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Coupled nonlinear equations that describe the nonlinear process of stimulated Raman scattering in optical
fibers are derived. These equations account in a unified manner for the Raman amplification, the Stokes gen-
eration, the induced self-frequency shift, and the interpulse stimulated Raman-scattering-induced cross-
frequency shift. The equations reduce to a well-known form for relatively wide picosecond pump pulses. Us-
ing these equations, we show theoretically that the effects of cross-phase modulation, self-frequency shift, and
cross-frequency shift cause two optical pulses copropagating in the anomalous dispersion regime of the fiber to
shed some of their energy and evolve into a narrower soliton, which has a higher frequency shift than a single
propagating soliton. It is also shown that the self-frequency shift of femtosecond pulses is detrimental to Ra-
man generation. As the input pulse width is reduced, the spectrum of the pulse shifts by an amount compa-
rable with the Raman shift. The shift increases continuously with propagation at such a rapid rate that the
Stokes pulse has no time to build up from noise to significant energy levels. © 1996 Optical Society of
America.
1. INTRODUCTION

Raman scattering is a process by which a fraction of the
light incident upon a transparent material is shifted
downward in frequency through molecular vibrations.1

For ultrafast pump pulses propagating in an optical fiber
this phenomenon can appear in several different forms.
The most common manifestation of stimulated Raman
scattering (SRS) is Raman generation,2–4 which describes
the Stokes-pulse growth from spontaneously scattered
Raman-shifted radiation in the fiber. Raman amplifica-
tion, the second manifestation, occurs when the energy
from an intense pump pulse is transferred to a weaker
signal pulse (copropagating or counterpropagating)
through SRS.5 Finally, intrapulse SRS appears as a
transfer of energy from high-frequency components of a
pulse to the lower-frequency components of the same
pulse in a nonlinear phenomenon called the self-
frequency shift (SFS).6–8 These manifestations of SRS
have generally been treated as separate problems. The
description of Raman generation has used two coupled
nonlinear Schrödinger equations, with one equation de-
scribing a seed pulse that represents the average proper-
ties of the spontaneous Raman noise in the fiber.2,3 The
same set of equations is used to describe Raman amplifi-
cation, but instead of a seed pulse one of the equations
governs the evolution of the weak input signal.5 Finally,
intrapulse SRS is described by a single equation govern-
ing the pump pulse evolution, with other manifestations
of SRS ignored.6,7

Our objective in this paper is to provide a unified
framework for SRS phenomenon that occurs when ul-
trafast pump pulses propagate in a single-mode fiber. To
this end, a set of two coupled nonlinear wave equations is
derived to describe the various manifestations of SRS in a
unified manner. These equations are valid as long as the
slowly varying envelope approximation holds and can be
0740-3224/96/1002170-08$10.00
applied for pulse widths as short as ;10 fs. For femto-
second copropagating pulses there is a new interpulse
SRS effect, referred to here as the cross-frequency shift
(CFS),8 which is a spectral downshift of a pulse because of
the presence of a second copropagating pulse. The effect
of the CFS and the SFS on Raman generation is also ex-
amined.
This paper is organized as follows. In Section 2 an

outline of the derivation of the coupled nonlinear Schrö-
dinger equations is given. For picosecond pulses the sim-
plified form of these equations given in Section 3 can be
used. The full equations are used in Section 4 to describe
the propagation of copropagating ultrashort solitons, and
it is shown that the SFS can inhibit the buildup of Stokes
light from noise. The results are summarized in Section
5.

