1 2 id!3 . (10)

From Eq. (9) we see that only at resonance (d 5 0) can
the resulting pulse propagation equation be written in the
reference frame moving with the new group velocity (b1
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1 Db1)21, because only at resonance is the correction
Db1 real. After writing the correction to the GVD as
Db2(0) 5 ib [ igsT2

2, the resulting equations of the
CGL model become

]A

]z
5

1

2
~g 2 a!A 1

1

2
~b 2 ib2!

]2A

]t2

1 ~u 1 ig!uAu2A, (11)

T1
dg
dt

5 g0 2 g 2
guAu2

Psat
. (12)

Obviously, Eqs. (11) and (12) are good approximations of
the full model only if T1 is long enough and T2 is short
enough. In this paper we explore the shortcomings of the
CGL model for realistic fiber lasers and amplifiers and
find interesting behavior outside the realm of the CGL
model. We note that the CGL model is only useful for
amplifiers for which gain saturation can be neglected;
otherwise, the gain dispersion b would be z dependent,
which seems impractical at best.

The Maxwell–Bloch equations (3)–(5) can be applied to
both amplifiers and unidirectional (e.g., ring) lasers. In
the case of lasers, however, one should, in general, solve a
complicated boundary-value problem to account for the lo-
calized losses at the cavity mirrors, a task that requires a
numerical approach. In this paper we adopt the mean-
intensity approximation by replacing the localized mirror
losses with a distributed loss incorporated in the total op-
tical loss a. In the case of amplifiers, such a mean-
intensity requirement is not valid: the intensity is
strongly z dependent. Because the steady states are so
different for lasers and amplifiers, a modulation stability
analysis yields very different results. In the following,
we treat them separately.

3. MODULATION INSTABILITY IN
AMPLIFIERS
We consider an amplifier (or absorber) of length L with an
input power P0 at z 5 0. We first find the time-
independent (steady-state) solution of Eqs. (3)–(5). For-
mally, it can be written as

As~z ! 5 @PA~z !#1/2exp@iws~z !#, (13)

Bs~z ! 5
As~z !gs~z !

d 1 i
, (14)

gs~z ! 5 g0F1 1
PA~z !

Psat~1 1 d2!
G21

. (15)

Using the imaginary part of Eq. (3), we can write the
phase profile ws(z) in terms of the power profile PA(z):

ws~z ! 5 gE
0

z

dz8PA~z8! 1
d/2

1 1 d2 E
0

z

dz8gs~z8!. (16)

From the real part of Eq. (3), and using Eq. (15), one finds
the following differential equation for the scaled power
profile f(z) [ PA(z)/@Psat(1 1 d2)#:

df

dz
5

g0

1 1 d2

f

f 1 1
2 af 1 2uPsat~1 1 d2!f 2. (17)
This differential equation can be solved, resulting in the
following transcendental equation for PA :

2uPsat~1 1 d2!z

5 2S C

C1

1
1 2 C

C2
D lnFPA~z !

P0
G

1
C

C1

lnFPA~z ! 2 C1 Psat~1 1 d2!

P0 2 C1 Psat~1 1 d2!
G

1
1 2 C

C2

lnFPA~z ! 2 C2 Psat~1 1 d2!

P0 2 C2 Psat~1 1 d2!
G , (18)

where the coefficients C and C6 are given by

C 5
1 1 C1

C1 2 C2
,

2C6 5 c2 2 1 6 @~1 2 c2!2 2 4~c1 2 c2!#1/2, (19)

c1 5
g0

2uPsat~1 1 d2!2 , c2 5
a

2uPsat~1 1 d2!
. (20)

In the absence of saturable absorption (u 5 0), the solu-
tion of Eq. (17) is implicitly given by

S g0

1 1 d2 2 a D z

5 lnFPA~z !

P0
G 2

g0

a~1 1 d2!

3 ln5 PA~z ! 2 Psat~1 1 d2!F g0

a~1 1 d2!
2 1G

P0 2 Psat~1 1 d2!F g0

a~1 1 d2!
2 1G 6 ,

(21)

which, in the absence of optical loss (a 5 0), reduces to

lnFPA~z !

