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By using adiabatic perturbation theory, we calculate the timing jitter generated by fluctuations in soliton am-
plitude, frequency, and position that are induced by the amplifiers noise in high-speed soliton communication
systems. The analysis is applied to dispersion-tailored fibers which, in contrast with conventional constant-
dispersion fibers, allow ultrashort solitons (width , 10 ps) to propagate over long distances with minimum
production of dispersive waves. We show that a transition from a regime in which amplifier noise-induced
frequency fluctuations dominate the timing jitter (Gordon–Haus jitter) to a regime in which amplitude fluc-
tuations dominate the timing jitter occurs when solitons become shorter than 2–7 ps, depending on the total
distance of transmission. The latter source of jitter arises because fluctuations in the soliton amplitude are
converted to frequency fluctuations by the Raman effect, which in turn are converted to position fluctuations by
the group-velocity dispersion. The contribution of third-order dispersion to the timing jitter is evaluated and
discussed. We provide an estimate of the distance at which soliton-control elements (such as synchronous
modulators) should be inserted to reduce the timing jitter and extend the transmission distance. © 1997 Op-
tical Society of America [S0740-3224(97)01802-X]
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1. INTRODUCTION
Since the first demonstration of soliton transmission over
long distances,1 optical solitons have been thought of as
natural bits of information for fiber-optic communica-
tions. Any soliton train must be amplified for compen-
sating the fiber loss to ensure its stable propagation over
long distances. For the lumped-amplification scheme,
implemented commonly by use of erbium-doped fiber am-
plifiers, the amplifier spacing must be smaller than the
soliton period to allow solitons to propagate down a fiber
link with minimal generation of dispersive waves.2 This
condition imposes a lower limit on the soliton duration
(;10 ps) and consequently an upper limit on the bit rate
(;20 Gb/s) for typical amplifier spacings (;30 km).
Within this so-called average-soliton regime the timing
jitter due to frequency fluctuations induced by the ampli-
fiers noise (spontaneous emission) limits the total trans-
mission distance at relatively low bit rates (,10 Gb/s) to
lengths of ;5000 km (the Gordon–Haus limit3). How-
ever, the use of some form of soliton control, such as
sliding-frequency filters4 or synchronous modulation,5

has been shown to allow nearly error-free operation (bit-
error rate less than 1029) beyond the Gordon–Haus limit.
In essence, the use of soliton-control mechanisms allows
soliton communication systems to operate at bit rates
close to the limit imposed by the average-soliton regime.
For an increase in the bit rate of soliton communication

systems beyond 20 Gb/s, alternative schemes must be de-
veloped. Two different approaches are currently being
0740-3224/97/020314-09$10.00 ©
considered. One scheme would combine multiple chan-
nels using wavelength-division multiplexing, with each
channel operating in the average-soliton regime,6 while
the second would pack ultrashort solitons to create a
high-speed, time-division-multiplexed bit stream. For
practical amplifier spacings the latter approach requires
soliton transmission beyond the average-soliton regime.
In one attempt to overcome the limits imposed by the
average-soliton regime it has been shown7–9 that solitons
of 2–5 ps can be stably transmitted over many soliton pe-
riods if a fast-saturable-absorber-type element is present
in the line. However, so far, this approach has been lim-
ited to moderate amplifier spacings (;20 km). In an al-
ternative novel approach, practically undistorted propa-
gation of ultrashort solitons with large amplifier spacings
can be achieved by especially designed fibers with a
tailored-dispersion profile.10 Such fibers allow stable
propagation of ultrashort solitons with amplifier spacings
as large as 50–100 km.
An important issue, critical for the feasibility of an ul-

trahigh bit-rate communication system, composed of a
chain of amplifiers (see Fig. 1) connecting segments of
dispersion-decreasing fibers (DDF’s), involves the timing
jitter associated with the propagation of ultrashort soli-
tons corrupted by the amplifier noise. Previous analyses
on this issue11,12 have considered the contribution of the
Raman effect to the timing jitter in the context of
constant-dispersion fibers. However, these analyses
were implicitly limited both to the average-soliton regime
1997 Optical Society of America
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and to small Raman-induced frequency shifts. Operation
in the average-soliton regime with ultrashort solitons re-
quires amplifier spacings below one kilometer and is of
limited practical interest for long-haul communication
systems. The limitation to small Raman-induced fre-
quency shifts arises because large frequency shifts gener-
ally result in pulse distortions and unstable soliton propa-
gation. These deleterious instabilities originate from the
combined effect of the Raman-induced frequency shift and
the third-order dispersion (TOD) that manifests through
a local change of the effective group-velocity dispersion
(GVD) along the soliton path and leads to significant
emission of dispersive waves. The TOD has been ne-
glected in previous work.11,12

