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We consider the use of periodic optical phase conjugation for reducing the timing jitter in high-speed fiber-optic
communication systems employing ultrashort solitons (width , 10 ps) in dispersion-decreasing fibers. Using
adiabatic perturbation theory, we derive analytically an expression for the trajectory of a periodically conju-
gated ultrashort soliton in a communication link after including the effect of amplifier noise and use it to derive
the timing jitter in the soliton arrival time at the end of a transmission line. The analysis takes into account
not only the group-velocity dispersion but also the Raman effect and the third-order dispersion. We show that
the timing jitter can be minimized by using an optimized amplifier spacing (;65–80 km) for a specific value of
average fiber dispersion. The use of shorter amplifier spacings increases timing jitter because of third-order
dispersion while for larger amplifier spacings the increased jitter originates from the Raman effect. For high-
bit rate systems considered in this paper the Gordon–Haus contribution to the timing jitter is negligible. Un-
der optimized conditions, nearly error-free transmission can be realized at a bit rate of ;100 Gb/s over a dis-
tance of 1200 km even in the absence of optical filters. We discuss the role of optical filters for improving
system performance and the impact of fiber-dispersion fluctuations on the periodic filtering of ultrashort soli-
tons. © 1997 Optical Society of America [S0740-3224(97)01902-4]
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1. INTRODUCTION
The use of ultrashort solitons (width ,10 ps) in designing
high-speed fiber-optic communication systems (bit rate
.20 Gb/s) is bringing new challenges for system and fiber
designs. In particular, the physical properties of fibers
such as optical loss, third-order dispersion (TOD), and the
Raman effect, which affect only slightly the dynamics of
average solitons (width .10 ps), become increasingly of
concern for ultrashort soliton propagation.1 For in-
stance, fiber loss leads to a rapid increase in the emission
of dispersive waves as the soliton width decreases. To
preserve the nearly ideal properties of solitons over mul-
tiple soliton-periods, fibers whose group-velocity disper-
sion (GVD) decreases with length at the same rate as the
soliton energy have been proposed.2 Such dispersion-
decreasing fibers (DDF) can support stable propagation of
ultrashort solitons. However, soliton propagation is
greatly affected by higher-order effects such as the Ra-
man effect and TOD and may require dispersion tailoring
to ensure stable soliton propagation.3

An important consequence of higher-order effects on
soliton propagation that has attracted relatively little at-
tention is their effect on the transit time of a soliton
through a transmission line. In Part I of this paper we
derived a general expression [Eq. (I.29); equations of Part
I are referred to here by adding a prefactor I] for the tim-
ing jitter of ultrashort solitons by including not only the
effect of GVD but also the effects of TOD and the Raman
effect. Even though emphasis was placed on DDF’s sim-
ply because such fibers can support ultrashort solitons,
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the analysis also applies to constant-dispersion fibers pro-
vided the amplifier spacing stays much smaller than the
soliton period. The results of Part I show that the trans-
mission distance is limited to a few hundreds of kilome-
ters at bit rates of ;100 Gb/s because of the Raman-
induced timing jitter. Moreover, in the absence of soliton
control the achievable bit rate may be limited to lower
values because of soliton interaction.
To extend the transmission distance for long-haul ap-

plications, some form of soliton control appears to be nec-
essary. In this paper we consider the use of periodic op-
tical phase conjugation (OPC) for reducing the timing
jitter in a soliton communication link made of multiple
sections, each containing an optical phase conjugator, an
amplifier, and a DDF (see Fig. 1). Previous work4,5 on
the OPC-induced jitter reduction using OPC considers
only the effect of GVD and is inherently limited to the
average-soliton regime. However, both the Raman effect
and TOD add additional fluctuations to the soliton arrival
time induced by spontaneous-emission noise of in-line
amplifiers. Our analysis shows that not only the Raman
and TOD effects are important in the calculation of the
timing jitter but also that neglecting such effects may
lead to wrong conclusions.
The use of OPC is also advantageous for improving the