P0
G 1

PA~z ! 2 P0

Psat
5

g0z

1 1 d2 . (22)

After the power profile PA(z) is found, the gain profile
gs(z) and the polarization profile Bs(z) follow from Eqs.
(13)–(16).

To study the onset of MI, we follow a standard
approach4 by considering the linear stability of the
steady-state (cw) solution given above. Considering
small perturbations u, v, p, q, and x from the cw state
defined as
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A~z, t ! 5 @~P0!1/2 1 u~z, t ! 1 iv~z, t !#

3 FPA~z !

P0
G1/2

exp@iws~z !#, (23)

B~z, t ! 5
gs~z !

d 1 i
@~P0!1/2 1 p~z, t ! 1 iq~z, t !#

3 FPA~z !

P0
G1/2

exp@iws~z !#, (24)

g~z, t ! 5 @ g0 1 x~z, t !#F1

1
PA~z !

Psat~1 1 d2!
G21

, (25)

and linearizing Eqs. (3)–(5) in u, v, p, q, and x, we solve
the resulting five linear equations in Fourier space by in-
troducing

y~z, t ! 5 y0 expF iE dzK~z ! 2 iVt G ,
y 5 u, v, p, q, x, (26)

where y0 is the initial amplitude, V is the frequency, and
K(z) is the local wave number of the perturbation. The
resulting dispersion relation for arbitrary detuning d is
discussed for fiber lasers in Section 5. The dispersion re-
lation at resonance (d 5 0) is given by

$@2iK~z ! 1 gs~z ! 2 4uPA~z !#@2iK~z ! 1 gs~z !#

1 b2
2V2@V2 1 sgn~b2!Vc

2~z !#%~1 2 iVT2!

3 @~1 2 iVT1!~1 2 iVT2! 1 I~z !#

2 gs~z !@2iK~z ! 1 gs~z !#~1 2 iVT2!

3 @1 2 iVT1 2 I~z !# 2 gs~z !

3 @2iK~z ! 1 gs~z ! 2 4uPA~z !#

3 @~1 2 iVT1!~1 2 iVT2! 1 I~z !#

1 gs
2~z !@1 2 iVT1 2 I~z !# 5 0, (27)

where I(z) 5 PA(z)/Psat , sgn(b2) 5 61, and Vc(z)
5 @4gPA(z)/ub2u#1/2 is the critical frequency, i.e., the
maximum frequency for which MI is found to occur in the
case of anomalous dispersion in a passive fiber.4 Before
we examine the implications of Eq. (27) in various re-
gimes of parameter space, we note that the Rabi fre-
quency is somewhat hidden:

VRabi~z ! [ F PA~z !

PsatT1T2
G1/2

. (28)

The imaginary part of K(z) determines the local gain
experienced by the perturbation. It is useful to define
the total integrated gain at frequency V as11

h~V! [ 22E
0

L

dz Im@K~V, z !#, (29)

where the factor 2 converts h(V) to power gain. MI oc-
curs whenever the wave number K has a negative imagi-
nary part. In the case of an amplifier, this means the
perturbation grows faster than the steady-state power,
whereas for an absorber it means that the perturbation
dampens less quickly. Dispersion equation (27) reduces
to the previously reported ones in the appropriate limits.
In the absence of saturable host absorption (u 5 0), the
dispersion relation from Ref. 11 is obtained in the limit of
large T1 and short T2 .

We now consider the occurrence of MI in various re-
gimes of parameter space for both amplifiers and absorb-
ers. Because our model has no restrictions with respect
to the magnitude of the lifetimes T1 and T2 , we can ex-
plore MI in regimes where the CGL model has no validity.
For simplicity, we only consider the local perturbation
gain because the integration in Eq. (29) can be performed
analytically in a few limiting cases only.3 We also ignore
the possibility of saturable host absorption since two-
photon absorption is relatively weak in silica fibers, and
other sources of saturable nonlinearity are rarely present
in amplifiers. When we discuss MI in lasers, we show
how even relatively small amounts of saturable host ab-
sorption can affect the MI drastically.

