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Abstract

We introduce a generalized form of the Lorenz-Haken equations governing single-mode laser dynamics. Our generalization
allows for asymmetric gain as well as inhomogeneous broadening through two additional parameters. By analyzing the steady
states and their stability of this new set of equations we find that a second (instability) threshold exists in a large region
of parameter space, while the traditional Lorenz-Haken equations show no such threshold. Examples of dynamic evolution
in the region beyond the second threshold are given as a function of the two new parameters. Our generalized model is a
somewhat simplified version of a recently proposed model for describing ultrafast dynamics of single-mode semiconductor
lasers, and we discuss the possible implications of our results for such lasers.

PACS: 05.45.+b; 42.65.5f; 42.60.Mi; 42.55.Px

1. Introduction

Nonlinear laser dynamics, following the footsteps
of the more traditional field of hydrodynamics, has
attracted considerable attention since its beginning in
1975. In that year, Haken showed the isomorphic na-
ture of the well-known hydrodynamical Lorenz equa-
tions and the Maxwell-Bloch equations governing the
dynamics of a homogeneously broadened resonant
two-level system [1,2]. The concept of chaos was
introduced in optics, and by now most scientists are
aware of its usefulness: one learns more from the in-
stabilities of a system than from its stable fixed points.

Single-mode lasers are often classified into three
classes, introduced by Arecchi et al. [3,4]. The clas-
sification is based on the relative magnitudes of the
three relaxation times associated with the optical field
7E, the induced polarization 7p, and the inversion 7.

1 Fax: (716)-244-4936; E-mail: guido@optics.rochester.edu.

The dynamics of class-A lasers are dictated by the op-
tical field; the induced polarization as well as the in-
version can be adiabatically eliminated, since their re-
laxation times are much smaller than that of the optical
field. For class-B lasers, only the induced polarization
is adiabatically eliminated, while for class-C lasers all
three quantities have comparable relaxation times.
Class-C lasers (e.g. He-Xe lasers) can become
chaotic by themselves when pumped hard enough,
but only when they satisfy the bad-cavity condition

o>b+1, (1)

where o = 7p/7g and b = 7p/7N. The smallest pump
at which the continuous-wave (CW) output becomes
unstable is called the second threshold, the first thresh-
old being the pump at which CW lasing starts. For
lasers that do not satisfy the bad-cavity condition, the
second threshold is said to be at infinity.

Both class-A and class-B lasers need additional de-
grees of freedom (externally provided through phe-
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nomena such as pump modulation, optical injection,
and electrical or optical delayed feedback) to exhibit
chaos [4]. Because of the impractically of high values
of the second threshold of class-C lasers (at 21 times
lasing threshold for a laser withg =3 and b= 1), re-
cent attention has focused on class-B lasers operated
under (or a combination of) pump modulation, optical
injection, and optical feedback. An example of a class-
B laser is a single-mode semiconductor laser, provided
the photon lifetime 7, = 7g/2 is well above 1 ps. In
the presence of external optical feedback, single-mode
semiconductor lasers show a wealth of nonlinear dy-
namics that have attracted researchers since the early
1980s (for some recent papers, see Refs. [5-7]).

The classification scheme of single-mode lasers
is based on a homogeneously broadened two-level
system (with a symmetric Lorentzian gain profile),
whose dynamics are governed by the Lorenz-Haken
equations. Graham and Cho [8] showed that for inho-
mogeneously broadened two-level systems, an infinite
hierarchy of Lorenz-Haken models exists, successive
orders increasing in accuracy and complexity. They
showed analytically that the second threshold for such
systems is always reduced compared with the homo-
geneously broadened case. In this paper we introduce
the generalized Lorenz-Haken equations, in which
two additional parameters account for the asymmetry
of the gain profile and inhomogeneous broadening.
The “classical” Lorenz-Haken equations, including
its detuned version, represent special cases of this
new set of equations. These generalized equations
were recently derived in the context of single-mode
semiconductor laser dynamics [9].