2. COUPLED NONLINEAR SCHRÖDINGER
EQUATIONS
In previous studies it was pointed out that the polariz-
ability of a molecule is affected on two different time
scales during pulse propagation in an optical fiber.4,9

The first is an essentially instantaneous time scale asso-
ciated with the electronic response and leads to an
intensity-dependent refractive index (Kerr nonlinearity).
The second time scale is associated with molecular vibra-
tions and cannot be considered instantaneous because
molecules respond over a period of 50–100 fs.9 In addi-
tion, vibrations of the molecule can occur spontaneously
through, for example, thermal noise. The total induced
polarization, P(r, t), which accounts for the linear polar-
ization PL(r, t), the noise-induced polarization PN (r, t),
and the third-order nonlinear polarizations that are due
to the Kerr effect PK (r, t) and to the Raman effect
PR(r, t), can be written as1,4
© 1996 Optical Society of America
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where E(r, t) is the electric field, e0 is the permittivity of
free space, xL(t) is the linear susceptibility, xK is the Kerr
susceptibility, xR(t) is a third-order time-dependent non-
linear susceptibility that accounts for Raman scattering,
FN(t) is a Langevin noise source representing the driving
force that leads to random vibrations of silica molecules,
and RN(t) is the response function that converts FN(t)
into a susceptibility through

xN~t ! 5 E
2`

`

RN~t 2 t8!FN~t8!d t8, (2)

where xN(t) is a noise susceptibility.
In our previous study two coupled-wave equations were

derived by use of the Kerr and Raman nonlinear
polarizations.4 However, the expression for the Raman
polarization was limited in accuracy, because the spec-
trum of the input pump pulse was assumed to be narrow
compared with the Raman-gain spectrum. Such an ap-
proximation limits the validity to minimum input pump
pulse widths of ;1 ps. In what follows, the effect of re-
moving this assumption on the Raman portion of the po-
larization is discussed. The derivation for the Kerr and
noise polarizations remain the same as in Ref. 4.
The electric field and the Raman polarization can be

written as the sum of the pump and the Stokes waves and
are given, respectively, by

E~r, t ! 5 1/2 x̂@Ep~r, t !exp~2ivpt ! 1 Es~r, t !

3 exp~2ivst ! 1 c.c.#, (3)

PR~r, t ! 5 1/2 x̂@PRp~r, t !exp~2ivpt ! 1 PRs~r, t !

3 exp~2ivst ! 1 c.c.#. (4)

Here x̂ is the polarization unit vector; vj is the carrier fre-
quency, with the subscript j (5p or s) representing the
pump or the Stokes pulse respectively; Ej(r, t) is the en-
velope of the electric field; and PRj(r, t) is the envelope of
the Raman polarization field. Both envelopes are slowly
varying compared with the time scale of 1/vj . A similar
expression can be written for the noise force that leads to
random molecular vibrations:

FN ~z, t ! 5 1/2 x̂@ fN~z, t !exp~2iVRt ! 1 c.c.#, (5)

where fN(z, t) is the slowly varying envelope of the ran-
dom force and VR 5 vp 2 vs is the vibrational frequency
of the molecule and is assumed to be at the peak of the
Raman-gain curve. Equations (3)–(5) assume that both
the pump and the signal pulses maintain their same
states of linear polarization along the x axis. The slowly
varying envelope approximation is equivalent to assum-
ing that the pulse spectral width Dv j ! v j , a condition
that holds true for pulses of widths greater than 10 fs in
the visible and the near-infrared regions.
The calculation of the Raman polarization [see Eq. (1)]

requires evaluation of the dot product E • E. Using Eq.
(3), we can write this product as

E • E 5 1/2uEpu2 1 1/2uEsu2 1 1/2Ep Es*

3 exp@2i~vp 2 vs!t# 1 1/2Ep*Es

3 exp@i~vp 2 vs!t# 1 1/2Ep Es
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2 exp~2i2vst !

1 1/4Es*
2 exp~i2vst !. (6)

Equation (6) is substituted into the Raman-polarization
portion given in Eq. (1). All terms except the first four
can be dropped, because they require a phase-matching
condition. The remaining four terms lead to the follow-
ing expression for the Raman polarization:

PRj~r, t ! 5 1/4e0 Ej~t !E
2`

`

xR~t 2 t8!@ uEj~t8!u2

1 uEk~t8!u2#d t8 1 1/2e0 Ek~t !