performance of high-speed communication systems em-
ploying ultrashort solitons. For instance, as soliton
width decreases toward 1 ps, the frequency downshift due
to the Raman effect (soliton self-frequency shift) accumu-
lates rapidly from section to section (see Fig. 1). This fre-
1997 Optical Society of America
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quency shift eventually destroys the soliton after several
sections because of the change of GVD with frequency
(TOD). It has been shown6 that the Raman-induced fre-
quency shift occurring over one section can be compen-
sated over a second identical section if the soliton under-
goes OPC between the two sections and if fiber loss is
neglected. In the presence of fiber loss, Raman compen-
sation is limited to small frequency shifts in the case of
constant-dispersion fibers. However, when DDF’s are
used, a perfect Raman compensation can be achieved be-
cause a perfect balance between the GVD and the Kerr
nonlinearity is maintained throughout the DDF. A sec-
ond benefit of OPC is the reversal of soliton interaction.7,8

In the case of average solitons the reversing of soliton in-
teraction is limited to weak interaction7,9 because for av-
erage solitons the balance between GVD and Kerr nonlin-
earity is realized only on average.10 However, the
reversing of soliton interactions becomes exact when
DDF’s are used. Consequently, solitons can be packed
together more closely if DDF’s are used in place of
constant-dispersion fibers. It is important to note that
OPC does not compensate for the effects of TOD. There-
fore in a soliton communication link employing OPC one
may expect an increase in the relative contribution of
TOD to the timing jitter compared with the GVD and Ra-
man contributions. Indeed, in contrast with the results
of Part I in which the contribution of TOD to the timing
jitter is relatively small, TOD becomes the main source of
timing jitter for short amplifier spacings when periodic
OPC is used.

2. CALCULATION OF THE TIMING JITTER
The most commonly used OPC technique employs nonde-
generate four-wave mixing in dispersion-shifted
fibers11–14 chosen such that the GVD parameter b2 is
close to zero at the pump frequency. In the presence of
the Raman-induced frequency shift there exists two ways
of choosing the pump frequency for the phase conjugator.
If the Raman shift is relatively small, the OPC pump fre-
quency may be conveniently set to the soliton input fre-
quency [Fig. 2(a)]. For large Raman frequency shifts
such that dispersion tailoring of the DDF becomes
necessary,3 the second fiber segment in each set of two
amplification stages would need to have its dispersion tai-
lored differently from the first fiber segment if the OPC
pump frequency is chosen as in Fig. 2(a). However, the
same fiber design could be used for all segments if the
pump frequency of the conjugator is set midway between
the input and output frequencies of the signal [Fig. 2(b)].

Fig. 1. Schematic representation of a transmission line with pe-
riodic amplification and optical phase conjugation. Tx, trans-
mitter; Rx, receiver; OPC, optical phase conjugation; DDF,
dispersion-decreasing fiber.
To evaluate fluctuations in the soliton arrival time at
the end of a transmission line (timing jitter), we use the
formalism developed in Part I with the conjugator con-
figuration of Fig. 2(a). However, the analysis can be eas-
ily extended to the configuration of Fig. 2(b), as discussed
in Appendix A. Equation (I.21), established in Part I for
the soliton trajectory is also valid for an isolated section of
a transmission line shown in Fig. 1. However, the soliton
trajectory for a chain of sections with periodic OPC’s be-
comes considerably different. In the following we as-
sume that an OPC is performed before every amplifica-
tion, as depicted in Fig. 1.
In the notation of Part I a soliton at the end of a section

and before entering the phase conjugator can be written
as

us~A,q,f,v;t! 5 A sech@A~t 2 q !#exp~if 2 ivt!, (1)

where the amplitude A, position q, phase f, and fre-
quency v are the normalized soliton parameters. In real
units the soliton trajectory becomes (v 1 vo)To, where
vo is the carrier frequency and To is the soliton width.
This soliton is transformed by the phase conjugator into

us
conj~A,q,f,v;t! 5 AhA sech@A~t 2 q !#

3 exp@2if 2 i~2vpump 2 v!t#,

(2)