In Section 2 we introduce the model and discuss
its relation to existing laser models. In Section 3 we
analyze its fixed points and their stability, with spe-
cial attention to the location of the second threshold,
and in Section 4 we give some examples of dynam-
ics beyond the second threshold. In Section 5, we dis-
cuss the possible application of our model to a single-
mode semiconductor laser. We show that the gener-
alized Lorenz-Haken equations are a somewhat sim-
plified form of a recently derived model for ultrafast
semiconductor laser dynamics. We find that a second
threshold exists for semiconductor lasers, which may
lead to self-pulsating behavior at high frequencies. We
discuss how the second threshold can be lowered in
practice.

2. Generalized Lorenz-Haken model

In this section we introduce and discuss the proper-
ties of a new set of equations that can be regarded as a
generalization of the well-known Lorenz-Haken equa-
tions [2,10]. In the standard notation of Ref. [10],
the new equations take the form:

d

a%=_a(xay), (2)
dy . .

5 =—(1+i8) [y — (1 —ia)(r—2)x], (3)
dz *

‘a—t——bz +RC(X y) (4)

In the optical language, x is proportional to the elec-
tric field, y is proportional to the induced macroscopic
polarization, (r—z) denotes the inversion, o = 7p /TE,
b = 7p/7nN, and time ¢ is normalized to the polarization
relaxation time 7p. The two parameters a and 8 are
new: a governs the coupling between amplitude and
phase variations and has its origin in the asymmetry of
the gain profile. In the semiconductor laser literature,
« is known as the linewidth enhancement factor [11].
The effective detuning # has its origin in the inhomo-
geneous broadening of the resonance. The parameter
r is a measure for the pump strength and is normalized
such that the first (lasing) threshold occurs at r = 1
when a = 8 = 0. Note that, since r is a constant, both
z and r — z are proportional to the inversion [10].

Both the Lorenz-Haken equations and its detuned
version are special cases of Eqs. (2)-(4). When a =
g =0, one readily obtains the standard Lorenz-Haken
equations [ 10], and both x and y can be chosen to be
real. A summary of the dynamical properties of this
system can be found in a number of textbooks (see
e.g. Ref. [10]).

When «a = 6 # 0, Egs. (2)-(4) reduce
to those describing a detuned two-level system.
Indeed, by using the transformations (%,¥) =
(x,y)V1+atexpiaot/(c+1)] and £ = z(1 +
a?), we recover the equations for a detuned homoge-
neously broadened two-level system [ 12-14]:

X=—0c(1-id)i+ 09, (5)
J=—(1+id)§ + (F - 2) %, (6)
7 =—bZ +Re(%'9), (7)
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where the rescaled pump parameter 7 and the detuning
d are defined as:

F=r(l+a%), 6= “« (8)

To+1

The dynamical propertics of Egs. (5)-(7) have been
investigated in Refs. [13,14]. There, in the bad-cavity
case (o = 3,b = 1) for detunings 6 > 0.5 only pe-
riodic solutions were found [14]. When a # 6, this
scenario changes completely, as discussed in the next
section. Interestingly, for detuned two-level systems 7
is the actual pump parameter, while for semiconduc-
tor lasers r should be used. This means that when a
detuned two-level system shows interesting dynamics
at some value 7, its semiconductor counter part (with
a = #) will show identical dynamics at a pump value
reduced by a factor of 1 + a?.

3. Fixed points and their stability

In this section we analyze the fixed points and their
stability for the generalized Lorenz-Haken equations

(2)-(4).
3.1. First (lasing) threshold

Consider the trivial solution:
Re(xo) =Im(xp) = Re(yo) =Im(yg) =2 =0, (9)

which physically corresponds to the non-lasing state.
Performing a linear stability analysis of the trivial so-
lution is a standard technique to find the first thresh-
old [10], i.e., the pump value at which the CW lasing
action starts. By using this technique, the system de-
terminant is found to be the following quadratic poly-
nomial with complex coefficients:

D(s)=s"+(c+1+ib)s
+o(1+i0)[1 —r(l —ia)]. (10)

The characteristic equation, i.e., D(s) =0, has a root
with zero real part when the pump reaches the value:

—f+ /g an

= (- a)?

where

f=(l+at)(c+1)?=0(c—1)(6-—a), (12a)
g=40(0~a)? [(c+1)?+6%]. (12b)