In this paper we derive an analytic expression for the
timing jitter of ultrashort solitons by including explicitly
the contributions of the GVD, the Raman effect, and the
TOD, in both custom-tailored DDF’s (which can support
large Raman-induced frequency shifts10) and constant-
dispersion fibers. The paper is divided into several sec-
tions. Derivation of the trajectory of ultrashort solitons
by adiabatic perturbation theory is presented in Section
2. The results are used in Section 3 to evaluate the tim-
ing jitter at the output of a chain of amplifiers connecting
multiple identical DDF segments (see Fig. 1). Section 4
presents the results and discusses the relative contribu-
tions of different physical origins to the timing jitter. In
Part II of this paper we consider the use of periodic optical
phase conjugation of the soliton train for reducing the
timing jitter and discuss the use of bandpass filters and
the role played by dispersion fluctuations.

2. ADIABATIC PERTURBATION THEORY
The propagation of ultrashort solitons through a DDF is
described by a generalized nonlinear Schrödinger
equation13:
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where p(z) 5 ub 2(z)/b 2(0)u is the normalized GVD, a is
the fiber loss, dd 5 b3 /@6T0ub2(0)u# is the normalized
TOD, and tR governs intrapulse Raman scattering.13

Note that Eq. (1) is written in soliton units and the GVD
b2(0) used for normalization corresponds to the GVD at
the input end of a DDF segment. Thus time t is normal-
ized to the soliton characteristic width T0 , and distance z
is normalized to the dispersion length LD 5 T0

2 /ub 2(0)u.

Fig. 1. Schematic representation of a DDF-based fiber link with
multiple amplification sections. Tx, transmitter; Rx, receiver.
The soliton width (full width at half-maximum) Ts is re-
lated to T0 by Ts . 1.763T0. The use of Eq. (1) for de-
scribing soliton evolution implies that polarization effects
are ignored in the following analysis.
In order to apply the adiabatic perturbation theory14,15

(APT), we rescale the normalized field u and distance z in
Eq. (1) to a new amplitude v and a new distance scale h,
defined by the following relations:

v 5 p21/2u, (2)

h 5 E
0

z

p~ y !dy. (3)

These transformations are, in fact, renormalizations of
the soliton amplitude and the distance scale to the local
GVD and dispersion length. In terms of v and h, Eq. (1)
becomes
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The left side of Eq. (4) corresponds to the standard non-
linear Schrödinger equation.
For relatively wide solitons (Ts . 10 ps) the effects of

higher-order nonlinear and dispersive effects, governed
by the last two terms of Eq. (4), are negligible. If the dis-
persion profile of DDF matches the power loss,

p~z ! 5 exp~2a z !, (5)

then the first term on the right side of Eq. (4) also van-
ishes. Thus in a DDF whose dispersion decreases expo-
nentially, relatively wide solitons (Ts . 10 ps) can propa-
gate undistorted in spite of fiber loss. Such a soliton
communication system with periodic amplification can
transmit data over long distances with relatively long am-
plifier spacings (80–100 km), limited only by the realiz-
able minimum dispersion b 2

min at the end of each DDF
section.10

For high-speed soliton communication systems the soli-
ton width must be reduced to , 5 ps as the bit rate in-
creases. The higher-order effects [the last two terms of
Eq. (4)] cannot be neglected for such short solitons. The
Raman term (governed by tR) can be treated as a small
perturbation for the soliton widths considered here
(.1 ps). As verified numerically, TOD (the last term) is
also a small perturbation for ub 2

minu larger than ;0.1
ps2/km. The minimal dispersion b2

min [ b2(za) is the
GVD at the DDF end, where za is the normalized ampli-
fier spacing.
We now apply the APT14,15 to Eq. (4) by taking its un-

perturbed solution as a fundamental soliton of the form

vs~B,q,f,v;t! 5 B sech@B~t 2 q !#exp~if 2 ivt!,
(6)

where the parameters B, q, f, and v represent the ampli-
tude, position, phase, and frequency of the rescaled soli-
ton, respectively, and are slowly varying functions of the
rescaled distance h. If we treat the three terms on the
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right side of Eq. (4) as a small perturbation written as
eP[vs], where e is a small parameter, the evolution of the
soliton parameters is governed by16
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where Im stands for imaginary part, and the set of func-
tions over which the perturbation is projected is given by

UB 5 vs* , (11)

Uv 5 tanh@B~t 2 q !#vs* , (12)

Uq 5 ~t 2 q !vs* , (13)