3 E
2`

`
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3 exp@2i~v j 2 vk!~t8 2 t !#d t8, (7)

where for notational convenience we do not show the r de-
pendence of the electric field.
To incorporate Eq. (7) into coupled amplitude equations

for the pump and the Stokes wave, the starting point is
Maxwell’s wave equation

¹2E 2
1

c2
]2E

]t2
5 m0

]2P

]t2
, (8)

where c is the velocity of light in vacuum and m 0 is the
vacuum permeability. The distribution of the electric
field perpendicular to the direction of propagation,
Tj (x, y), can be separated out from the amplitude enve-
lope Aj (z, t) of the pump or Stokes pulse, assuming that
nonlinear effects do not significantly alter the fundamen-
tal fiber-mode distribution Tj (x, y).

1 The electric field is
then written as

Ej~r, t ! 5 Tj~x, y !Aj~z, t !exp~ib0j z ! ~ j 5 p, s !,
(9)

where b0j is the wave number corresponding to the fre-
quency vj . In general Tp(x, y) and Ts(x, y) are differ-
ent. However, this difference is small enough that the
two can be approximated by the same distribution,
T(x, y).
One can derive the coupled equations more easily by

working in the frequency domain. Using the Fourier
transform of Eq. (8), we can calculate the terms in the re-



2172 J. Opt. Soc. Am. B/Vol. 13, No. 10 /October 1996 C. Headley III and G. P. Agrawal
sulting equation as follows. We find the electric field by
substituting Eq. (9) into Eq. (3) and taking the Fourier
transform of this result. We find the polarization by tak-
ing the Fourier transform of Eq. (1) with PR(r, t) given by
Eq. (7) and using the previously calculated value of the
electric field. By following the method outlined in Ref. 4,
which assumes that the nonlinear and noise contributions
to PNL(r, t) are a small perturbation to the refractive in-
dex, we can obtain the following coupled equations for the
pump and the Stokes waves:4,10
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The field amplitude has been normalized such that

uj 5 k AjF E
2`

`

T 2~x, y !d xdyG1/2,
k2 5 1/2nj~e0 /m0!1/2. (12)

k was introduced to normalize uj such that uuju
2 repre-

sents power and nj is the linear index of the fiber. We
have combined the Kerr and Raman susceptibilities into
the nonlinear coefficient gj by using the definitions
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where n2 is the nonlinear refractive index, x0 is the peak
value of x R(t), and Aeff is the effective core area of the fi-
ber. fR is the fraction of the nonlinearity that arises be-
cause of molecular vibrations and is given as

fR 5 S 1 1
3xK

2x0
D 21

. (14)

Finally, hp(t) and hs(t) are the response functions for the
noise term, calculated as

hj~t ! 5
v j RN~t !
4cnj

~ j 5 p, s !. (15)

Various terms in Eqs. (10) and (11) have the following
physical interpretation: The first term describes how
the pulse envelope changes with distance. The next
three terms represent the effects of the group velocity, the
group-velocity dispersion, and the third-order dispersion.
The last term on the left-hand side of each equation is for
the fiber loss. The first two terms on the right-hand side
of each equation include the Kerr-induced (electronic)
contribution to self-phase modulation and cross-phase
modulation (XPM), respectively. The next two terms
represent the molecular contribution to self-phase modu-
lation and cross-phase modulation, respectively, as well
as describing the interpulse SFS and the intrapulse CFS.
The next term on the right is responsible for Raman am-
plification, and the final term describes spontaneously
scattered noise in the fiber. The role of the Raman terms
is further explained in Section 4.
Equations (10) and (11) are valid for pulse widths up to

the limit of the slowly varying envelope approximation
(;10 fs). However, for pulse widths greater than 1 ps
certain simplifying assumptions can be made. Before
considering the role of the SFS and the CFS on SRS pro-
cess, we examine in Section 3 the approximations that
can made be for picosecond pump pulses.

3. PICOSECOND REGIME
To understand the approximations that can be made for
picosecond pump pulses, consider the two terms propor-
tional to fR on the right-hand sides of Eqs. (10) and (11):

Rj~t ! 5 ig j fRujE
2`

`

hr~t 2 t8!@ uuj~t8!u2 1 uuk~t8!u2#d t8

1 ig j fRukE
2`

`

hr~t 2 t8!uj~t8!uk* ~t8!