Note that ry, ; does not depend on b and that ry, ; re-
mains unchanged if « and # simultaneously change
sign. The singularity of Eq. (11) at § = « can cause
numerical problems when « is too close to . These
can be circumvented by employing the Taylor expan-
sion of (11) up to first order in (8 — a):

a’ + (o + 1)?
(14+a?)(o+1)2
al—(oc+1)?
T o+ )
+0O[(8 - a)?]. (13)

Fih1 =

+ 3(0——(1)

Thus, when 8 = «, the first threshold reads, after
using 6=a/(o+1):

1 + 62
Ythl = 77—

e or fp g =1+ 8%, (14)

which is in agreement with previous work [ 13,14].
Fig. 1 shows the influence of the two new param-
eters a and @ on the first threshold for o = 3. Note
the asymmetry caused by €: For negative values of 4,
the first threshold increases considerably, especially
for large a. We only show positive «, since the first
threshold is symmetric in simultaneous sign changes
of a and 8. With increasing «a, the first threshold de-
creases for positive €, but it increases for negative 8.
In Fig. 2 we show the location of the first threshold for
a relatively small value of o = 1/30 obtained by us-

Fig. 1. First threshold as a function of « and 8 when o = 3.
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Fig. 2. First threshold as a function of a and 6 when o = 1/30.
This value of o corresponds to a single-mode bulk semiconductor
laser.

ing typical semiconductor laser parameters (7p = 0.1
ps and 7g = 3 ps). Note the dramatic difference with
Fig. 1. Now, the absolute value of @ rather than its sign
is relevant, while for increasing a, the first threshold
decreases significantly only, when |@] is smaller than
~2.5.

Obviously, reduction of the first threshold is very
attractive from point of view of device design: the
trend in the development of microlasers is directed
towards the design of “thresholdless” lasers [15]. By
controlling o or £, one may realize substantial first
threshold reduction. We will discuss the feasibility of
this approach in Section 5.

3.2. Second (instability) threshold

We now find the location of the second threshold,
e., the pump value at which the CW solution be-
comes unstable. Quite often, this is followed by a
regime of self-pulsating behavior, indicative of a Hopf-
bifurcation. The frequency involved in the bifurcation
is a good estimate for the repetition rate of pulses. We
will see that the two new parameters can have a dra-
matic effect on the value of the second threshold. In-
deed, we find that in a large region of parameter space,
where the resonant Lorenz-Haken system does not ex-
hibit a second threshold, our generalized model does,
leading to self-pulsations, period doubling, and possi-
bly chaos. We first determine the steady-state (CW)
solutions of the generalized equations (2)-(4). We

write the CW solutions as:

x(1) -(a +za "Yexp (—iAwst), (15)
ys(1) = (b + ib!) exp (—iAwst), (16)
7 (1) =z, (17)

where a; +ia;' and b, +ib are the respective complex
amplitudes of the electric field and the polarization,
and Aw is a frequency shift with respect to wq. After
substitution of Eqgs. (15)-(17) into the generalized
equations (2)-(4), it turns out that only the phase-
difference between the electric field and polarization
has a physical meaning. Therefore, without loss of
generality we use

a, + ia! = Asexp (ips), bl =0. (18)
The phase difference ¢ is determined by

o(—a)tan® g—[(o+1) (1+af)+0(0—a)] tan ¢,
+a(1 +6% =0, (19)

whose solutions determine the other CW characteris-
tics:

Awg = otan g, (20a)

=1 — [(1 + a8) cos® o, — -(0— a) sm2¢>s] B )
(20b)

As =/ bz, (20c)
a; = +A/\/1+ (Aws/0)?, a = (Aws/o)d.,

(20d)

b, = +A\/1 + (Aws/o)2. (20e)

When a =6, Eq. (19) has only one solution, namely
tan s = §, i.e., Aws = 8, which explains the trans-
formation used to obtain Egs. (5)-(7). When a + 8,
Eq. (19) has two solutions for tan ¢5. When the laser
is pumped above first threshold, only one of these so-
lutions will have physical meaning; the other solution
corresponds to an “anti-laser” state, where the inver-
sion has a very high value (far above threshold) and
hardly any power is generated. This is an unphysical
state, and we will not consider this state in the remain-
der of the paper. It is noted that when pumped below
first threshold, this “anti-laser” state becomes relevant
when the system is subject to optical injection. In that
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case, optical bistability can be found between the triv-
ial state and the two “lasing” states [16]. In this pa-
per we will only use pump levels that exceed the first
threshold, so we only consider the single “normal” las-
ing solution, i.e., the CW solution with the inversion
closest to threshold.