Uf 5 $1 2 B~t 2 q !tanh@B~t 2 q !#%vs* .
(14)

The evolution equations for the soliton parameters B,
v, q, and f for a DDF are obtained by replacing eP[vs] in
Eqs. (7)–(10) by the terms on the right side of Eq. (4).
The integration over t is cumbersome but straightforward
and leads to the following simple equations:
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We omit here the evolution equation of f(h) because the
timing jitter does not depend on the soliton phase when
soliton interaction is negligible. Solitons are assumed to
be sufficiently far apart that we can neglect the contribu-
tion of soliton interaction to the timing jitter. It is inter-
esting to note that, within the framework of APT, intra-
pulse Raman scattering affects only the soliton frequency
[see Eq. (16)] while TOD affects only the soliton position
[see Eq. (17)]. However, since the frequency v appears in
Eq. (17), the Raman effect indirectly affects the soliton po-
sition as well. Before integrating Eqs. (15)–(17), it is
useful to rewrite them in terms of the unscaled variables
u and z (see Appendix A). The functional form of us is
the same as the rescaled soliton vs , as evident by Eq.
(2): The two differ only by their different amplitudes, re-
lated by A 5 Bp1/2. The evolution of the normalized am-
plitude A is easily obtained by Eq. (15), after use of Eqs.
(2) and (3), and is given by

A~z ! 5 A0
exp~2a z !

Ap~z !
. (18)
For an ideal loss-matched dispersion profile, @ p(z)
5 exp(2az)#, the amplitude decreases as A(z)
5 A0exp(2az/2), as expected from simple energy-loss
considerations. Moreover, the soliton width stays con-
stant over the entire DDF length for such an ideal profile.
Equation (18) is, however, valid even for nonexponential
profiles.
We now assume a DDF with an ideal loss-matched dis-

persion profile (effects of deviations from the ideal profile
are discussed in Part II). Its use allows us to solve Eqs.
(15)–(17) exactly and obtain the evolution of the soliton
amplitude, frequency, and position along the fiber in the
form

A~z ! 5 A0exp~2a z/2!, (19)
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8
15

tRz1~z !A0
4 1 v0 , (20)
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2 1 qC1~z !A0
8
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4v0 1 q0 . (21)

A0 , v0 , and q0 are the initial values (at the front end of
the fiber located at z 5 0) of the soliton amplitude, fre-
quency, and position, respectively:
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8
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z1~z ! 5 @1 2 exp~2a z !#/a,

z2~z ! 5 @1 2 exp~22a z !#/~2a!, (25)

where the parameters z1(z) and z2(z) are introduced for
convenience. The term qGH(z) leads to the Gordon–
Haus effect in DDF’s. The term qR(z) is associated with
the displacement of the soliton position due to the intra-
pulse Raman effect alone. The two terms q TOD

A ( z) and
qTOD

v (z) govern the effects of TOD on the soliton position.
The last two terms, qC1(z) and qC2(z), represent cross ef-
fects between TOD and the Raman effect and are often
small because of the product ddtR appearing in them.
Full numerical simulations of Eq. (1) for various pa-

rameter combinations have shown that Eq. (21) predicts
the evolution of soliton position over one amplification
section with an accuracy better than 1% of the total time
shift for nearly all values of the parameters used in this
paper. To illustrate this, Fig. 2 shows (open circles) the
difference in the soliton position q(za) at the end of one
DDF between the value predicted from Eq. (21) and the
value obtained by solving numerically Eq. (1). The pa-
rameters of the DDF are b 2

min 5 20.2 ps2/km, a 5 0.22
dB/km, b3 5 0.07 ps3/km, TR 5 6 fs, and a fiber length of
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70 km. The difference in the soliton position is , 1 fs
for Ts 5 5 ps and increases gradually to become 120 fs
when Ts 5 2 ps. The total shift in the soliton position
resulting from higher-order effects (Raman and TOD) was
17.8 ps for the 2-ps soliton so that the APT and numerical
results agree within 1%. If we neglect b3 in Eq. (21) (but
keep it in the numerical simulation), the two disagree by
more than 5% (stars), indicating the importance of keep-
ing the b3 term in the APT. Note, however, that for a
large number of cascaded sections the accuracy of the
APT will degrade, especially for low ub2

minu, because of ac-
cumulation of dispersive waves. Further details are
given in Section 4 of Part I and Section 3 of Part II of this
paper.
We can carry out a similar analysis for the soliton tra-

jectory for the case of a constant-dispersion fiber by using
Eq. (1) with p(z) 5 1 and neglecting losses (which are as-
sumed to be compensated periodically as in the average-
soliton regime). The soliton amplitude A(z) now repre-
sents the average amplitude of the soliton over one
section and is consequently a constant A0 . The fre-
quency shift is as previously derived in Ref. 17. The cal-
culation of the soliton trajectory leads to an equation of
the same form as Eq. (21) but with different coefficients,
given by

qGH~z ! 5 2z, qR~z ! 5
4
15

tRz
2,
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ddtRz
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It is important to discuss the range of validity of the
APT. Previous analyses11,12 have derived the Raman-
induced timing jitter in constant-dispersion fibers by es-
sentially using the two terms qGH and qR in Eq. (21) but