where h is the OPC efficiency and vpump is the frequency
of the conjugator pump. Since the conjugator pump fre-
quency is identical to the input soliton frequency in the
scheme of Fig. 2(a), vpump 5 0. The net effect of the OPC
is thus to produce a periodic inversion of both the soliton
frequency v and the phase f. As discussed in Part I, the
soliton trajectory and the timing jitter of well-isolated
solitons are independent of the soliton phase. Since soli-
ton interaction is ignored here, the phase f plays no role
in the following analysis.
Since the soliton frequency alternates at each OPC,

even- and odd-numbered sections must be treated sepa-
rately. However, one can take advantage of spectral in-
version for canceling displacements over each pair of sec-
tions by treating each pair together. Using such a pair of
sections as a unit cell, an expression for the soliton dis-

Fig. 2. Two schemes for implementing OPC through the four-
wave mixing process: (a) OPC pump frequency vpump and soli-
ton frequency vo (at the input of the link) coincide; (b) vpump is
set midway between vo and the frequency v in of the signal enter-
ing the phase conjugator. In a transmission line the frequency
at the OPC’s output (and at the input of the following fiber) al-
ternates between vo and vout for the scheme of Fig. 2(a) while its
stays constant at vo for all sections in the case of Fig. 2(b).
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placement dqN
opc at the end of the transmission line of Fig.

1 is derived in Appendix A. The result is given by
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where, to facilitate calculations, the total number N of
amplifiers is assumed to be even. The parameters qS1,
qS2, qS3, and qS4 are defined by Eq. (10) in Appendix A.
The average displacement is zero and the root-mean-
square (rms) timing jitter s q

opc [ ^@dqN
opc#2&1/2 is given by
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where fluctuations in different soliton parameters and for
different amplifiers are assumed to be uncorrelated. In
obtaining Eq. (4), summations were replaced by integrals
by assuming N @ 1. This expression for s q

opc , when
compared with sq [Eq. (I.29)] of Part I obtained without
OPC, shows a substantial reduction of the Raman and
Gordon–Haus contributions to the timing jitter mainly
because they increase more slowly with an increase in N.
This is expected since OPC compensates for both the Ra-
man effect6 and the effect of GVD.11 The only term not
affected by OPC is the one coming exclusively from TOD
[the term involving (q TOD

A )2]. The cross terms (Raman–
TOD and GVD–TOD) are, nonetheless, affected by the
OPC because frequency conversions are involved in both
cases.

3. TIMING JITTER WITH PERIODIC
OPTICAL PHASE CONJUGATION
In this section we use Eq. (4) to analyze the timing jitter
for different system parameters and discuss the condi-
tions under which the jitter can be minimized. The val-
ues of fibers parameters are the same as those used in
Part I: TOD coefficient b3 5 0.07 ps3/km and Raman
characteristic time TR 5 6 fs. We initially set the phase-
conjugator efficiency h to 1. The meaning and values of
other parameters are discussed in Section 4 of Part I.
The parameter N in Eq. (4) is replaced by L/LA , where L
is the total transmission distance and LA is the amplifier
spacing. Since N @ 1, L must exceed a few amplifier
spacings for the results to be valid.
The timing jitter for transmission over 2000 km at bit

rates in the range 20–100 Gb/s is shown in Fig. 3 by con-
sidering several soliton widths in the range 1–10 ps. For
comparison, the jitter for a 2-ps soliton without OPC is
also shown. As expected, the timing jitter increases rap-
idly as the pulse width decreases because of both the
Raman- and TOD-induced jitter. Nevertheless, the tim-
ing jitter for a 2-ps soliton propagating over 1200 km is
still relatively low (1.75 ps), allowing nearly error-free
transmission at a bit rate of ;100 Gb/s for such a trans-
mission scheme.
By contrast, without OPC, timing jitter of a 2-ps soliton