Each solution tang¢s of Eq. (19) corresponds to
one value for the inversion r — z; and field intensity
(al)?+ (al)2. The =+ signs in Egs. (20d), (20e) re-
flect the fact that when (xs, ¥s, z¢) is a solution of Egs.
(2)-(4), so is (—x5, —¥s, 2 ). In the Lorenz-Haken
model ¢, = 0, and the CW solution (19), (20a)-
(20e) reduces to the well-known

Aw; =0,
a,=bl =+t/b(r—1),

zx=r—1, (21a)
al =b'=0. (21b)

The plus and minus signs in Eq. (21b) correspond to
the two “eyes” of the Lorenz-attractor [10].

Performing a linear stability analysis around the
fixed point determined by Eqgs. (19)—(20e) yields the
following quartic characteristic equation:

4
Y d;si =0, (22)
J=0

where the coefficients are given by

ds=1, (23a)
dy=2(c+1)+b, (23b)
dr=(c+1D(o+142b) + (6 —2Aw,)?
4 b [1 L% Aws)J , (23¢)
v — Zs a

di =b(o+ )2+ b(0 - 20w,)?

—1
4 b [1+30’+62—U——Awf}, (23d)
r— 25 a
2
do = bz; [0(o+1) + Aw? + 0 (6 — Awy)?] .
r—2s

(23e)

Note that the stability of the lasing solution now also
depends on the parameter b, in contrast with the sta-
bility of the trivial solution.

We look for the pump value at which the character-
istic equation has a root of the form sy 2 = i£2 (zero
real part). The frequency {2 can be a good indicator

for the repetition rate of self-pulsations [ 17]. It should
be noted that this frequency is not related to the fre-
quency of relaxation oscillation, since that refers to
the energy exchange between the field and the inver-
sion only. In contrast, £2 is the angular frequency of
the undamped energy exchange between field, inver-
sion, and polarization. Without the active role of the
polarization, there is no second threshold, as can eas-
ily be verified by analyzing the generalized equations
after adiabatic elimination of the polarization.

From the characteristic equation, we obtain the fol-
lowing implicit equation for the second threshold:
(d} — dydrds + dod3) L:m =0, (24)
and the frequency involved is given by 2?2 = d,/ds.
The analytical form of ry, ; from Eq. (24) is not easy
to arrive at. In the simplest case, for whicha =8 =0,
the second threshold becomes:

rm2=0 ﬁ_bﬁ ) (25)
o—b—-1

A necessary condition for (25) to have meaning is
the aforementioned “bad-cavity condition” oo > b+ 1.
For example, when o = 3 and b = 1, the second
threshold occurs at ry 2 = 21, but when o = 1/30 and
b = 1/20000 (typical values for a bulk semiconductor
laser) no second threshold exists at all. For the detuned
two-level system, Zeghlache and Mandel [ 14] derived
a power series in the detuning & for the second thresh-
old 7w 2(6). It is interesting to note that, whereas for
all 8 Ap2(8) > P 2(0) (detuning shifts the second
threshold to higher values), the opposite is true for
ri2(6) (without the hat) in a large region in («, 8)-
space. The cause for this is the asymmetry parameter
a, which effectively reduces the second threshold. It
is a well-known fact that inhomogeneously broadened
systems have a lower second threshold than their ho-
mogeneously broadened counterparts [8].

We now illustrate the behavior of the second thresh-
old as a function of & and 8 by solving Eq. (24) for
two combinations of ¢ and b.

To study a system that satisfies the bad-cavity condi-
tion, we take o = 3 and b = 1. Fig. 3 shows the second
threshold ry, »(«, ) scaled to its Lorenz-Haken value
rin = rn2(0,0) = 21. Again we only show positive
a since the characteristic equation remains unchanged
under simultaneous sign-changes of @ and 6. Around
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Fig. 3. Second threshold as a function of « and &, when
o = 3 and b = 1, normalized to the Lorenz-Haken value
rina(a =0,8 =0) =21. The bad-cavity condition is satisfied for
these parameters.