Fig. 2. Estimation of the accuracy of the APT over one stage and
the relative importance of b3 . Open circles represent the differ-
ence between the soliton position obtained from the APT and the
value obtained by solving Eq. (1) numerically. Stars represent
the same difference, but b3 is neglected in the APT.
without taking into account four additional terms intro-
duced by the TOD. The APT used in the previous
analyses11,12 also assumes that the pulse is a soliton per-
turbed by the Raman effect. However, when an ul-
trashort soliton travels in a fiber, the combined effect of
the Raman-induced frequency shift and TOD changes the
effective GVD experienced by the soliton. In fact, for ul-
trashort solitons the effective local dispersion in a
constant-dispersion fiber can be quite different from the
dispersion experienced at the fiber input. We numeri-
cally observed that this change of effective local GVD of-
ten results in the destruction of the soliton (pulse split-
ting, considerable emission of dispersive waves, etc.) after
propagation over relatively short distances of ;40–50
km. In some cases in which TOD appears to be initially
advantageous because of pulse compression, the cumula-
tive frequency shift eventually changes the soliton evolu-
tion to the extent that it leads to the destruction of the
soliton after several amplification sections.
Realizing that soliton stability is of primary importance

for soliton-based communication systems, we find the use
of DDF’s essential when ultrashort solitons must be used.
In fact, for solitons shorter than 0.5–2 ps (depending on
the fiber length and the dispersion profile), the DDF’s
must be especially designed to prevent the soliton from
being destroyed by the mutual interaction of higher-order
effects. In the analysis performed here the use of APT is
equivalent to implicitly assuming that the GVD profile of
each DDF is properly tailored to compensate for the
higher-order effects as described in Ref. 10. For such fi-
ber designs the average dispersion felt by the soliton is
loss matched. Another implicit assumption underlying
the application of APT in determining the timing jitter
over many amplifier spacings is that the soliton integrity
is preserved in all fibers composing the link. Our nu-
merical simulations with solitons of width .3 ps show
that, in the absence of soliton control, instabilities gener-
ally appear before the Raman-induced timing jitter be-
comes of concern because of the change of GVD with the
accumulated frequency downshift from fiber to fiber. In
the following timing-jitter calculations, we shall not take
into account explicitly this frequency-shift accumulation,
but assume that a compensation scheme is used. This
compensation mechanism could be, for example, band-
pass filters or synchronous modulators (for limited
soliton-frequency shifts). An example of timing-jitter re-
duction achieved with the compensation of the soliton-
frequency shift (and not limited to small shifts) is given in
Part II of this paper.

3. TIMING JITTER FOR DISPERSION-
DECREASING FIBERS
Returning to the calculation of the timing jitter, we first
consider an isolated section of the DDF link (see Fig. 1)
and evaluate the time shift dq(za) at the end of this DDF
section because of fluctuations in the soliton amplitude,
mean frequency, and position induced by the noise added
by the amplifier of this section only. If dA0 , dv0 , and dq0
represent such fluctuations, dq(za) is obtained by differ-
entiating Eq. (21) and substituting z 5 za in the resulting
expression:
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dq~za! 5 qGH~za!dv0 1 4qR~za!A0
3dA0

1 2q TOD
A ~za!A0dA0 1 qC2~ za!A0

4dv0

1 8qC1~za!A0
7dA0 1 dq0 . (27)