We start by investigating the effect of the magnitude of
the dipole lifetime T2 . For most fiber amplifiers, T2 is
estimated to be near 100 fs, corresponding to a wide gain
spectrum. Because T1 is usually in the range 0.1–10 ms,
the CGL equation is expected to be a good approximation.
However, by cooling the fiber, the polarization dephasing
process can be slowed down substantially, making values
of T2 ; 10 ps readily attainable.13

In Fig. 1 we show for various values of T2 in the range
0.1–10 ps the MI spectrum for a typical fiber amplifier
with a 30-dB gain, i.e., exp( g0 L) 5 1000. All other pa-
rameters are given in the caption. Note that the satura-
tion power Psat is inversely proportional to T2 [Eq. (7)].
When Eq. (7) is satisfied for each value of T2 , the Rabi
frequency remains a constant for all curves: VRabi
5 1.29 3 1023Vc . When the dephasing time T2 is in-
creased, two trends are observed.

First, as can be seen in Fig. 1, increasing T2 leads to a
shrinkage of the MI bandwidth, whereas the maximum

Fig. 1. Modulation instability spectrum for an erbium-doped fi-
ber amplifier at various values of T2 (indicated in the figure).
Parameters are g0 5 6.91 L21, P0 5 1 mW, T1 5 0.1 ms, b2
5 220 ps2/L, g 5 3W21 L21, and Psat 5 1 mW when T2
5 0.1 ps. For undoped fibers, MI occurs up to Vcrit/2p
5 3.9 GHz
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gain within the bandwidth decreases rapidly. When T2
5 100 fs (PA /Psat 5 0.01), MI occurs for frequencies up
to Vc/2p 5 3.9 GHz, while the peak MI strength is found
near V 5 Vc /A2. The peak strength is very close to the
analytical value 2gPA , which is found in the CGL limit.11

Already when T2 5 2 ps (PA /Psat 5 0.2), the frequency
band where MI occurs has shrunk ;40%, and near T2
5 8 ps (PA /Psat 5 0.8), MI has almost ceased to occur at
all. Near T2 5 21 ps (PA /Psat 5 2.1), the MI band van-
ishes completely. Long before that happens, the strength
of MI is so weak that it is doubtful whether it can be ob-
served in a single-pass amplifier.

Second, during this MI spectrum shrinkage, another
phenomenon is occurring that is directly caused by the
two-level system since it involves frequencies close to
VRabi , as is shown in Fig. 2. Near the Rabi frequency a
secondary, weak maximum in MI strength begins to form
for T2 . 20 ps. This maximum becomes positive near
T2 5 80 ps (PA /Psat 5 8) and grows with T2 . When T2
is increased further, the MI spectrum slowly returns to its
original width and strength (out of scale in Fig. 2). Near
T2 5 11.5 ns (PA /Psat 5 1150), the MI spectrum shows
again positive MI gain around Vc , while maintaining a
narrow (but weak) peak close to VRabi . At the highly im-
probable value of T2 ; 1 ms (PA /Psat 5 105) the MI spec-
trum is very close to the one at T2 5 100 fs, and we have
come full circle.

Thus we find four regimes of T2 ; in the first regime
(100 fs , T2 , 21 ps), increasing T2 leads to a total
quenching of MI. In the second regime (21 ps , T2
, 80 ps), no MI occurs, but the gain around the Rabi fre-
quency is growing. In the third regime (80 ps , T2
, 11.5 ns), more and more MI occurs around the Rabi
frequency, while the gain around Vc is growing toward a
positive value again. In the fourth regime, approaching
the long T2 limit (1 ms , T2 , `), the MI spectrum re-
covers fully to its original (small T2) form. The bound-
aries between these regimes are, of course, strongly de-
pendent on the power level PA . For higher power levels
these boundaries rapidly decrease.