is 1.75 ps after transmission over only ;250 km and be-
comes 310 ps after 1200 km. In this example, timing jit-
ter is reduced by a factor of 180 at a distance of 1200 km
by use of periodic OPC. Moreover, as mentioned before,
the use of periodic OPC allows a tighter soliton packing
since it helps to reduce soliton interaction.3 The timing
jitter of a 1-ps soliton is relatively high even with the use
of periodic OPC. In this case it is the Raman-induced jit-
ter that contributes the most to the timing jitter. For 5-
or 10-ps solitons the timing jitter stays relatively low, in-
dicating that such systems can operate over transoceanic
distances of ;5000 km.
To illustrate how the relative contributions of various

physical effects (GVD, TOD, and Raman effect) are modi-
fied with OPC, we plot in Fig. 4 different contributions to
the timing jitter as a function of amplifier spacing for a
2-ps soliton bit stream transmitted over 1000 km in
DDF’s for two values of b 2

min , 20.1 ps2/km and 20.2
ps2/km. The solid curve shows the total jitter while other
curves represent the partial contributions to the jitter.

Fig. 3. Timing jitter as a function of transmission distance for
four different soliton widths by use of b 2

min 5 20.3 ps2/km and
amplifier spacing LA 5 70 km. Other parameters are given in
the text. For comparison, timing jitter for a 2-ps soliton without
OPC is also shown.
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When GVD is the sole mechanism generating the timing
jitter (dotted curves in Fig. 4), we recover the Gordon–
Haus jitter for a system with OPC. This curve repre-
sents the timing jitter that would be predicted if the
analyses of Refs. 4, 5, and 9 were directly applied to the
scheme of Fig. 1. As Fig. 4 shows clearly, such a descrip-
tion is incomplete and cannot predict accurately the value
of the timing jitter in a system with periodic OPC simply
because higher-order effects are completely neglected. In
fact, the Gordon–Haus contribution to the jitter becomes
practically negligible as a result of the OPC-induced com-
pensation of the GVD effects. For moderate amplifier
spacings [,85 km in Fig. 4(a) and ,70 km in Fig. 4(b)]
the timing jitter is almost exclusively due to TOD because
of the overall low average GVD and the N 3 dependence in
Eq. (4) for TOD. For large amplifier spacings the
Gordon–Haus jitter increases but is overwhelmed by the
Raman-induced timing jitter, which increases more rap-
idly with LA . In that case it is the relatively high aver-
age dispersion (large amplifier spacings require high val-
ues of ub 2

maxu, b 2
max being the GVD at the input end) that is

responsible for this transition from the b3 dominance to
the Raman dominance as the amplifier spacing increases
beyond a certain value. From a practical standpoint, Fig.
4 shows clearly that, for a given set of fiber and soliton
parameters, timing jitter can be minimized by choosing
an optimum value of amplifier spacing, typically in the
range of 60–90 km. Such optimized amplifier spacings
have not been predicted so far because, to our knowledge,
it is the first time that both the Raman- and third-order
dispersion-induced contributions are included in the cal-
culation of the timing jitter in a communication system
with OPC. It is interesting to note that the main result

Fig. 4. Timing jitter as a function of amplifier spacing after
transmission of 2-ps solitons over 1000 km for DDF’s with (a)
b 2
min 5 20.1 ps2/km and (b) b 2

min 5 20.2 ps2/km. In both cases
an optimum amplifier spacing can be used to minimize timing jit-
ter.
of using a fiber with a high value of ub 2
minu is to downshift

the timing-jitter minimum toward smaller amplifier spac-
ings in such a way that the maximum value b 2

max of GVD
at the fiber input remains nearly the same.
To better characterize the origin of timing jitter, we

plot in Fig. 5 the relative contributions of amplitude and
frequency fluctuations under operating conditions identi-
cal to those of Fig. 4(b). Clearly, amplitude fluctuations
are the main source of timing jitter for all practical am-
plifier spacings. The influence of frequency fluctuations
on the jitter (Gordon–Haus component) is small and re-
sults in an increase of the total timing jitter by less than
5%. Figure 5 suggests that a precise control of the soli-
ton amplitude is the key in reducing the timing jitter.
As seen in Figs. 4 and 5, an optimum amplifier spacing

exists that minimizes the timing jitter for a given DDF.
However, this optimum amplifier spacing depends on the
minimum and maximum values of GVD occurring in the
DDF. To represent this dependence, Fig. 6 shows a con-
tour plot of the timing jitter in the LA–b 2