(a = 0,6 = 0) a sharp peak in ry 2 is found, cor-
responding to the resonant Lorenz-Haken case. Start-
ing at the peak, ry 2 first decreases in all directions.
Then, depending on the direction, more complicated
behavior is found. Note that negative values of 8 are
accompanied by an increasing second threshold. For
positive values of both 8 and « a dramatic reduction
can be achieved. This is in agreement with the behav-
ior of the first threshold: in Fig. 1 the first threshold
is also dramatically reduced for positive 6.

When a system does not satisfy the bad-cavity con-
dition the results are even more surprising. When ¢ =
1/30 and b = 1/20000 (typical values for bulk semi-
conductor lasers: 7p = 0.1 ps, 7g = 3 ps, and 7y = 2
ns), the two additional degrees of freedom « and 8
allow for a second threshold in a large region of pa-
rameter space (see Fig. 4). Note that now, in contrast
with the bad-cavity case (Fig. 2), positive 8 increases
the second threshold. The fact that the values of the
second threshold are relatively large is less important
than that the second threshold exists at all. By increas-
ing o and b, these high values decrease to more use-
ful ones. The main point to note is that the bad-cavity
condition is no longer a prerequisite for the second
threshold to exist. In Section 5, we will discuss the
possibilities to decrease the second threshold to a more
accessible value.

Fig. 4. Second threshold as a function of a and # when o = 1/30
and b = 1/20000, typical values for single-mode bulk semicon-
ductor lasers. The bad-cavity condition is not satisfied for these
parameters.

4. Laser dynamics beyond the second threshold

So far we described the effect of two new parame-
ters, that take the asymmetry of the inhomogeneously
broadened gain profile into account, on the position
of both first and second laser threshold. To illustrate
the effect of a and 6 on the laser dynamics beyond
the second threshold, we have numerically solved the
generalized equations (2)-(4) for four combinations
of @ and 6 for a laser satisfying the bad-cavity con-
dition (o = 3 and b = 1) while operating at r =
2rmn. Fig. 5 shows the laser-intensity dynamics for the
four combinations. In each case, we show on the left
the trajectory of the system projected on the |x|>-|y|?
phase space, and on the right a sample of the associ-
ated laser-intensity evolution. The values of « and @
as well as ry 2 are given in the figure. For reference,
we show in Fig. 5(a) the situation for the resonant
Lorenz-Haken model, i.e., with both & and & equal to
zero and ry 2 = 21. Pumped at r = 2ry, 2, the system
exhibits the well-known Lorenz chaos. In Figs. 5(b)-
(d) we show the effect of nonzero « (b), nonzero 8
(¢), and both & and & nonzero (d). Note the striking
change on the dynamics for relatively small values of
a and 6. The electric-field intensity is periodic in all
three cases, a feature similar to that of the detuned
(8 > 0.5) two-level system, where it was concluded
that the introduction of a detuning destroys much of
the complicated behavior of the Lorenz-Haken equa-
tions and has a definite stabilizing effect [ 14].
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Fig. 5. Laser intensity dynamics of a bad-cavity laser for four different combinations of « and #, but all operated at r = 2ry, 5. Parameters
are: o = 3, b = 1. For each combination we show on the left-hand-side the trajectory of the system projected on the |x|2-|v|® phase
space, while the right-hand-side shows a sample of the corresponding evolution of the laser field intensity |x|2. (a) @ =8 =0, rya =21,
“classical” Lorenz-Haken chaos; (b) @ = 2.5, 8 =0, ry,» = 4.1, periodic modulation; (¢) @ =0, & = =25, ry2 = 4.7, period-2; (d)

a=0.5, 0=-0.5, rp, = 10.1, periodic.

Note, however, the period-2 dynamics in case (c)
for a negative value of 6. The intensity evolution seen
in Fig. 5 does not convey all information since phase
dynamics is lost. For this reason, we have chosen to
look at the evolution of the real parts of the com-
plex electric field amplitude and the induced polar-
ization. Indeed, as seen in Fig. 6, a different picture
emerges. On the left side of Fig. 6, we plot the tra-
jectory of the system projected on the Re(x)-Re(y)
phase space, and on the right a sample of the associ-
ated time-trace of the real part of the electric field am-
plitude. Since the phase of the laser field is irrelevant
in the Lorenz-Haken case, no additional information is
obtained from Fig. 6a. In the other three cases (a,b,c),
however, the phase does play an important role, and

we find phase dynamics qualitatively similar to the
Lorenz-Haken case (a), although the attractor is quite
different in each case. It appears that although the in-
tensity dynamics is much simplified by the introduc-
tion of the “detuning” parameter 6 and the asymmetry
parameter a, the phase dynamics remains chaotic.

