
838 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 5, MAY 1997

Semiconductor Laser Dynamics for Feedback from
a Finite-Penetration-Depth Phase-Conjugate Mirror

David H. DeTienne, George R. Gray, Govind P. Agrawal,Fellow, IEEE,and Daan Lenstra

Abstract—Most of the previous treatments of semiconductor
lasers subject to optical feedback from a phase-conjugate mirror
(PCM) have assumed that the PCM responds instantaneously.
Furthermore, the mechanism responsible for phase conjugation
does not usually enter into the analysis. In this paper, we derive
the time-dependent reflectivity of a PCM created through non-
degenerate four-wave mixing in a Kerr-type nonlinear medium.
The resulting laser dynamics are compared with the case of the
ideal PCM, as a function of the external-cavity length, the PCM
reflectivity, and the PCM interaction depth. The PCM with a
significant interaction depth tends to suppress otherwise chaotic
output and produces pulses whose repetition rate is tunable by
varying PCM reflectivity. At high feedback levels, it stabilizes
the laser output. We use the circle-map formalism to explain our
numerical results.

Index Terms—Chaos, chaos control, optical feedback, pulses,
semiconductor laser, tunable frequency.

I. INTRODUCTION

T HE EFFECTS OF optical feedback on semiconductor
lasers from a phase-conjugate reflector have been attract-

ing considerable attention lately, due in part to the potential
for creating ultrashort, mode-locked pulses [1]–[7]. Semi-
conductor lasers subject to phase-conjugate feedback (PCF)
exhibit behavior which can differ radically from the case of
conventional optical feedback (COF) [8], [9]. Some of these
differences have been discussed for the case of a single-
longitudinal-mode semiconductor laser [10]. However, the
effects of PCF in multimode semiconductor lasers have not yet
been fully explored. When a semiconductor laser oscillates in
multiple longitudinal modes, PCF obtained through four-wave
mixing can lead to mode locking and short-pulse output [1].

The theoretical modeling of PCF has generally assumed, for
simplicity, that the phase-conjugate mirror (PCM) responds
instantaneously to the incident radiation. This assumption is
not generally valid when the PCM is constructed from a
photorefractive crystal or by using an atomic vapor. For this
reason, it is often assumed that the PCM is operating through
four-wave mixing in a Kerr-type nonlinear medium with
femtosecond response. What is not appreciated is that the PCM
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Fig. 1. Semiconductor laser (SL) obtaining feedback from a
finite-interaction-depth PCM based on nondegenerate four-wave mixing
pumped by a laser at!0.

does not respond instantaneously even for a Kerr medium since
it takes time for light to traverse the nonlinear medium and
to generate the phase-conjugated signal. The purpose of this
paper is to take into account the finite propagation delay within
the PCM and to demonstrate the resulting dynamics of a laser
subject to feedback resulting from such a PCM. In particular,
we show that such PCF can lead to pulsed output with tunable
repetition rates, even though the laser current is constant.

II. M ODEL

Earlier efforts to model PCF were done by a simple modi-
fication of the model used for COF. This approach is limiting,
however, in several ways. A conventional mirror has a rel-
atively flat spectral response, fast response time, and a thin
interaction depth. A phase-conjugate mirror, by contrast, tends
to have a peaked frequency response, a finite interaction depth,
and may respond sluggishly [11]. In this work, we develop an
improved model for PCF and show some interesting results
from simulations. Fig. 1 shows the experimental diagram and
parameters of interest.

For an instantaneously responding PCM, the simplest rate
equations for a semiconductor laser subject to degenerate PCF
are [6]

(1)

(2)

In (1) and (2), is the carrier population inside the active
layer of the laser, is the injected current, the electron
charge, and is the carrier lifetime. is the laser’s complex
slowly varying electric field at the output facet. is the
linewidth enhancement factor (was set equal to 3 for this
work). is the gain which is defined as
where and are the gain derivative and transparency
carrier number, respectively, andis the loss. accounts for
nonlinear gain and for intrinsic four-wave mixing processes
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[12]. In this work, only nonlinear gain was considered.
is the round-trip time in the external cavity,
where is the distance from the laser to the PCM.is
the feedback rate, a measure of the reflectivity of the PCM.
In analogy with conventional feedback, the feedback ratein
this simple model is written as

(3)

where is the field reflectivity of the laser output facet,
is the round-trip time inside the solitary laser, andis the
field reflectivity of the PCM, including any coupling losses
back into the laser. In this work, 0.12 and 9.3 ps.
The PCF term, as in the case of ordinary feedback, depends
on the field at one round trip earlier, time. In contrast to
COF, however, the field is conjugated by the PCM. Equations
(1) and (2) are integrated in the weak-feedback regime, so
multiple round-trip reflections can be neglected. The laser is
assumed to operate in just one longitudinal mode. The results
shown in this paper are deterministic in nature, since no noise
terms are included in (1) and (2).