min plane for 2-ps
solitons over 1000 km. The innermost contour encloses
the parameter region for which the timing jitter is less
than 1.1 ps; timing jitter increases by 0.1 ps for each sub-
sequent contour. Nearly error-free operation at bit rates
B ; 100 Gb/s requires the timing jitter to be below ap-
proximately 0.164/B 5 1.64 ps. The corresponding pa-
rameter space is bounded by the sixth contour. Figure 6
also shows that low values of ub 2

minu are also preferable
and allow for a larger amplifier spacing. Regions where
ub 2

minu , 0.1 ps2/km are not displayed in Fig. 6 since in-
creasing emission of dispersive waves may occur for such
values of b 2

min .
Phase conjugation can be a process of limited

efficiency.12 Low efficiencies must be compensated by
use of higher amplifier gains. To evaluate the impact of
phase-conjugation efficiencies on the timing jitter, we re-
place the amplifier gain G in Eqs. (I.30) by G
5 exp(aza)/h, where the efficiency h is the fraction of en-
ergy contained in the conjugate signal. Figure 7 shows
how jitter increases with a decrease in the efficiency over
a range of 10 dB. The increase in the timing jitter as the
conversion efficiency decreases comes from the supple-
mentary noise introduced by the additional gain neces-

Fig. 5. Contribution of amplitude and frequency fluctuations to
the total timing jitter for the case of Fig. 2(b). Amplitude fluc-
tuations dominate the jitter for all amplifier spacing when 2-ps
solitons are transmitted over 1000 km.
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sary to compensate for the low efficiency of phase conju-
gators. For a 25-dB efficiency (32% conversion) the
timing jitter of a 2-ps soliton is ;2 ps after 1000 km. For
a lower efficiency of 210 dB (10% conversion into the con-
jugate signal) the same timing jitter occurs after a dis-
tance of only 680 km. The use of a conjugator with low
efficiencies will thus shorten the transmission distance or
require some additional form of control. It has recently
been shown13 that efficiencies as high as 24.6 dB could be
achieved when a fiber is used for OPC if the pump is
modulated to suppress stimulated Brillouin scattering.
Furthermore, efficiencies in excess of 0 dB are predicted14

if the nonlinear detuning of phase matching is compen-
sated by tuning the OPC pump frequency in the anoma-
lous dispersion region of the OPC fiber. However, since
OPC operation at high conversion efficiencies generally
requires relatively long fiber lengths, dispersion within
the OPC fiber itself may broaden the conjugate soliton.
One may reduce this soliton broadening by using a

Fig. 6. Contour plot of the timing jitter as a function of ampli-
fier spacing LA and b2

min for 2-ps solitons transmitted over 1000
km. The innermost contour encloses a region of timing jitter
less than 1.1 ps. The timing jitter increases by 0.1 ps for each
successive contour.

Fig. 7. Effect of phase-conjugator efficiency on the timing jitter
for Ts 5 2 ps, b 2

min 5 20.2 ps2/km, and amplifier spacing LA
5 70 km. Jitter increases for lower efficiencies because of the
additional gain needed to compensate for the low efficiencies.
shorter fiber length (at the expense of the conversion effi-
ciency), or one may use some form of dispersion compen-
sation at the output of the OPC fiber.
To further reduce the timing jitter, insertion of band-

pass filters may be of practical interest. It is interesting
to note here that the use of sliding filters15 does not ap-
pear to be necessary since the soliton-train spectrum it-
self shifts by a significant amount between the input and
output of each DDF. This Raman-induced frequency
shift plays the role that the sliding of the filter frequency
played in the sliding-frequency filter technique, thereby
allowing the use of filters of fixed central frequency. By
filtering the signal before and after each DDF with two
fixed-frequencies bandpass filters (centered at the soli-
tons’ mean frequencies at the input and output ends, re-
spectively), efficient filtering of the noise can be realized.
If the central frequencies of the two filters (determined by
the Raman frequency shift) are sufficiently far apart, am-
plifier noise will be drastically cut while solitons pass
through the two filters with little attenuation. Since Ra-
man shifts can be quite large for ultrashort solitons, very
efficient filtering of the noise can be achieved over the en-
tire spectrum after few amplifier spacings because the
soliton frequency shift can be greater than the filter band-
width. Moreover, insertion of bandpass filters should re-
sult in considerable damping of both amplitude and fre-
quency fluctuations, resulting in further reduction of the
timing jitter. However, a nonideal dispersion profile of
the DDF’s is likely to modify the Raman shift and may re-
duce the effectiveness of the use of bandpass filters. Sec-
tion 4 considers the effects of dispersion variations on the
Raman-induced frequency shift.