5. Discussion: applications of the model

After Lorenz’ famous paper on Rayleigh-Bénard
convective fluid dynamics as a model for the unpre-
dictability of atmospheric turbulence, in which a first-
order approximation resulted in the Lorenz-equations,
it took more than a decade before it was realized by
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0 5 10 15
time [1,]

20

Fig. 6. Same as Fig. 5, except now the real parts of the electric field and the induced polarization are shown. Phase dynamics lost in Fig.

5 is retained here.

Haken that the same equations also describe a ho-
mogeneously broadened two-level system [1,2]. This
shows that one cannot predict in what context a spe-
cific nonlinear dynamics model will be used. In fact, it
may very well be that our generalized Lorenz-Haken
equations find use in both fluid dynamics and nonlin-
ear optics (or indeed in any other branch of nonlinear
science).

Here, we focus on the applicability of our model
to single-mode semiconductor lasers. The most com-
plete description of the semiconductor gain medium
is in the form of microscopic semiconductor Bloch-
equations, requiring fairly large computational effort
to be solved [18]. In the last few years, a number of
papers have appeared that attempt to model the ma-
terial polarization in a macroscopic manner [19-21].
Naturally, all formulations have in common that the

microscopic equations are averaged over the density
of states. When doing so, one is confronted with the
impossibility of getting a closed form for the time
dependence of the macroscopic material polarization.
Instead, a hierarchy of equations for the microscopic
dipole moment is obtained. One way to deal with such
an infinite hierarchy was put forward by Graham and
Cho [8] in the case of inhomogeneously broadened
gas-lasers.

A similar approach for single-mode semiconductor
lasers was used by Yao et al. [9], who proposed a dif-
ferent truncation of the hierarchy, yielding two addi-
tional variables, called x and {. The quantity x mea-
sures the carrier-induced complex gain (optical gain
and refractive index), while ¢ accounts for the dipole-
induced complex change of the macroscopic polar-
ization decay rate. The resulting model is in a sense
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“mesoscopic”: the two new (complex) variables are
time-independent in the macroscopic equations, but
need to be determined self-consistently from the mi-
croscopic equations. Our generalized Lorenz-Haken
equations are a rescaled version of the macroscopic
equations of Ref. [9].

It was found in Ref. [9] that « varies little with the
carrier density N around threshold, while to a good
approximation ¢ varies linearly with N in the range
over which N is likely to vary in most semiconductor
lasers (1x 108 em™3 < N < 3x10"8 em™3). A linear
variation of { (although called differently) was also
used in Ref. [21] where semiconductor lasers are de-
scribed as an effective two-level model with three ad-
ditional parameters. Theoretical expressions that pre-
scribe how the additional parameters must be calcu-
lated from the microscopic theory and how they are
interrelated, were not given in Ref. [21]. The relation
between « and ¢ and the two new parameters « and
@ in Eqgs. (2)—-(4) is given by

k=Re(x) (1 —ia), (26)
{=Re({)(1+i0). 27)

Here, « is the well-known linewidth enhancement
factor [ 11]. The parameter € has its origin in the fact
that averaging over the band energies makes the ef-
fective polarization decay rate complex. Therefore, 8
must be interpreted as an effective detuning for an
inhomogeneously broadened system. For the sake of
completeness, all relevant expressions from Ref, [9]
are given in the Appendix.

Because of the self-consistency requirement, both
« and { (and therefore a and €) are in principle time-
dependent, through the carrier density. When the semi-
conductor laser is operating in CW mode (below the
second threshold), one can generally ignore this time-
dependence: using selfconsistent values of « and @ is
sufficient. Strictly speaking, the dynamics of the two
quantities should be taken into account when the lin-
ear stability analysis is performed. This dynamics can
be readily neglected, when the carrier decay rate b is
much smaller than the photon decay rate o [9]. Of
course, when the system is pumped above the second
threshold, the dynamics of « and especially 8 may not
be neglected. It is with this in mind that we will apply
our model on single-mode semiconductor lasers.