3 exp@2iVR~t 2 t8!#d t8, (16)

where it should be noted that the sign of the exponent
changes when j 5 p. For relatively broad pulse widths
(.1 ps), uj and uk can be treated as constants compared
with the time scale under which hr(t) is varying. Equa-
tion (16) can then be written as
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The normalization of the response function in Eq. (13)
means that the first integral in Eq. (17) is equal to 1.
The second integral is equal to the Fourier transform,
h̃r(v), of the Raman response function evaluated at fre-
quency v 5 VR . The real @ h̃r8(v)# and the imaginary
@ h̃r9(v)# parts of h̃r(v) are plotted in Fig. 1. h̃r8(v) is re-
sponsible for Raman-induced index changes, whereas
h̃r9(v) is responsible for the Raman gain. The Raman-
gain spectrum is quite wide (;10 THz); therefore pulse
spectral widths below ;0.5 THz can be considered small
enough that the spectra of such pulses are nearly delta
functions. This spectral width corresponds to temporal
pulse widths of ;1 ps. Equation (17) can now be written
as

R~t ! 5 ig j fRuj~t !@ uuj~t !u2 1 uuk~t !u2#

2 g j f̃Rhr9~2VR!uj~t !uuk~t !u2, (18)

where h̃r(2VR) 5 ih̃r9(2VR) at the peak of the Raman-
gain curve, as can be seen from Fig. 1, has been used. Fi-
nally, the Raman-gain coefficient gj can be defined as

gj 5 2 fRg juh̃r9~VR!u. (19)

Using Eqs. (18) and (19), we can write coupled ampli-
tude equations for the picosecond regime as
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Fig. 1. Imaginary (solid curve) and real (dashed curve) parts of
the Raman response function. The imaginary portion hr9(v) is
proportional to Raman gain, and the real part hr8(v) is propor-
tional to Raman-induced index changes.
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where the third-order dispersion is neglected for picosec-
ond pulse widths and it is assumed that both the pump
and the Stokes pulses are incident at the fiber so the noise
in the fiber is negligible compared with the input power of
these pulses. The factor of 2 2 fR as opposed to 2 for the
XPM term was explained in Ref. 11. It is worthwhile to
note that the ratio of Raman gain to the nonlinear param-
eter, q 5 gp /gp ,

5,6 is generally approximated by 0.5.
This ratio can be used as a check of Eqs. (20) and (21) by
use of the new variables presented in this paper. Such a
calculation yields

q 5
gp
gp

5 2 fRh̃r8~VR! 5 0.50, (22)

where a widely accepted value of fR 5 0.18 (Ref. 9) and a
value of h̃r9(vR) 5 1.38 from Fig. 1 have been used. The
calculated value of q agrees with the accepted value of
0.5.
The coupled amplitude equations are best suited for the

case of Raman amplification in which both the pump and
the Stokes pulses are incident at the fiber input end.
However, when there is no input Stokes pulse, and a
Stokes pulse is formed through Raman generation, the
assumption that the Stokes pulse spectrum is narrow
compared with the Raman-gain curve is not initially
valid. The reason is that the Stokes pulse builds up from
noise whose spectral width can be considered as broad as
the Raman-gain spectrum. This was the case studied in
Ref. 4. By following the procedure outlined above and in
Ref. 4 we can write the coupled equations for Raman gen-
eration as
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4. SUBPICOSECOND REGIME
For pump pulse widths of &1 ps the assumption that the
spectrum of the pump and the Stokes pulses is narrow
compared with the Raman-gain spectrum is no longer
valid. The full Raman term given in Eq. (16) must then
be used. We can best explain the role of each term in the
frequency domain by calculating the Fourier transform of
Eq. (16):

R̃j~v! 5 ig jfRE
2`

` E
2`

`

h̃r~v1!ũ j~v 2 v1!