4. EFFECT OF NONIDEAL DISPERSION
PROFILES
In Section 3 we considered an ideal dispersion profile,
matching losses (and other higher-order effects for ul-
trashort solitons). However, variations from the ideal
dispersion profile may occur because of fabrication con-
straints. Clearly, if these variations are relatively small
and occur at low spatial frequencies, the soliton will adapt
adiabatically to the local GVD and change its amplitude,
which in turn will modify the soliton trajectory due to the
Raman effect. If dispersion variations have large ampli-
tudes or occur at high spatial frequencies such that the
length scale of variations is comparable to the local soli-
ton period, nonadiabatic propagation will generally lead
to emission of dispersive waves.16 The role of dispersion
variations of spatial periods much shorter than the soli-
ton period is similar to the role of loss-induced energy
variations in the average-soliton regime16,17: For suffi-
ciently rapid dispersion variations it is the average dis-
persion that the soliton will experience with minimal gen-
eration of dispersive waves.
Fiber-dispersion variations, being fixed once the fiber is

drawn, will affect a soliton in different sections in the
same way only if all fiber sections were identical. In
practice, dispersion variations are likely to vary randomly
from fiber to fiber in a cascaded chain of amplifiers. Con-
tribution of such variations to the timing jitter requires a
more detailed analysis and is not considered here. In-
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stead, we consider the first-order effect of a nonideal dis-
persion profile such that it produces a different Raman-
induced frequency shift than the one expected from the
DDF having an ideal dispersion profile. This change in
the soliton mean frequency would be of little consequence
if optical filters were absent from the system. However,
such filters are likely to be present, either to separate the
phase-conjugate signal from the pump (in a forward four-
wave mixing scheme12) or/and to reduce the timing jitter.
Since the central frequency of these filters is determined
by assuming ideal dispersion profiles during the design
process, variations in the dispersion profiles will result in
a mismatch between the mean frequency of solitons and
the central frequency of bandpass filters. If this mis-
match is not small compared with both the soliton and fil-
ter bandwidths, a significant loss of soliton energy will oc-
cur at the filters, a loss that may eventually result in the
destruction of the soliton bit stream. The following cal-
culation provides an estimate of the Raman-induced fre-
quency shift induced by dispersion variations.
Dispersion variations are taken into account by use of

p(z) 5 p̄(z) 1 p̃(z) for the dispersion profile, where
p̄(z) 5 exp(2az) is for an ideal loss-matched profile and
p̃(z) represents a small variation of the spatial period
larger than the soliton period. It is worth stressing that
our choice of ideal dispersion profile p̄(z) is not restric-
tive, and the analysis can also be applied to other custom-
tailored dispersion profiles.
For the type of perturbations p̃(z) considered here, the

soliton dynamic is adiabatic. The evolution of the soliton
mean frequency v(z) is obtained by use of relations (I.15)
and (I.16) and is given by

v~z ! 5 2
8
15

tRAo
4z1~z ! 1

8
15

tR

3 Ao
4F3E

0

z

p̃~z8!dz8 2 6E
0

z p̃2~z8!