In Eq. (27) the two terms 2qTOD
v (za)v0dv0 and

4qC2(za)v0A 0
3dA0 obtained from Eq. (21) are omitted be-

cause, to first order, the average soliton frequency (in the
absence of the Raman effect) v0 is zero.
Equation (27) gives the time shift after propagation

over one section when only the spontaneous emission of
one amplifier is considered (see Fig. 1). However, it is
important to note that fluctuations that occurred on pre-
vious sections also contribute to the soliton displacement
occurring at subsequent sections. Frequency fluctua-
tions are especially important since a change in the soli-
ton mean frequency at a given section will result in a time
shift accumulated over all the subsequent sections caused
by this frequency shift only. Moreover, because a single
amplitude fluctuation at a given section generates not
only a frequency fluctuation (because of the Raman effect)
at that section but also continues to generate new fre-
quency fluctuations all along the subsequent sections, the
timing jitter generated by amplitude fluctuations in-
creases rapidly with the number of sections. The dis-
placement of a soliton at the end of the link composed of
N sections, obtained by including all the contributions
coming from previous amplifiers, is given by (see Appen-
dix A for more details)
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where it is understood that all q coefficients are evaluated
at z 5 za by use of Eqs. (22)–(25) for DDF’s or Eqs. (26)
for constant-dispersion fibers. The average displacement
^dqN& 5 0 since ^dv i& 5 ^dAi& 5 ^dqi& 5 0. The root-
mean-square (rms) jitter sq [ ^@dqN#2&1/2 is obtained by
averaging over fluctuations dvi , dAi , and dqi , and its
square is given by
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where summations over p were replaced by integrals by
assuming N @ 1 and it was assumed that the noise of dif-
ferent amplifiers and fluctuations of different soliton pa-
rameters are uncorrelated. The quantities sA , sv , and
sq are defined by s P [ ^@dP#2&1/2, where sP is the rms de-
viation of the variable P.
Equation (29) is the main analytical result of this pa-

per. It includes not only the Gordon–Haus jitter (first
term on right-hand side) but also the contributions of the
Raman effect and the TOD to the timing jitter. Vari-
ances of the soliton amplitude, frequency, and position
fluctuations at the output of an amplifier, because of the
spontaneous-emission noise added during the amplifica-
tion process, have been derived earlier16,18 and are given
by

sA
2 5 2A0nspF~G !/Ns ,

s v
2 5 2A0nspF~G !/~3Ns!,

s q
2 5 p 2nspF~G !/~6A0Ns!, (30)

where nsp is the spontaneous-emission factor (set to 2),
F(G) 5 G 2 1 [for average solitons, F(G) 5 (G
2 1)2/(G ln G)], the total gain G 5 exp(aza) for each am-
plifier, and Ns is the average number of photons in each
soliton before entering the DDF (for average solitons, Ns
is the average number of photons in the fiber). Equation
(29), with variances of the soliton parameters given by
Eqs. (30), represents the total rms timing jitter and is
valid for solitons as short as ;0.1 ps.

4. RESULTS AND DISCUSSION
In this section we evaluate the timing jitter by using Eq.
(29) and compare the relative contributions of various
physical mechanisms involved. The parameter values
used correspond to a realistic soliton communication sys-
tem designed to operate near 1.55 mm at bit rates in the
range 20–100 GHz. The GVD coefficient b2 varies expo-
nentially along each fiber section and is quantified by the
minimum and maximum values, related to each other as
b 2
max 5 b2

min exp(aza), where za 5 LA /LD and LA is the
amplifier spacing. The parameter N in Eq. (29) is N
5 LT /LA , where LT is the total transmission distance.
The numerical values of the other fiber parameters are
TOD coefficient b 3 5 0.07 ps3/km, Raman parameter tR
5 TR /T0 with TR 5 6 fs, and fiber loss a 5 0.22 dB/km.
The parameter T0 is determined for a soliton of width Ts
by use of Ts . 1.763T0, which sets the value of the nor-
malized soliton amplitude A0 to 1.
Figures 3 and 4 show, for several soliton widths in the

range 1–40 ps, how fluctuations of the three soliton pa-
rameters (amplitude, frequency, and position) contribute
to the total rms timing jitter as a function of transmission
distance by choosing b 2