Equation (2) shows the idealized case where the feedback
comes from an instantaneously responding PCM. The PCF
term, gives the feedback from just one round-trip
time earlier. The starting point for an improved PCF model
is to write the laser field as a Fourier integral in the form

(4)

where is the Fourier component and is the frequency
at which the laser spectrum is centered. It is useful to rewrite
(4) relative to the PCM pump frequency . By defining a
“bulk” detuning where is the frequency of
the pump laser used for four-wave mixing, and
as the relative detuning, (4) can be written as

(5)

A frequency component of the incident field, detuned by
from the pump frequency, is reflected by the PCM as [13]

(6)

Our improved PCF model is then obtained by combining (5)
and (6):

(7)

Equation (7) is a main result of the paper. represents
the feedback field due to reflection from the PCM. The physics
of the PCM mechanism is contained in the field reflectivity

which is generally frequency dependent.
As an important application of (7), we consider the case

where the PCM is constructed by nondegenerate four-wave
mixing in a fast nonlinear medium, such as a Kerr medium.

For this case, the well-known expression for the frequency-
dependent reflectivity is given by [14]

(8)

where is proportional to and the pump power,
is the PCM interaction length, and

is the wavenumber mismatch between the pump frequency
and probe frequency . The equations are simplified if a

parameter is defined as

(9)

where is the refractive index of the PCM material andis
the speed of light in vacuum. It is often true experimentally
that is small, so that, physically, is approximately the
time it takes the light to penetrate the PCM .
With this definition, the phase-conjugate reflectivity can be
written as

(10)

It is important to stress that (8) and (10) are obtained for
a PCM whose material response time is instantaneous (the
Kerr nonlinearity, for example). The penetration time
is a measure of the time it takes for the laser beam to
penetrate inside the PCM in order to build the phase-conjugate
reflection; thus is related to the effective depth or length
of the PCM. If an atomic or photorefractive medium is used
for a PCM, the material’s response time will also need to be
included.

To complete the model, (10) is substituted into (7) and the
integration is performed by contour integration. For simplicity,
the frequency dependence of is neglected. The signal
reflected from the PCM is then given by

(11)

where the integral occurs due to expressing the result in terms
of using an inverse Fourier transform based on (4).
The upper integration limit in (11) has been replaced by
since the conjugated field cannot depend on future times.

To include the result (11) into the rate equation (2), we
multiply as usual by so that the new rate
equation becomes

(12)

If we assume zero detuning and take the limit
as approaches 0, then (12) reduces to (2). In addition
to a new rate equation, this analysis has also provided the
feedback rate in terms of the four-wave mixing parameters:
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or in terms of the effective
PCM reflectivity .

Numerically, (12) is very inefficient to apply directly, since
it requires solving the feedback integral at each time step

. Moreover, separating (12) into two separate equations,
the standard method for reducing higher order differential
equations into a system of first-order equations, leads to an
ill-posed problem. Fortunately, we were able to come up with
an efficient recursive definition for the feedback integral with
(11) as the starting point. The recurrence relation is

(13)

The first term is a rectangle approximation for the most
recent (valid since the numerical time steps are small),
and the second term gives everything previous. This recursive
definition is numerically efficient, only adding linearly to the
computational effort. The usual method of adding an additional
first-order differential equation to eliminate the integral adds
significantly more overhead as the order of operations scales
as the number of differential equations squared [15].

III. SIMULATION RESULTS

With a simulated system, the parameter space that can be
searched is huge, as any parameter in the underlying set of
equations can be varied. Physically, not every parameter can
be varied by turning a knob in the laboratory (the value of

for instance). We chose to vary the penetration depth of
the PCM which can be controlled by the choice of
PCM, the physical size, or the diameters of the pump beams
[16]), the field reflectivity of the PCM , and the external
cavity length . All of these parameters can be varied
experimentally.