3 ũ j~v1 2 v2!ũ j* ~2v2!dv2dv1
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where again the sign of VR changes for j 5 p. The major
contribution to the first two terms in Eq. (25) comes when
v1 5 0 and v 5 2v2 5 v j for the first term and v1
5 0, v 5 v j , and v2 5 2vk for the second term [for
these values h̃r(v) has only a phase contribution]. For all
other combinations the integrand becomes relatively
small. For the nonzero combination of v, v1 , and v2 , as
the pulse spectrum broadens the contribution from the
imaginary portion of h̃r(0) increases. Figure 1 shows
that half of the spectral components of the pump pulse see
h̃r9 of one sign and the other half see h̃r9 with the opposite
sign. The result is that there is a transfer of energy
within the pulse from the high-frequency components to
the low-frequency components and the mean frequency of
the pulse is constantly decreasing. For the first term of

Fig. 2. Change in the mean frequency as a function of distance
for (i) a fundamental soliton, (ii) two copropagating fundamental
solitons with no interpulse SRS, (iii) two copropagating funda-
mental solitons with no interpulse SRS and no XPM, and (iv)
two copropagating fundamental solitons. Parameters are
tp 5 ts 5 100 fs, b2p 5 25 ps2 km21, b2s 5 25.35 ps2 km21,
gp 5 3.50 km21 W21, gs 5 3.27 km21 W21, P0p 5 143 W, and
P0s 5 164 W.
Eq. (7) this spectral shift results in a SFS, whereas for the
second term the spectral shift is induced because of the
presence of another copropagating pulse, a (Raman-
induced) CFS.8 The third term in Eq. (25) is responsible
for Raman amplification of the Stokes pulse. Equations
(10) and (11) are valid up to the limit of the slowly varying
envelope approximation (Dv j ! v j) or for pump pulse as
short as 10 fs. In the following subsections the effect of
the CFS on copropagating solitons and the effect of the
SFS on Raman generation are studied.

A. Cross-Frequency Shift
A numerical code was written based on the fast-Fourier-
transform split-step method1 to simulate evolution of the
pump and the Stokes pulses as described by Eqs. (10) and
(11). The convolution integrals were evaluated by multi-
plication of the Fourier transform of the appropriate vari-
ables, followed by an inverse Fourier transform of the re-
sult. The noise term is simulated by the generation of
random numbers with a Gaussian distribution of zero
mean and unit variance. The integrals in Eqs. (10) and
(11) were included in the nonlinear operator used in the
fast-Fourier-transform split-step method.1 We quanti-
fied the effects of the SFS and the CFS by calculating the
mean frequency n j,avg of the pulse spectrum. This quan-
tity is defined as

n j,avg~z ! 5
E nuũ j~z, n!u2dn

E uũ j~z, n!u2dn

~ j 5 p, s !, (26)

where ũj(z, v) is the Fourier transform of uj(z, t).
Figure 2 is a plot of the mean frequency versus distance

for the Stokes pulse, copropagating with a pump pulse.
Both pulses are initially fundamental solitons with a pro-
file uj(0, t) 5 AP0j sech(t/tj), such that N, the order of the
soliton, is 1, where N is defined as

N 2 5
gp P0ptp

2

ub2pu
5

gsP0sts
2

ub2su
. (27)

The parameters used in the simulations are tp 5 ts
5 100 fs, b2p 5 25 ps2/km, b2s 5 25.35 ps2/km, gp
5 3.50 (km W)21, gs 5 3.27 (km W)21, P0p 5 143 W, and
P0s 5 164 W. The effect of pulse walk-off is neglected,
and Raman amplification is negligible because of the
small frequency difference between the pulses. This cor-
responds to a situation such as a wavelength-division-
multiplexing scheme in which the wavelength difference
between the pump and the Stokes pulses can be 1–2 nm.
The length of fiber used is expressed as a function of the
soliton period Z0 , defined as

Z0 5
p

2
tp
2

ub2pu
. (28)