min 5 20.1 ps2/km and LA 5 80
km. The solid curve represents the total timing jitter com-
puted from Eq. (29), and the broken curves represent the
timing jitter for each type of fluctuations if considered
separately. For 40-ps-wide solitons [Fig. 3(a)] the timing
jitter originates mostly from frequency fluctuations and is
essentially of the Gordon–Haus type, except at distances,
,800 km, for which the position fluctuations [direct effect
of amplifiers noise on the soliton position, last term of Eq.
(29)] dominate over frequency fluctuations. For 20-ps-
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wide solitons, a typical width in the average-soliton re-
gime, only frequency fluctuations contribute significantly
[see Fig. 3(b)]. In fact, for transmission of solitons of
width .10 ps over transoceanic distances (;10,000 km)
the Gordon–Haus jitter dominates because the contribu-
tions of higher-order dispersive and nonlinear effects are
small for such relatively broad solitons. Even though rela-
tively quite small, the effect of higher-order terms (Ra-
man and TOD) can be seen in Fig. 3 through the tiny con-
tribution of amplitude fluctuations (dotted curve). When
shorter solitons are used for transmission, the contribu-
tion of higher-order effects, especially the Raman effect,
increases rapidly with transmission distance. For 3-ps or
shorter solitons [Figs. 4(a) and 4(b)] the contribution of
amplitude fluctuations to the timing jitter (mediated
through the Raman effect) becomes so important that the
total transmission distance is limited to only a few hun-
dreds of kilometers in the absence of a soliton-control
mechanism. Since the effect of amplitude fluctuations on
the timing jitter increases more rapidly than that of fre-
quency fluctuations [N 3 to N 7 versus N 3 to N 5 depen-
dences in Eq. (29)], the former will dominate for long dis-
tances. Amplitude fluctuations start to dominate after
800 km for 3-ps solitons [Fig. 4(a)]. For a transoceanic
distance of 10,000 km, one can calculate that amplitude
fluctuations dominate for soliton widths ,7 ps. For 1-ps
solitons [Fig. 4(b)], amplitude fluctuations totally domi-
nate the timing jitter even after 100 km. In fact, the
Gordon–Haus jitter becomes negligible for 1-ps solitons
after one amplifier spacing of 80 km.
The sharp transition between the dominance of ampli-

tude and frequency fluctuations occurring near 3 ps can

Fig. 3. Timing jitter as a function of transmission distance: (a)
Ts 5 40 ps; (b) Ts 5 20 ps. Amplifier spacing is 80 km, and
b2
min is 20.1 ps2/km. Timing jitter over 1000 km is dominated

by frequency fluctuations for Ts . 3 ps and by amplitude fluc-
tuations for Ts , 1 ps.
be understood by noting that the soliton self-frequency
shift induced by the Raman effect depends on the soliton
width as T0

24. Since the soliton width varies inversely
with the soliton amplitude, the Raman effect converts
amplitude fluctuations to frequency fluctuations, which
are in turn transferred to temporal fluctuations through
the GVD. Note that the exact value of soliton width at
which amplitude fluctuations take over also depends on
the numerical value of the parameter TR . There is some
uncertainty with respect to this parameter, and values in
the range 2–10 fs have been used. We used TR 5 6 fs in
this paper. The qualitative behavior, however, remains
the same for other values of TR .
From a practical standpoint the dependence of the tim-

ing jitter on the amplifier spacing is quite important.
For DDF links the dependence is particularly strong since
longer amplifier spacing increases the GVD at the input
end for a given value of b 2

min . The relative contributions
of different physical mechanisms to the timing jitter as a
function of the amplifier spacing are shown in Figs. 5(a)
and 5(b) for 2-ps and 1-ps solitons, respectively, for propa-
gation over 300 km. When only GVD is considered [first
term of Eq. (22)], we recover the Gordon–Haus timing jit-
ter (for DDF’s). It is interesting to note that for moderate
amplifier spacings ( , 50 km) the timing jitter of a 2-ps
soliton [Fig. 5(a)] has two components. The first one
originates from the Gordon–Haus effect while a second
component arises because of TOD. The latter effect [rep-
resented by the terms involving q TOD

A in Eq. (29)] in-
creases the timing jitter especially for small amplifier
spacings and is further increased when combined with
the Raman effect [because of the cross terms qC1 and qC2
appearing in Eqs. (29)].
For large amplifier spacings of more practical interest

(.60 km) the Raman effect becomes increasingly of con-

Fig. 4. Same as Fig. 3 except for (a) Ts 5 3 ps and (b) Ts
5 1 ps.
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cern. This behavior can be understood by the rapid in-
crease of the average GVD, ub̄2u, with the length of the
DDF for a fixed b 2

min occurring at the fiber end. The av-
erage dispersion b̄2 is defined as b̄ 2 5 * 0

zab 2(z)dz
5 b 2

min@exp(aza) 2 1#/(aza). When TOD is included with
the Raman effect, for large amplifier spacings, an in-
crease in the timing jitter is observed in Fig. 5(a). This
effect originates again from the cross terms qC1 and qC2
in Eqs. (29). Interestingly, if the sign of b3 is inverted, as
may be the case in dispersion-flattened fibers,13 TOD can
be used to reduce the timing jitter caused by the com-
bined action of TOD and the Raman effect.
The relative contribution of TOD to the timing jitter in-

creases as the soliton duration decreases. As seen in Fig.
5(b), the timing jitter of a 1-ps soliton under the same con-

Fig. 5. Influence of GVD, TOD, and the Raman effect as a func-
tion of amplifier spacing for different fiber parameters when
b 2
min 5 20.1 ps2/km: (a) Ts 5 2 ps; (b) Ts 5 1 ps. The total

distance of propagation is 300 km.