p̄~z8!
dz8G , (5)

where the first term on the right side is simply the fre-
quency shift occurring in the ideal DDF and the following
two terms are the frequency shifts associated with the
nonideal nature of the profile. Interestingly, the fre-
quency shift associated with dispersion variations de-
pends not only on the average of dispersions fluctuations
[second term of the right side of Eq. (5)] but also includes
a weaker second-order term [last term of Eq. (5)]. The
latter source of frequency shift arises because the fre-
quency shift due to the Raman effect does not depend lin-
early on the soliton amplitude. However, this contribu-
tion is likely to be much smaller than the one coming from
*p̃(z)dz (unless average dispersion variations can be
made very small by some fiber-drawing technique), and
we neglect it here. To provide an estimate, we use the
form

p̃~z ! 5
Db 2

ub 2
maxu

sinS p z
za

D , (6)

which is a perturbation having a half-period equal to the
length of the DDF’s. Here Db2 is the amplitude of dis-
persion variations such that uDb 2u ! p̄(z)ub 2

maxu. A more
complete description would consider a sum of sinusoids of
different periods and amplitudes (i.e., a Fourier series).
Moreover, the exact soliton propagation dynamics under
dispersion variations of various spatial frequencies would
need to be taken into account.16 In our model the fre-
quency shift associated with dispersion variations given
by Eq. (6) is directly obtained from Eq. (5).
Figure 8 shows the additional soliton frequency shift

generated by dispersion variations for several values of
soliton widths Ts by normalizing it to the soliton’s own
bandwidth (Dns ' 0.315/Ts). Solitons broader than 2 ps
shift by a very small fraction of their bandwidth for a
wide range of dispersion variations. For a 1-ps soliton,
dispersion variations become more critical, as they can
shift the soliton spectrum by as much as 30% of its spec-
tral width. For 700-fs solitons the sliding of the soliton
spectrum becomes comparable with the soliton spectral
bandwidth unless dispersion variations are made very
small by a precise control of the dispersion profile. In the
pioneering work related to the fabrication of DDF’s,18 a
precision on ub2u of ;0.12 ps2/km has been reported. The
results shown in Fig. 8 suggest that dispersion fluctua-
tions are not likely to affect the system performance when
soliton width exceeds 2 ps but may be detrimental to the
system for subpicosecond solitons. Further improve-
ments in the fabrication technique may solve this prob-
lem.
Another important point concerning fiber design and

fabrication is related to the absolute value of the mini-
mum dispersion ub 2

minu achievable at the fiber end. As
discussed in Section 2 of Part I, our numerical simula-
tions show that TOD can lead to excessive generation of
dispersive waves if ub 2

minu becomes too small. This accept-
able value of ub 2

minu depends on several design parameters
but ranges typically between 0.05 and 0.2 ps2/km. We
also numerically observed soliton broadening for low val-
ues of ub 2

minu. One way to prevent this broadening would
be to lower the rate of GVD decrease toward the fiber end
so that solitons compress slightly and recover their de-
sired amplitude. Another design could take advantage of
the fact that the local soliton period toward the fiber end
may be approximately 5–20 km. In this case, dispersion
profiling can be stopped before the fiber end, GVD can be

Fig. 8. Spectral shift of a soliton (normalized to its own spectral
width) as a function of the amplitude of dispersion variations for
several solitons widths. Spectral shifts in excess of 10% may
limit the use of bandpass filters for soliton control.
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abruptly lowered to the appropriate level of an average
soliton, and the last few kilometers of fiber can be drawn
at constant dispersion. Moreover, lowering of dispersion
may not even be necessary because compensation of soli-
ton broadening (due to TOD) often requires higher GVD.
In such a design, dispersion profiling will be stopped a few
kilometers before the fiber end, and the GVD will be kept
constant to that value for the last few kilometers.