Curve (i) of Fig. 2 is for the case of a Stokes pulse propa-
gating by itself, curve (ii) shows the effect on the Stokes
pulse of adding a copropagating pump pulse but neglect-
ing the CFS, curve (iii) is the same as curve (ii) with the
XPM terms in Eqs. (10) and (11) set equal to 0, and finally
curve (iv) is the same as curve (ii) with the CFS included.
Curve (i) is shown for reference and represents the well-
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known soliton SFS. This result was obtained by simula-
tions in which up(0, t) 5 0 and the spontaneous Raman
noise is neglected. The effect of noise in the fiber is stud-
ied in Subsection 4.B in the context of a Raman generator.
Curve (ii) shows that the presence of a pump pulse,

even when one does not consider interpulse SRS, leads to
a significant increase in the frequency shift of the Stokes
pulse, from 20.55 to 22.7 THz at z/Z0 5 15. The reason
for this becomes clear from Fig. 3. Figure 3(a) is a plot of
the Stokes pulse for several lengths of fiber when pump
and the Stokes pulses propagate simultaneously. It
shows that the Stokes pulse has shed some of its energy
and a narrower pulse has evolved. The SFS increases in-
versely with the fourth power of the pulse width6; there-
fore the narrower pulse experiences an increased fre-
quency shift. This can be seen in the plot of the Stokes
pulse spectrum at 15Z0 in Fig. 3(b). The portion of the
spectrum that is shifted out to the red side of the spec-
trum represents the narrow spike that has split off.
There is a simple intuitive explanation for this behavior.
It is well known that during the propagation of higher-
order solitons the presence of intrapulse SRS causes the
pulse to shed some of its energy into a dispersive wave
and evolve into a shorter pulse. This shorter pulse then
downshifts in frequency in a manner similar to that ob-
served in Fig. 3(a).12 The situation here is analogous. In
the presence of a second pulse, the nonlinear induced
chirp on the soliton comes from both SPM and XPM.
This increased nonlinearity is equivalent to having an in-
creased input power or a higher-order soliton; hence the

Fig. 3. (a) Shapes and (b) spectra of the Stokes pulse, showing
the effect of intrapulse stimulated Raman scattering when the
Stokes pulse copropagates with a pump pulse. Input powers for
both pulses correspond to a fundamental soliton.
same splitting of the pulse spectrum occurs that would oc-
cur for higher-order solitons.
To verify the explanation that the copropagating soli-

tons behave as higher-order solitons, we obtained results
for the pump and the Stokes pulses by including the SFS
and the CFS but with the XPM term artificially set to
zero. Curve (iii) of Fig. 2 shows that the frequency shift
experienced by the pulse is larger than that which occurs
for the case of a single soliton propagating in the fiber but
not so large as that obtained when XPM is included
[curve (ii)]. The increase is due to the additional fre-
quency shift introduced by the CFS effect. As expected,
plots of the pulse shape and spectra show no pulse split-
ting taking place.
Finally, the contribution to the process of the CFS can

be studied by comparison of curves (ii) and (iv) in Fig. 2.
The CFS increases the frequency shift seen compared
with that seen when the pulse is traveling alone. The
frequency shift changes from 22.2 to 24.7 THz after
15Z0 . Equations (10) and (11) predict this increase be-
cause the additional contribution provided by interpulse
SRS is of the same order of magnitude as it is for intra-
pulse SRS. This increase is more than doubled because
the solitons evolve into narrower solitons with higher
peak powers. Plots of the pulse shape and spectrum that
correspond to curve (iv) show the same qualitative behav-
ior as those seen in Fig. 3.

B. Effect of the Self-Frequency Shift on Raman
Generation
In Subsection 4.A it was seen that the SFS leads to a fre-
quency downshift in the spectrum of a fundamental soli-
ton. This affects Raman generation as follows. Because
of the SFS any Stokes pulse generated will have less en-
ergy than it would have in the absence of intrapulse SRS.
This is because the pump pulse’s frequency is downshift-
ing, and therefore the frequency of the spontaneous Ra-
man noise’s being amplified is changing. If the spectral
downshift occurs over lengths of fiber that are too short to
permit significant amplification of noise at a given fre-
quency, then a Stokes pulse will not be generated.
To explore the Raman generation process during a