Fig. 6. Influence of the minimum dispersion b2
min on the timing

jitter as a function of amplifier spacing. Soliton width Ts is 2 ps,
and the total distance of propagation is 300 km.
ditions as of Fig. 5(a) increases dramatically. Such be-
havior suggests that the control of TOD is of prime impor-
tance for reducing the timing jitter of communication
systems making use of picosecond or subpicosecond soli-
tons.
Since the average dispersion of a DDF depends

strongly on the minimum dispersion b 2
min realizable at

the fiber end, one should expect a strong dependence of
the timing jitter on both b 2

min and amplifier spacing LA .
Figure 6 shows the total timing jitter as a function of the
amplifier spacing for three values of b 2

min . As b 2
min in-

creases, b2
max at the fiber input becomes quite large for

long amplifier spacings. Indeed, amplifier spacings .60
km are possible only if ub 2

minu , 0.2 ps2/km. However, for
ub 2

minu , 0.1 ps2/km, numerical simulations show that the
TOD tends to enhance the timing jitter by introducing ad-
ditional amplitude variations and dispersive waves that
are not accounted for in the APT used in the derivation of
Eq. (29). Two mechanisms are responsible for these ad-
ditional amplitude fluctuations. First, dispersive waves
beat with the soliton to induce periodic amplitude fluctua-
tions. The second mechanism is related to the spectral
variation of b2 (owing to TOD) over the soliton spectrum,
which translates into a temporal distortion of the soliton.
The characterization of these effects on the timing jitter is
beyond the scope of this paper as it requires either exten-
sive numerical simulations or the use of the inverse scat-
tering theory.
From a practical standpoint the jitter needs to be re-

duced through some form of soliton control. The question
is how often such a control must be applied. We provide
an estimate of the soliton-control distance by plotting in
Fig. 7 the distance at which the rms timing jitter becomes
20% of the soliton width as a function of amplifier spacing
for several solitons widths. As also observed
experimentally,19,20 broad solitons (.10 ps) require syn-
chronous modulation on a scale of thousands of kilome-
ters (or more frequent sliding-frequency filters). How-
ever, Fig. 7 shows that the use of short solitons will
require soliton control at every amplifier section. The
case of 1-ps solitons (dotted curve) suggests that not only
an active form of control needs to be applied at each am-
plifier, but amplitude fluctuations that dominate in this
regime also need to be controlled immediately after each

Fig. 7. Estimate of the soliton control distance as a function of
amplifier spacing for different soliton widths in the range 1–10
ps. b 2

min 5 20.1 ps2/km.
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amplifier in order to reduce the timing jitter over the en-
tire link. Optical bandpass filters may be a good candi-
date for this type of control.

5. CONCLUSION
We have derived, using adiabatic perturbation theory, an
expression for the soliton trajectory and the timing jitter
for transmission of ultrashort solitons in dispersion-
tailored fibers. We have shown that, as the soliton width
decreases, the nature of the timing jitter changes from a
regime in which frequency fluctuations dominate
(Gordon–Haus jitter) to a regime in which amplitude fluc-
tuations dominate. For an amplifier spacing of 80 km
and bit rates ;50 Gb/s the transition occurs for soliton
widths of ;3 ps at a distance of ;500 km. The transition
distance can be increased to transoceanic distances by use
of wider solitons of width 7 ps. We included explicitly the
contribution of third-order dispersion to the timing jitter
and found that, while this contribution is quite small for
solitons wider than ;3 ps, it becomes quite important for
shorter solitons, especially for femtosecond solitons.

APPENDIX A: SOLITON TRAJECTORY IN
THE PRESENCE OF FLUCTUATIONS
In this appendix we derive the expression [Eq. (28)] for
the position fluctuation dqN of an ultrashort soliton, at
the end of a transmission line composed of N sections (see
Fig. 1), resulting from fluctuations in soliton frequency,
amplitude, and position induced by the noise added by N
amplifiers.
Even though the expressions for the soliton position