5. CONCLUSION
Using adiabatic perturbation theory, we have derived an
expression for the soliton trajectory and timing jitter in a
high-speed communication system making use of ul-
trashort solitons in DDF’s and employing the technique of
periodic OPC for jitter control. We found that neglecting
TOD and the Raman effect results in an underestimate of
timing jitter and that inclusion of these effects shows the
existence of an optimum amplifier spacing (65–80 km)
that minimizes the timing jitter. For shorter amplifier
spacings the increase of the timing jitter originates in the
third-order dispersion, while for large amplifier spacings
it is the Raman effect that increases the jitter. We also
found that the timing jitter originates mostly from ampli-
tude fluctuations imposed on solitons during their ampli-
fication by the spontaneous-emission noise. If one con-
siders only the jitter from fiber dispersion and higher-
order effects as in this paper, the use of optical phase
conjugation can reduce sufficiently the timing jitter to al-
low nearly error-free transmission at bit rates of ;100
Gb/s over ;1200 km without optical filters. Optical fil-
ters should increase the transmission distance consider-
ably. The constraints imposed by fiber dispersion varia-
tions of various amplitude on the use of optical filters
with ultrashort solitons have been estimated. Variations
from the ideal dispersion profile of the fiber may ulti-
mately determine the minimum soliton width and conse-
quently set a maximum bit rate at which long-haul sub-
picosecond solitons-based communications systems can
operate.

APPENDIX A: SOLITON TRAJECTORY IN
THE PRESENCE OF FLUCTUATIONS
IN A PERIODICALLY PHASE-CONJUGATED
SYSTEM
In this appendix we derive an expression [Eq. (3)] for the
soliton timing jitter dqN

opc for the communication system
of Fig. 1. We proceed as in the appendix of Part I and
start with the evolution equations for the soliton param-
eters [Eqs. (I.31)–(I.33)]. We focus on the case of Fig.
2(a), where the pump frequency coincides with the soliton
input frequency.
Since OPC does not affect amplitude fluctuations, Eq.

(I.35) can be used as such. However, the evolution of the
soliton frequency vp

opc(z) in the pth section is quite differ-
ent than Eq. (I.37) when OPC is included. It becomes
necessary to consider even- and odd-numbered sections
separately since the unit cell now contains a pair of two
neighboring sections (see Fig. 9). By taking into account
an OPC-induced spectral inversion, the soliton frequency
evolution for even-numbered and odd-numbered sections
can be written as

vp
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8
15

tRz1~za!Ao
4 2

8
15
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dAi 2
32
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3 Ao
3(
i51
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dv i , (7)
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2 (
i52

i~even!

p22
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These equations are used in Eq. (I.33) for calculating
the soliton trajectories for the pth and the (p 2 1)th sec-
tions separately. The resulting soliton displacements are
qp
opc(za) and qp21

opc (za), respectively. The two displace-
ments are summed to obtain the total displacement for a
unit cell. In doing so, many terms cancel out. After a
tedious but straightforward calculation, we obtain the fol-
lowing recurrence relation:

qp
opc~za! 5 2q TOD

A Ao
2 1 2qS1Ao

8 1 qGHdvp

1 4 ~qR 1 2qS2Ao
4!Ao

3dAp 1 8qS3
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p21

dAi 1 16qS2Ao
7(
i51

p21
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i51

p
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i51

p21
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1 2qS4Ao

4S (
i52

i~even!

p

dv i 2 (
i51
i~odd!

p21

dv iD
1 dqp 1 dqp21 1 qp22

opc ~za!, (9)

where we defined the following four parameters:

Fig. 9. Schematic of the unit cell used for calculating soliton dis-
placement qN

opc .
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We adopt the convention that all q functions are evalu-
ated at z 5 za when the z dependence is not shown ex-
plicitly. By solving the recurrence relation (9) for a chain
of N amplifiers (N even), we obtain the soliton displace-
ment
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The average soliton displacement (in the absence of am-
plifier noise) is given by the first two terms of Eq. (11).
Note that the average displacement is zero when TOD is
neglected (dd 5 0). However, when TOD is taken into
account, the Raman effect also contributes to the average
displacement through the second term involving qS1.
Timing jitter [Eq. (3) in the main text] dqN

opc is obtained
from Eq. (11) by removing the first two terms.
The calculation of soliton trajectory for a system using

the scheme of Fig. 2(b) for OPC can be treated by the for-
mulation used here for the OPC configuration of Fig. 2(a).
In the case of Fig. 2(b) the form of the frequency evolution
is the same for all sections and can be obtained for the pth
section from Eq. (8) by replacing p by p 1 1 and extend-
ing all summations over i to all integer values.
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