SRS-induced SFS, we carried out numerical simulations
with femtosecond pump pulses. To facilitate the discus-
sion, two length scales are introduced, the dispersion
length LD and the walk-off length Lw . These lengths are
defined, respectively, as1

LD 5
tp

2

ub2pu
, LW 5

tp
udu

, (29)

where d is a walk-off parameter defined as the difference
between the inverse of the group velocities of the pump
and the Stokes pulses, respectively.1 LD and Lw describe,
respectively, the length scales over which group-velocity
dispersion and walk-off become important. During Ra-
man generation walk-off effects are not negligible because
the frequency difference between the pump pulse and the
Stokes pulse generated is ;13.2 THz, the frequency at
which the maximum Raman gain occurs. One can use
the walk-off length to calculate the threshold power Pth
by using the criterion1
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gpPthLw > 16. (30)

If first-order solitons are used, the length of fiber nec-
essary for Raman generation to be seen would be much
larger than Lw . For example, the peak power for a fun-
damental soliton with tp 5 100 fs, gp 5 3.5 (W km)21,
and b2 5 2 5 ps2/km is 143 W. Using inequality (30)
with gp 5 1.75 (W km)21, we calculate that Lw > 64 m.
The pulses would have to separate by less than 100 fs in
the 64 m of fiber or have a walk-off of less than 1.56 fs/m,
a number so small that this is the equivalent to saying
that there should be no walk-off between the pulses.
Hence higher-order solitons are used to reduce the fiber
length necessary to achieve Raman generation. For the
dispersion-shifted fiber under consideration, pulses
shorter than ;1 ps satisfy the criterion that LD , Lw .
Thus walk-off can be neglected for fiber lengths less than
LD . To determine the input pump power necessary, one
can use inequality (30) in conjunction with Eq. (27).
From Eq. (22) the relationship gp 5 gp/2 is substituted
into inequality (30) along with Lw 5 LD . The resulting
threshold power is used as the input power P0 in Eq. (27)
to give N2 5 32. The value of N is raised to 6, the near-
est integer, and the input peak power is calculated for an
N 5 6 soliton with b2p 5 25 ps2/km and gp 5 3.5
(W km)21. The results of these calculations are shown in
Table 1.
Figure 4(a) shows the results that we obtained by

propagating a 1-ps pump pulse with the parameters given
in Table 1 and with gs 5 3.27 (km W)21, gs 5 1.63
(km W)21, and b2s 5 25 ps2/km. The results show that
after a distance of Z0 two Stokes pulses have formed.
This occurs because initially a splitting of the pump pulse
owing to intrapulse SRS occurs. The first pump pulse
that splits away from the main pulse excites a Stokes
pulse, which eventually depletes the copropagating por-
tion of the pump pulse. Meanwhile, a second pulse,
which has split off from the main pump pulse, also begins
to excite a Stokes pulse. This pulse has a smaller peak
power because the second pump pulse has not been com-
pletely depleted. A plot of the Stokes spectrum in Fig.
4(b) shows that the Stokes pulse spectrum is itself under-
going a frequency downshift. Simulations of longer fiber
lengths show that the first Stokes pulse seen in Fig. 4
maintains its intensity and width. Examination of the
energy lost by the pump pulse reveals that the pump
pulse loses 45% of its energy to the first Stokes pulse, and
at LD it has lost an additional 14% to the second Stokes
pulse.
The results of propagating a 100-fs, N 5 6 soliton over

LD show the characteristic splitting of the pump pulse
that is due to intrapulse SRS; however, unlike in the pre-

Table 1. Pulse Width, Dispersion Length, and
Input Pump Power for N 5 6 Soliton with
gp 5 1.75 (km W)21 and b2p 5 25 ps2/km

tp LD (m) P0 (W)

1 ps 200 51.4
500 fs 50 205.7
100 fs 2 5140
vious results, there is no Stokes pulse generated from
noise. The frequency of the pump pulse has shifted by
229.7 THz after one dispersion length, or more than the
13.2-THz Stokes shift. Although there is some energy at
the Stokes frequency, most of it belongs to the pump
pulse. Simulations with the interpulse and intrapulse
SRS terms turned off show that over the same distance a

Fig. 4. (a) Shapes and (b) spectra showing the growth of the
Stokes pulse from noise during the propagation of a sixth-order
soliton with parameters tp 5 ts 5 1 ps, b2p 5 25 ps2 km21,
b2s 5 25.35 ps2 km21, gp 5 3.50 km21 W21, gs 5 3.27
km21 W21, gp 5 1.75 km21 W21, and gs 5 1.63 km21 W21.