Fig. 2. MI spectrum for the amplifier of Fig. 1, for even longer
dephasing times T2 (indicated in the figure). In the range 21
, T2 , 80 ps, MI is totally quenched. When T2 approaches
100 ps, the MI spectrum starts to show a narrow, weak peak
around the Rabi frequency VRabi /Vc 5 0.0013.
We further note that the MI band near Vc is insensitive
to changes in T1 , as long as it is accompanied by a change
in the saturation power Psat according to Eq. (7). How-
ever, if we keep the saturation power constant upon
changing T1 (this can be done by adjusting the dipole mo-
ment m), decreasing T1 leads to a stabilization of the
lower frequencies and eventually a reduction of MI alto-
gether.

We emphasize that the narrow MI peak around VRabi is
so weak that it is questionable whether it can be observed
in an amplifier. In the case of a laser, however, such a
weak gain may build to a substantial instability over
many round trips, as we discuss in the next section.
Since it is not common to use an amplifier in the highly
saturated regime, the emergence of the narrow MI band
near the Rabi frequency is not very practical. Note, how-
ever, that this narrow MI band near the Rabi frequency
does not depend on the sign of b2 ; in both normal- and
anomalous-dispersion regimes, this instability emerges at
relatively high values of T2 .

Apart from this new (and for realistic systems, ex-
tremely weak) instability, the full Maxwell–Bloch model
agrees with the CGL model qualitatively rather well. Of
course, the quantitative differences become larger as the
approximations leading to the CGL model (large T1 and
short T2) become more and more inappropriate. In the
next section we find that for lasers the situation can be
very different.

4. MODULATION INSTABILITY IN FIBER
LASERS AT RESONANCE
Equations (3)–(5) also describe the optical field and the
gain in a laser, when one assumes that all losses can be
thought of as being distributed along the cavity. Then,
the steady-state solution is characterized by a
z-independent power P0 and gain gs , and can be written
as

As~z ! 5 ~P0!1/2 exp@iws~z !#, (30)

Bs~z ! 5
d 2 i

1 1 d2 Asgs , (31)

gs 5 g0F1 1
P0

Psat~1 1 d2!
G21

. (32)

Again, from the real and the imaginary part of Eq. (3), the
following expressions for the laser power P0 and the
phase profile ws(z) are obtained:

gs 5 ~a 2 2uP0!~1 1 d2!, (33)

dws

dz
5 gP0 1

1

2 S dgs

1 1 d2 2 a D . (34)

Since Eq. (33) is quadratic in P0 [with use of Eq. (32)], in
principle, two values for the laser power are found. One
of these is not physical and corresponds to the antilaser,
which is characterized by a huge gain and almost zero
power.

Similar to the amplifier case, we consider small pertur-
bations u, v, p, q, and x from the cw state, defined as
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A~z, t ! 5 @~P0!1/2 1 u~z, t !

1 iv~z, t !#exp@iws~z !#, (35)

B~z, t ! 5
d 2 i

1 1 d2 @~P0!1/2 1 p~z, t !

1 iq~z, t !# gsexp@iws~z !#, (36)

g~z, t ! 5 @g0 1 x~z, t !#F1 1
P0

Psat~1 1 d2!
G21

, (37)

and linearizing Eqs. (3)–(5) in u, v, p, q, and x, we solve
the resulting five linear equations in the Fourier space by
introducing

y~z, t ! 5 y0 exp@i~Kz 2 Vt !#,

y 5 u, v, p, q, x, (38)

where y0 denotes the initial amplitude of the perturba-
tion. Note that because because both laser power P0 and
gs are z independent, the wave number K is also z inde-
pendent. At resonance (d 5 0), the resulting dispersion
relation reads

$@2iK 1 a 2 6uP0#~2iK 1 a 2 2uP0!

1 b2
2V2@V2 1 sgn~b2!Vc

2#%~1 2 iVT2!

3 @~1 2 iVT1!~1 2 iVT2! 1 I0#

2 gs~2iK 1 a 2 2uP0!~1 2 iVT2!

3 @1 2 iVT1 2 I0# 2 gs~2iK 1 a 2 6uP0!