[Eq. (21)] and position fluctuation [Eq. (27)] established
for a single section are useful to understand the effects of
different parameters on the trajectory within one DDF,
they cannot be easily generalized for a chain of amplifiers.
Instead, one should reconsider the set of differential
equations [Eqs. (15)–(17)] rewritten here in terms of the
normalized amplitude A and distance z by using Eqs. (3)
together with A 5 Bp1/2:

dA
dz

5 2
1
2

aA, (31)

dv

dz
5 2

8
15

tR exp~a z !A4, (32)

dq
dz

5 2exp~2a z !v 1 dd@exp~a z !A2 1 3v2#,

(33)

where a loss-matched dispersion profile p(z) 5 exp(2az)
is used.
We start by using Eq. (31) to write the amplitude Ap(z)

of a soliton at a given position z (0 , z , za) within the
DDF of the pth section (see Fig. 1 of the text) of the trans-
mission line:
Ap~z ! 5 exp~2a z/2!~Ap21 1 dAp!, (34)

5 exp~2a z/2!S A0 1 (
i51

p

dAiD ,
(35)

where Eq. (35) is obtained by use of Eq. (34) recursively
and A1 [ A0 1 dA1 with A0 defined as the input soliton
amplitude. Equation (35) merely states that amplitude
fluctuations induced by all previous amplifiers should be
added to the input amplitude A0 . Using Eqs. (32) and
(35), one can write the soliton frequency vp(z) at a given
point z within the pth DDF as

vp~z ! 5 2
8
15

tRz1~z !A0
4 2

32
15

tRz1~z !A0
3

3 (
i51

p

dAi 1 dvp 1 vp21~z !, (36)

5 2
8
15

tRz1~z !(
i51

p

A0
4 2

32
15

tRz1~z !A0
3

3 (
i51

p

(
j51

i

dA j 1 (
i51

p

dv i , (37)

where Eq. (37) is obtained by use of Eq. (36) recursively
and only terms linear in dA i are retained. Note that the
frequency shift vp21(z) at the end of the (p 2 1)th sec-
tion had to be included because the soliton frequency at
the end of the pth section is the sum of the frequency shift
occurring over the pth section and the frequency shift of
the soliton accumulated before entering the pth section.
We obtain the trajectory qp(z) of a soliton in the pres-

ence of small perturbations by using Eqs. (35) and (37) in
Eq. (33) and integrating over z. The result is

qp~z ! 5 qR~z !(
i51

p

A0
4 1 qTOD

A ~z !A0
2 1 qC1~z ! (

m51

p

(
n51

p

A0
8

1 qGH~z !(
i51

p

dv i 1 4qR~z !A0
3(
i51

p

(
j51

i

dAj

1 2q TOD
A ~z !A0(

i51

p

dAi

1 qC2~z !A0
4 (
m51

p

(
i51

p

dv i

1 8qC1~z !A0
7 (
m51

p

(
i51

p

(
j51

i

dAj 1 dqp 1 qp21~z !.

(38)

We obtain the soliton position qN [ qN (za) at the end of a
chain of N sections by first setting z 5 za in Eq. (38), solv-
ing the recurrence relation to obtain qp , and then allow-
ing p to become N. The resulting expression is
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qN 5 qR~za!(
p51

N

(
i51

p

A0
4 1 q TOD

A ~za!(
p51

N

A0
2

1 qC1~za!(
p51

N

(
m51

p

(
n51

p

A0
8 1 qGH~za!(

p51

N

(
i51

p

dv i

1 4qR~za!A0
3(
p51

N

(
i51

p

(
j51

i

dAj

1 2qTOD
A ~za!A0(

p51

N

(
i51

p

dAi

1 qC2~za!A0
4(
p51

N

(
m51

p

(
i51

p

d v i

1 8qC1~za!A0
7(
p51

N

(
m51

p

(
i51

p

(
j51

i

dAj 1 (
p51

N

dqp .

(39)

Equation (39) is a general expression for the trajectory
of an ultrashort soliton for the communication system
shown in Fig. 1. It includes the effects of amplitude and
frequency fluctuations induced by the amplifier noise.
For DDF’s the trajectory qN is obtained by use of the pa-
rameter values from Eqs. (22)–(25) while for constant-
dispersion fibers the corresponding values are given by
Eqs. (26). In absence of amplifier noise the soliton tra-
jectory is given by the first three terms on the right side of
Eq. (39). In such a case the first term represents the dis-
placement due to the Raman effect only, the second the
displacement due to TOD only, and the third-term, dis-
placements due to the combined effect of TOD and the Ra-
man effect. In the absence of any higher-order effects
(Raman and TOD), the soliton displacement is zero, as it
should be for an ideal soliton. Since the absence of fluc-
tuations all solitons follow identical trajectories, only the
relative displacement of a soliton from the average trajec-
tory is important to determine the timing jitter. Such po-
sition displacement dqN at the end of a transmission line
is given by Eq. (39) with the first three terms on its right
side removed. The result is Eq. (28), used in the text to
evaluate the timing jitter.
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