Table 1
First and second threshold for typical bulk and QW single-mode
semiconductor lasers by using parameters from Ref. [9]

Type o' b1 a 0 Fih,) Tth,2

Bulk 30 20000 5 -5 1.001 15823
QW 60 40000 2 -—16 0997 37262

In Table 1, we give the values of o, b, «, 6, and
the first and second threshold for typical single-mode
bulk and quantum-well semiconductor lasers, using
the results of Ref. [9]. Note that the carrier decay
rate b is much smaller than the photon decay rate o,
justifying the neglect of the microscopic dynamics of
a and 6. Although there exists a second threshold for
both types of lasers, which is not predicted by the
“classical” Lorenz-Haken model, the values are too
high to be of practical interest.

One may explore the possibilities to get a semicon-
ductor laser to exhibit a second threshold around r =
10, while keeping both « and 8 fixed at their origi-
nal values (for a bulk semiconductor laser & = 5 and
# = —5). We have found, that in order to achieve
this, both ¢ and b have to be increased substantially.
Although 7p may be increased somewhat by operat-
ing at low temperatures (to reduce the contribution of
phonons), a substantial increase does not appear to be
likely. Decreasing the carrier lifetime and the photon
lifetime simultaneously will also have the desired ef-
fect. The photon lifetime 7p, can be decreased by anti-
reflection coating and values below 1 ps are feasible.
The carrier relaxation time can be reduced using some
recent techniques [23] and values in the range 0.3 ps
< 7n < 3 ns are feasible. In Figs. 7 and 8 we show
the intensity and (complex) amplitude dynamics of
a quantum-well semiconductor laser pumped at four
different values above the second threshold, occurring
at rpn 2 = 8.9 for the relaxation times 1p, = 167 fs, 7p =
100 fs, and 7y = 500 fs, while @ =2 and & = —1.6.

At r = 1.05rn2 = 10ry, (Fig. 7a), the inten-
sity shows an almost perfect harmonic modulation. As
the pump increases, the periodic modulation becomes
more anharmonic for r = 1.15ry 2 (Fig. 7b), exhibits
period doubling at r = 1.2ry, 2 (Fig. 7c), and evolves
towards quasi-periodic behavior when r = 1.235ry,,
(Fig. 7d). In cases (a) and (b), the contrast of the
intensity modulation is quite good, and the quantum-
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Fig. 7. Laser intensity dynamics of a modified (7g = 300 fs and 7y = 500 fs) quantum-well laser at at four different pumps, when the
microscopic dynamics of @ and @ is neglected. Parameters are: o = 0.3, b = 0.2, a = 2, and 8 = —1.6. The first threshold is located at
ra. = 1.006 while the second threshold is found at ry, > = 8.9. Left-hand-side depicts the trajectory of the system projected on the |x]?-1y)?
phase space, while the right-hand-side shows a sample of the corresponding evolution of the laser intensity |x{2. (a) r = 1.05ry, 7, harmonic
modulation; (b) r = 1.15ry2, slightly anharmonic modulation; (¢) r = 1.2ry,2, period-2 behavior; (d) r = 1.235r,, quasi-periodic

behavior.

well laser may serve as a self-pulsing laser at a repe-
tition rate ~ 2 THz.

As in the case of the bad-cavity laser (Figs. 5 and
6), the intensity evolution in Fig. 7 does not convey
all information. Fig. 8 shows the corresponding phase
dynamics of the field amplitude and induced polariza-
tion. The frequency of the intensity modulation, which
remains roughly the same for increasing pump, is re-
tained in the phase dynamics, and is on the order of
0.3/Tp.

Fig. 8 shows, however, an additional oscillation,
whose frequency increases from ~ 0.003/7p in Fig.
8a to ~ 0.03/7p in Fig. 8d. This slow oscillation is
the well-known semiconductor laser relaxation oscil-

lation. As the pump increases, the relaxation oscilla-
tion frequency approaches the fast frequency, and their
interaction becomes observable at r = 1.20ry 2 (Fig.
8c). When r = 1.235ry 5 (Fig. 8d), the phase is fully
chaotic due to this frequency mixing.