3 @~1 2 iVT1!~1 2 iVT2! 1 I0#

1 gs
2~1 2 iVT1 2 I0! 5 0. (39)

Here, I0 5 P0 /Psat , sgn(b2) 5 61, and Vc
5 (4gP0 /ub2u)1/2 is the critical frequency, i.e., the maxi-
mum frequency for which MI is found in the case of
anomalous dispersion in a passive fiber.4 This dispersion
relation is identical to Eq. (27) when one replaces K, P0 ,
and gs by their z-dependent counterparts, and Eq. (33) is
used.

Dispersion relation (39) reduces to the one previously
reported by Chen et al.,12 who employ the CGL model, in
the appropriate limit.

Before we proceed with examining the implications of
Eq. (39) in various regimes of parameter space, we note
that the Rabi frequency is now given by

VRabi [ S P0

PsatT1T2
D 1/2

. (40)

Merely comparing the relative strengths of the critical
frequency Vc with the Rabi frequency VRabi does not pro-
vide much information about the effect of atomic coher-
ence on MI. The interaction between the fiber nonlinear-
ity, the GVD, and the two-level system is much more
involved.

In contrast with the amplifier case described in the pre-
vious section, lasers generally operate in the heavily satu-
rated regime. This means that the instability near the
Rabi frequency is now more likely to play a significant
role. Furthermore, many fiber laser systems, e.g., a
figure-eight laser, contain an effective saturable absorber
that causes mode locking.

We first compare the predictions of Eq. (39) with the
CGL-based expression.12 To facilitate comparison, we
used the same parameters as in Ref. 12. In Fig. 3 we
show the differences for the case of a figure-eight laser.
Although the trajectories of K in the complex plane as a
function of frequency V are quite different for a figure-
eight laser, the resulting net MI gain spectra agree quite
well, at least in the central region. The frequency range
over which positive net MI gain occurs is underestimated
by 10% by the CGL model. Both models show vanishing
gain at 100 kHz [indicated by the vertical line at V ; 0 in
Fig. 3(a)], whereas the frequency with highest gain is
near 200 kHz. The Rabi frequency in this case is VRabi
5 55 MHz, and the critical frequency is Vc 5 37 GHz.
They differ by almost three orders of magnitude. Even
so, MI occurs for frequencies almost twice as large as Vc .

The results for the dye-laser parameters are shown in
Fig. 4. Our model predicts that MI occurs in a narrow
band near 30 GHz, whereas the CGL model predicts no
instability at all! The Rabi frequency VRabi and the criti-
cal frequency Vc are both close to 24 GHz, which explains
why the interaction between the fiber and the two-level
system is so highly nonlinear.

Here we find the first meaningful qualitative difference
between the full Maxwell–Bloch model and the CGL
model. Not surprisingly, the laser power in Fig. 4 is ;60
times the saturation power Psat , which makes the Rabi
frequency of the same order as the critical frequency Vc .

Fig. 3. MI analysis for a figure-eight laser. Solid curves indi-
cate the results of the full model, while dashed curves show those
of the CGL model. Top figure shows the net MI gain spectra,
while the bottom figure shows the corresponding trajectory of the
eigenvalue K on the complex plane. Parameters are a
5 0.4 L21, g0 5 6 L21, b2 5 20.09 ps2 L21, u 5 0.1 W21 L21, g
5 0.008 W21 L21, T2 5 1.27 ps, T1 5 108 ps, and Psat 5 10
mW.
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So for the dye laser of Fig. 4 the interaction between the
two-level system on the one side and the GVD and the
SPM on the other side cannot be described within a
parabolic-gain approximation.

The pump value g0 at which the cw state loses its sta-
bility is often classified as the second threshold,1 as it an-
nounces the onset of unstable behavior. Similarly, we
can identify the MI threshold as the gain above which MI
occurs. At this threshold, MI occurs only at the fre-
quency corresponding to the peak gain in the MI spec-
trum, which can be compared with the frequency with
which perturbations grow at a Hopf bifurcation. In Figs.
5 and 6 we show the dependence of the MI threshold as a
function of u for the case of the figure-eight laser (Fig. 5)
and the dye laser (Fig. 6). The effect of saturable absorp-
tion is very dramatic in the case of the figure-eight laser

Fig. 4. MI analysis for a dye laser. Similar as in Fig. 3, except
for the parameters: a 5 0.1 L21, g0 5 3 L21, b2 5 20.09 ps2

L21, u 5 0.001 W21 L21, g 5 0.008 W21 L21, T25 2.45 ps, T1
5 103 ps, and Psat 5 1 mW.