An important tool for searching the parameter space is
the bifurcation diagram [17]. The bifurcation diagrams tell at
a glance the state of the system for a range of bifurcation
variable values. Where there are no points in the bifurcation
diagram, the system is stable. Where a single point exists for a
particular value of the bifurcation variable for this paper),
the laser is pulsing at one dominant frequency (period-one
bifurcation). Where there are two points, the laser exhibits
period doubling, etc. A filled-in area indicates oscillations at
many frequencies or chaos.

A. Effect of Finite Interaction Depth

First, we investigate the effect of PCM interaction depth by
changing the parameter so we can see how our improved
rate equations differ from those of an ideal PCM. We assume
operation close to threshold 1.05), and an external
cavity spacing 10 cm. Fig. 2(a) shows a bifurcation
diagram, with reflectivity as the bifurcation variable, for the
instantaneous PCM, that is 0 ns. Also shown in Fig. 2(a)
are the average power and the standard deviation of the
power. There is a one-to-one correspondence between the
chaotic regions in the bifurcation diagram and a large standard
deviation, as expected.

(a)

(b)

(c)

Fig. 2. (a) Bifurcation diagram(� � �) of the laser power forLext = 10 cm
as function of PCM field reflectivity for the ideal PCM(tm = 0 ns). Also
shown are the average power (- - - - -) and the standard deviation of the
power ( ). (b) Same as (a) excepttm = 0.1 ns. (c) Same as (a) except
tm = 0.4 ns.

Fig. 2(b) shows the same system but for a PCM with a
penetration time 0.1 ns. This value is small compared to
the relaxation-oscillation period 1.3 ns). For low feed-
back levels 3%), the bifurcation diagrams are similar.
However, as the feedback level is increased above4.5%,
the long mirror tends to suppress the chaos to the point that the
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(a) (b)

(c) (d)

Fig. 3. (a) Same as Fig. 2(a) exceptLext = 1 cm. (b) Same as Fig. 2(a) exceptLext = 100 cm. (c) Same as Fig. 2(a) excepttm = 0.4 ns and
Lext = 1 cm. (d) Same as Fig. 2(a) excepttm = 0.4 ns andLext = 100 cm.

laser becomes nearly stable for 5%. This is easily seen as
the power standard deviation is close to zero.

For Fig. 2(c), the penetration time of the mirror has been
increased to 0.4 ns. A comparison of Fig. 2(a)–(c)
shows that the chaos has now been virtually eliminated. In the
range of 1.7% 3.3%, the laser shows periodic behavior.
For 3.3% 11%, the laser operates stably (11% field
or 1% power reflectivity was the cautious limit of validity
set for the single-round-trip simulations). This behavior can
be understood by inspection of (12). Basically, the integral
performs a weighted averaging of the feedback. A greater
smooths the feedback more, leading to less chaos. Also, higher
frequencies are attenuated more than lower frequencies, which
would explain the tendency for period-one behavior for the
long mirror. A quantitative description for this behavior will
follow in Section IV.

B. Effect of External-Cavity Spacing

Changing the external-cavity length can have profound
effects on the dynamics of the laser system. For 1,
10, and 100 cm, Figs. 3(a), 2(a), and 3(b), respectively, show
that for the instantaneous PCM case, changes in cavity length
modify the bifurcation diagrams substantially. In general, as

increases, the widths of the chaotic and nonchaotic
windows decrease. For the case of 100 cm, the
windows are so narrow that it appears to be continuously
chaotic. This behavior is similar to that of ordinary feedback
[10], [18].

The effect of external-cavity length is less pronounced for a
long PCM, with 0.4 ns. Figs. 3(c), 2(c), and 3(d) show,
respectively, the bifurcation diagram for 1, 10, and
100 cm. There is some tendency at weak feedback for there
to be more chaos as Lext is increased, but regardless of
the chaos always ends at about 4%, and the envelopes of
the bifurcation points are similar. So while the external-cavity
length usually has a large effect on the laser dynamics, for the
case of the long PCM it is a secondary effect. The dynamics
are dominated by the PCM. The instantaneous PCM dynamics
tend to scale with (in other words, where external
round-trip time). The long PCM dynamics tend to scale with
just or . A circle-map explanation for these effects will
be provided in Section IV.