It should be realized, however, that the parameters
used to obtain Figs. 7 and 8 barely justify neglecting
the dynamics of & and §. A full analysis, however,
goes beyond the scope of this paper.
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Fig. 8. Same as Fig. 7, €xcept now the rea} parts of the electric field and the induced polanization gre shown. Phage dynamics Jogt in Fig,
7 is retained here,

6. Conclusions The second threshold is heavily dependent on the val-
ues of o and g, However, becayse of them, the lager
We have presented a new set of €quations whijch need not satisfy the so-called bad—cavity condition to
SCIve as a generalization of the Lorenz-Haken equa- have a secong threshold.
tions, both for the resonant and the detuned cage. Apart Examples of dynamic evolution beyond the second
from the Standard parameters . (ratio of dipole life- threshold are given for variopyg values of & and g, Sim-
time and twice the photon lifetime) ang p (ratio of ilar to the case of the detuned, homogeneously broad-
dipole lifetime and carrier lifetime), two additiona] ened, two-level System, we find that the intensity dy-
Parameters o and ¢ account for the asymmetry of the namics is stabilized by the introduction of the two new
gain and inhomogeneoys broadening. When & and g parameters, However, the phase shows rich nonlinear
are zero, the mode| reduces to the resonant Lorenz- dynamics. As 5 result, a self—pulsating laser (periodic
Haken case. When chosen equal but not zero, the equa- evolution of the Jager intensity) may still exhibjt phase
tions describe 3 detuned two-level system. The effect chaos.
of these new parameters on the location of the first These generalized Lorenz-Haken cquations are 3
(lasing) threshold and the second ( instability ) thregh- rescaled form of 5 recently reported macroscopic
old is Investigated. It is found that the first threshold model for ultrafas Semiconductor [ager dynamics
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edge, that single-mode semiconductor lasers can
exhibit a second threshold, even though they do not
satisfy the bad-cavity condition. For typical semicon-
ductor lasers the second threshold is too high for any
practical purposes. However, the second threshold is
reduced significantly when both the photon- and the
carrier-lifetimes are shorter. In that case our model is
close to the limit where, in the case of semiconductor
lasers, the dynamics of « and 8 may no longer be
neglected, but may be applicable to other nonlinear
(optical) systems.
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Appendix A

In Ref. [9], an effective Maxwell-Bloch descrip-
tion is given for a single-mode semiconductor laser.
The microscopic Bloch equations for the occupation
probabilities n. (electrons) and np (holes) and the
transition probability p need to be averaged over the
density of states in the semiconductor bands to yield
equations for the macroscopic carrier density N and
polarization P. By defining two complex quantities «
and { as

1
KN=<,’Z§_£'{__>, (A1)
1+i4

@)/ w

where w is the dipole moment and 4 = (@ — wg) iy
is the detuning between an individual resonance and
the optical frequency scaled to the dipole dephasing
time 7i,, the following macroscopic Maxwell-Bloch
equations are obtained:

dE 1 1
S % p _F (A3)
dt  2nng€p 27ph

2
@@ __ (ﬂ +iK'u—EN>, (A4)

dt Tin h

dv 1 N 1

TR +2h Im(E’P). (A.5)
Here, E is the complex electric field amplitude, 7py, is
the photon lifetime, 7¢; is the carrier relaxation time,
and / is the pump current density. Further, wy is the
optical frequency, n is the background refractive index,
ng is the group index, g is the elementary charge, and
V is the active volume.

Upon inspection of (A.4) one finds that by aver-
aging the individual transitions (with dephasing time
Tin ) Over the asymmetric bands, the effective two-level
dephasing time and detuning are 7p = 7,/Re({) and
desr = Im({) /7in, respectively.

By normalizing time to 7p and using (26), (27),
and the following definitions:

nng€oTp
x=,/——"—"E, A.6a
hawo N Te ( )
. TpTE
)= —_— P, .
Y =1 S hwonngeoNe (A.6b)
z =r— (N/Nn), (A.6¢)
2hegnny
Np = ———=———, A.6d
" = Re(x) worerinp? ( )
r=Irn/(gVNm), (A.6e)

the generalized Lorenz-Haken equations (2)-(4) are
obtained from Egs. (A.3)-(A.S).
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