Fig. 5. MI threshold as a function of saturable absorption u for
the fiber laser of Fig. 3.
parameters: when u is larger than 1026W21L21. MI oc-
curs immediately after the first (lasing) threshold. A
qualitatively similar dependence is found for the dye la-
ser, where the MI threshold gain decreases from ; 9 to
1.5 at u 5 0.1. This feature explains why a relatively
weak saturable absorber can lead to passive mode lock-
ing. Although the presence of a saturable absorber is
evidently very useful for the generation of mode-locked
pulses, it somewhat obscures our investigation of the in-
teraction between the two-level system and the fiber non-
linearity and dispersion. This explains why for both the
figure-eight laser and the dye laser of Figs. 3 and 4, the
results hardly change if we consider normal dispersion.

We therefore examine the case u 5 0, so that we can
consider the sole interaction between the fiber nonlinear-
ity and the two-level system occurring in the absence of
saturable absorption. The interesting question is
whether atomic coherence can lead to MI in the normal-
dispersion regime of the fiber. According to the CGL
model, this is not possible.

In Fig. 7 we show, again for a fiber laser, but without
saturable absorption (ring-cavity instead of figure-eight

Fig. 6. MI threshold as a function of saturable absorption u for
the dye laser of Fig. 4.

Fig. 7. Comparison of net MI gain spectra in the absence of
saturable absorption (u 5 0), for the cases of normal and anoma-
lous dispersion. Other parameters of the fiber laser are the
same as in Fig. 3.



G. H. M. van Tartwijk and G. P. Agrawal Vol. 14, No. 10 /October 1997 /J. Opt. Soc. Am. B 2625
geometry), the net MI gain spectra for b2
5 60.09 ps2 L21. For anomalous dispersion, we find an
approximately 4-GHz-wide MI band centered near 2.5
GHz and a much narrower and much weaker MI band
centered near 50 MHz. While the MI band near 2.5 GHz
vanishes in the case of normal dispersion, the narrow low-
frequency band survives. So, contrary to what the CGL
model predicts, the presence of dopants can cause MI in-
stability in the normal-dispersion regime of the fiber.
Furthermore, in contrast to the amplifier case (Section 2),
any positive value of 22 Im(K ) should be taken seriously,
since, in a laser, even the smallest growth of a perturba-
tion may cause a significant change in the output signal
after many round trips in the cavity.

Figure 8 shows the peculiar dependence of this new MI
at normal dispersion when the population relaxation time
T1 is decreased from 10 ms to 1.375 ms. Upon decreasing
T1 , the new MI band initially grows stronger, while shift-
ing to higher frequencies. Decreasing T1 further causes
the band to weaken and finally to vanish abruptly at
;1.35 ms.

We stress that our results indicate that a fiber ring la-
ser, operating in the normal-dispersion regime, may show
unstable behavior at high pump levels, even in absence of
additional saturable absorbing mechanisms. At reso-
nance, the strength of the MI in the normal-dispersion re-
gime is rather weak, which would imply that the instabil-
ity needs to build up during many round trips in the ring
laser. In the next section we discuss the effect of detun-
ing on the strength and the nature of this new instability.

5. MODULATION INSTABILITY IN
DETUNED FIBER LASERS
With various experimental techniques, e.g., through the
use of gratings, one can force a fiber laser to operate away
from the gain peak. In our theory this means that we
have to deal with the effect of detuning d. Recall that
there is no CGL version for the detuned case, as the group
velocity becomes complex in the parabolic-gain approxi-
mation. For arbitrary detuning, dispersion relation Eq.
(39) reads

Fig. 8. New MI band at normal dispersion as a function of popu-
lation relaxation time T1 (indicated). Other parameters of the
fiber laser are the same as those in Fig. 3.
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where I0 5 P0 /Psat . Equation (39) is recovered by put-
ting d 5 0 and gs 5 a 2 2uP0 . Equation (41) can be
applied as well for amplifiers by treating P0 , gs , and K as
z-dependent quantities.