C. Pulsed Operation

One interesting result from using a long PCM is that the
laser can produce pulses, even though the injection current
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Fig. 4. 1.3-GHz pulsed operation.tm = 0.4 ns,Lext = 10 cm, andr3 =
2.5%.

is kept constant; an example is shown in Fig. 4. It is de-
sirable to know which parameters and ranges of parameter
values produce pulsed behavior, but a search for regions
of pulsed operation can be tedious. A brute-force method
such as viewing power verses time plots or doing Fourier
transforms over a large parameter space is costly both in terms
of human and computer time. However, the task is simplified
by making use of the sampling performed in calculation of the
bifurcation diagrams. The bifurcation diagrams are constructed
by interpolating for the value of photon number)
whenever crosses the average- plane in the direction
of decreasing . Thus, for simple periodic behavior, the
sampling of will occur at nearly the same point in each
cycle. Thus, if we record this sampling frequency and compute
its standard deviation (for little additional overhead), we can
use this variable in conjunction with the standard deviation of
the power and the power bifurcation diagram to determine not
only the presence of periodic behavior but also the frequency
of oscillation. For example, for period-one behavior, the power
bifurcation diagram yields a single line with a large standard
deviation. The sampling variable frequency, however, gives
the frequency of oscillation when its standard deviation is
small. Fig. 4 is a typical picture seen for regions of pulsed
operation for the long PCM, showing a repetition rate of 1.3
GHz. Note that the pulses have a 100% modulation depth.

Fig. 5(a) and (b) show the sampling frequency verses feed-
back for an instantaneous PCM and a deep PCM, respectively.
The instantaneous PCM tends to show regions of periodic
behavior (small standard deviation of sampling frequency and
a line indicating period-one behavior on the power bifurca-
tion diagram, Fig. 2a). The equal frequency spacing of 1.5
GHz (the external round-trip frequency) indicates a locking
behavior between the relaxation oscillations and the round-trip
frequency 1.5 GHz). Note that these frequency-locking
regions are absent for the long PCM, Fig. 5(b), yet another
indicator that the long PCM is dominating the dynamics rather
than the external-cavity round-trip frequency effects. Also, the
instantaneous PCM shows much higher frequencies (up to 6
GHz) than the long PCM 1.5 GHz). As mentioned before,
inspection of (12) shows that the long PCM tends to filter out
higher frequencies.

IV. CIRCLE MAP

A circle map is a useful tool for understanding systems that
have two frequencies that may lock together. It can be used

(a)

(b)

Fig. 5. (a) Average bifurcation sampling frequency (——) as a function of
feedback fortm = 0 ns,Lext = 10 cm, andr3 = 2.5%. Also shown is the
standard deviation of the bifurcation sampling frequency ( ). (b) Same
as Fig. 5(a) excepttm = 0.4 ns.

to predict the frequency-locking ratio, the onset of chaos, and
whether a period-doubling route to chaos will be followed. A
good tutorial on the circle map is found in [19]. The standard
sine circle map is given by [19]

(14)

gives the period for one of the frequencies. The second
frequency is given by . controls the frequency locking
ratio. For increases linearly with, so that no locking
can occur. For provides a “restoring force” that
allows the two frequencies to lock together in integer ratios
for certain ranges of and values (the range of values for
a particular locked frequency ratio is known as an Arnol’d
Tongue). is a necessary condition for chaos to exist.

A. Circle Map for PCF

The standard sine circle map does not apply directly to
our system. A similar circle map can be derived, however,
and circle-map techniques can be used to advantage. First, a
sinusoidally oscillating field is assumed:

(15)

where is the steady-state solution to (2), and is the
constant amplitude of the oscillation. In general,is not the
phase of the field, but rather gives the oscillation frequency

. This form gives a sinusoidal power oscillation,
.