We now use Eq. (41) to investigate the effect of detun-
ing on the MI spectra shown in Fig. 7. The introduction
of d into the problem makes the situation even more com-
plex. Instead of only two frequencies, i.e., the critical fre-
quency Vc and the Rabi frequency VRabi , the problem
now is governed by the interaction of three frequencies.
In Figs. 9 and 10 we show the effect of detuning on the
bandwidth and the strength of MI for normal and anoma-
lous dispersion, respectively. Clearly, small detunings
have a large effect on the occurrence of MI, and the sign of
the detuning also matters. This spectral asymmetry is
due to the fiber host nonlinearities. When GVD and
SPM are absent, Eq. (41) is symmetric in detuning d. In
the anomalous-dispersion regime (Fig. 10), a small value
of the detuning connects the two MI bands, one owing to
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the passive fiber MI and the other owing to two-level dy-
namics. Upon increasing the absolute value of the de-
tuning, the MI bandwidth and the strength increase loga-
rithmically. At large detuning (d 5 0.1), there is no
distinction between the normal- and anomalous-
dispersion case. For large detuning the instability is ap-
parently dominated by the two-level dynamics.

6. CONCLUSIONS
We have analyzed the occurrence of modulation instabil-
ity (MI) in fiber lasers and amplifiers by considering the
self-phase modulation, group-velocity dispersion, and the
saturable host absorption. The gain spectrum has been
fully considered, in contrast to the parabolic-gain approxi-
mation employed in the complex Ginzburg–Landau
(CGL) model. We have derived analytical expressions for
the MI dispersion K(V) that naturally reduce to previ-
ously reported research for both lasers and amplifiers.

For amplifiers, operating not too heavily saturated and
in absence of saturable absorption, no qualitative differ-
ences with the CGL description are found, even in re-
gimes where the basic approximations of that model are
violated. Quantitatively, however, the differences can be

Fig. 9. Effect of detuning on the new MI in the normal-
dispersion regime. Parameters identical to those in Fig. 7.

Fig. 10. Similar to Fig. 9, except that the laser now operates in
the anomalous-dispersion regime.
quite substantial. We show that by cooling the fiber am-
plifier and thereby increasing the dipole dephasing time,
the occurrence of MI can be quenched. For heavily satu-
rated amplifiers, we find a new instability located in a
narrow frequency band around the Rabi frequency. The
CGL model does not predict such an instability. The
strength of this new instability is very small, and it is
questionable that its effect can be detected in a single-
pass amplifier.

In lasers, a different picture emerges, since any grow-
ing perturbation may build up over many round trips
within the laser cavity. Furthermore, the presence of a
weakly saturable absorbing mechanism is shown to
greatly enhance the instability. We compare our results
with those of Chen et al.,12 who used the CGL model to
investigate MI in a dye laser and a figure-eight laser.12

Our results for the figure-eight laser agree rather well,
whereas we find disagreement for the dye laser, which in
our model is predicted to have an instability of ;30 GHz.
Further indication that the CGL model should be used
with caution is given when systems without saturable ab-
sorption are studied: for a fiber ring laser operating in
the normal-dispersion regime, a narrow MI band of low
(;50-MHz) frequencies is found, which is not predicted
by the CGL model. This may explain the self-starting of
mode-locked Nd-doped fiber lasers.

The effect of detuning on the strength and the band-
width of the new instability can be substantial, since non-
zero detuning effectively introduces a new frequency into
the problem. Even for a relatively small detuning, the
strength and the bandwidth of MI increase logarithmi-
cally, whereas the difference between normal and anoma-
lous dispersion becomes smaller. The fiber nonlineari-
ties cause the MI spectrum to become asymmetric with
respect to detuning.
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