By taking a time derivative of (15), equating its imaginary
parts with (2), and realizing is the zero solution for (2),
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a rate equation for results:

(16)

As the argument to the sine term can be simplified:

(17)

If the derivative is approximated by a finite difference

(18)

then (16) can be cast into a circle-map form:

(19)

For deep PCF, the derivation starts with (12) and results in

(20)

B. Onset of Chaos

Typically, the onset of chaos in lasers is predicted using
a small-signal stability analysis [20]–[23]. Using the circle
map has the advantage that small signals are not a necessary
assumption (indeed, the amplitude does not even appear in the
standard sine circle map). In (19) and (20), the term with
can be used to predict the onset of chaos. Numerical solutions
to (19) go multiperiodic and chaotic at 1, or equivalently

0.5. Fig. 2(a) shows this circle-map value is close to the
numerically simulated system. For the deep mirror, the onset
of chaos occurs when

(21)

As displayed in Fig. 5(b), there exists a linear relation between
and for the deep mirror. Using this linear relation, (21)

then can be solved for the case of 0.4 ns to show the
onset of chaos to be about at 0.75, or equivalently
0.4, which is very close to the value found from simulation of
the full equations, as shown in Fig. 2(c). Also, in general, as

increases, the likelihood for chaos is increased. With (21),
however, this term tends to become constant with increasing

tends to vary linearly with meaning that chaos doesnot
become more likely with larger values. Stated another way,
even though the mirror reflectivity is increased, the effective
reflection remains the same! For all the deep mirror bifurcation
diagrams [Figs. 2(b)–(c) and 3(c)–(d)], the system becomes
stable at about 3.6% and remains stable thereafter. This
is in sharp contrast with the instantaneous mirror.

C. Windows of Chaos

Another interesting effect the circle map explains are the
windows of chaos that appear in the instantaneous mirror
bifurcation diagrams. Equation (19) has frequency-locking
plateaus because the term provides a restoring force
that keeps the system frequency locked over a range of
values. The term does not provide a locking restoring
force. This leads to a mathematical (necessary) condition for
locking:

(22)

In other words, locking is possible only when the feedback
term is dominant. Recalling that is the round-
trip time, (22) shows the circle map will be sine dominant,
and hence locking is possible, wheneverhits a harmonic
of the round-trip frequency. Marked transitions in dynamic
behavior may occur when the sine dominance changes to
cosine dominance. For example, the system may go from chaos
to sinusoidal behavior, as will be illustrated. For 10
cm, the round-trip frequency and harmonics are 1.5, 3.0,
4.5, 6.0, etc., GHz. This corresponds well to Figs. 2(a) and
5(a). Equation (22) also shows that ifvaries linearly with
or locking will be allowed over 1/4 of the range. Once
again, this is illustrated by Figs. 2(a) and 5(a).

For the cases of 1 cm, (22) shows that the spacing
between the chaos and locking windows in the bifurcation
diagram [Fig. 3(a)] will be 10 times larger than for the
10 cm case, as the external cavity round-trip timeis 10
times larger. Similarly, for 100 cm, the chaos windows
spacing will be 1/10 as large as for the 10 cm case.
This is illustrated in Fig. 3(b), where the windows are so finely
spaced they appear to be continuous. The rule of thumb for
laser feedback dynamicists has been that the “chaos scales
with .” Often bifurcation diagrams for different values
use as the bifurcation variable, as then the dynamics will
look similar despite the differences in . The circle map
quantifies the assertion that chaos scales with.

For the deep PCM, the condition for having a sine dominant
circle map is

(23)

Solving (23) for the case 0.4 ns, a transition from
sine dominant to cosine dominant occurs at 3.3%.
This analytical result is remarkably close to the transition
from pulsed operation to stable operation, given by the full
simulations, as can be seen from Figs. 2(c) and 5(b).

V. SUMMARY

We have derived the phase-conjugate feedback term that
arises due to the finite interaction depth of a PCM operating
through nondegenerate four-wave mixing. The new feedback
term was numerically implemented with an efficient numerical
algorithm. We found that the deep PCM tends to suppress
chaos and higher frequencies, when the penetration timebe-
comes comparable to the relaxation-oscillation period. Locking
between the relaxation-oscillation and the external round-trip
frequencies is absent with the long PCM. It removes much of
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the external-cavity spacing dependence in the laser dynamics.
Regions with good pulses were found, with the pulse repetition
rate being linearly tunable by varying the feedback level. An
explanation for transitions from chaos to periodic operation,
and hence an explanation for the spacing of the chaotic verses
periodic windows in the bifurcation diagrams, was derived
with the help of the circle-map formalism. This analysis
also demonstrated that the deep PCM does not increase the
likelihood for chaos even when its reflectivity is increased.
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