Fig. 5. Frequency shift plotted as a function of the pulse width
experienced by a sixth-order soliton over one dispersion length.
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Stokes pulse with a peak intensity of 310 W develops if
SFS does not occur. Clearly SFS is detrimental to Ra-
man generation for femtosecond pump pulses.
To set a limit on the minimum width of the pump pulse

for which Raman generation can occur, an expression for
the frequency shift experienced by the pulse would be
useful. Such an expression was derived in Ref. 6 for a
fundamental soliton and in Ref. 8 for copropagating
pulses. However, these results assumed that the pulse
shape was not changing during propagation, which is
clearly not the case here. To find an expression for the
frequency shifts described here one would need an ana-
lytical expression for the variation of pulse shape with
propagation. To the best of our knowledge, no such ana-
lytical solution exists. Therefore, to quantify the fre-
quency shift experienced by an N 5 6 soliton, we con-
ducted the simulations for various pump pulse widths
with the noise term neglected. The results, showing a
frequency shift after one dispersion length as a function of
pulse width, are shown in Fig. 5. It should be noted that
the decrease in frequency shift after 200 fs corresponds to
a decrease in hr(t) as illustrated in Fig. 1 of Ref. 6.

5. CONCLUSIONS
In this paper coupled nonlinear Schrödinger equations
that account for Raman amplification, generation, and
the SRS-induced SFS and CFS in a unified manner are
presented. These equations are valid as long as the
slowly varying envelope approximation is valid (pulse
widths as short as 10 fs). For picosecond pulses these
equations reduce to the standard equations.
The coupled nonlinear Schrödinger equations were

used to study the effect of the CFS on copropagating soli-
tons. The results show that when a splitting of the soli-
tons occurs that is similar to that which occurs when a
single higher-order soliton travels under the influence of
the soliton SFS, the frequency shift of the pulse increases
as the result of the CFS. It was also shown that the SFS
reduces the amount of energy transferred to the Stokes
pulse during Raman generation. As the pulse width is
reduced below 1 ps, the pulse spectrum downshifts
bysuch a large amount that the concept of a distinct
Stokes pulse becomes meaningless.

REFERENCES
1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic,

San Diego, California, 1995).
2. K. X. Liu and E. Garmire, ‘‘Understanding the formation of

the SRS Stokes spectrum in fused silica fibers,’’ IEEE J.
Quantum Electron. 27, 1022–1030 (1991).

3. V. A. Aleshkevich, G. D. Kozhoride, and M. V. Shamonin,
‘‘Generation of Stokes stimulated Raman scattering pulses
from spontaneous noise in fiber lightguides,’’ J. Commun.
Technol. Electron. 38, 104–109 (1993).

4. C. Headley III and G. P. Agrawal, ‘‘Noise characteristics of
picosecond Stokes pulses generated in optical fibers
through stimulated Raman scattering,’’ IEEE J. Quantum
Electron. 31, 2058–2067 (1995).

5. C. Headley III and G. P. Agrawal, ‘‘Simultaneous amplifi-
cation and compression of picosecond optical pulses during
Raman amplification in optical fibers,’’ J. Opt. Soc. Am. B
10, 2383–2389 (1993).

6. J. P. Gordon, ‘‘Theory of the soliton self-frequency shift,’’
Opt. Lett. 11, 662–664 (1986).

7. K. J. Blow and D. Wood, ‘‘Theoretical description of tran-
sient stimulated Raman scattering in optical fibers,’’ IEEE
J. Quantum Electron. 25, 2665–3673 (1989).

8. S. Kumar, A. Selvarajan, and G. V. Anand, ‘‘Influence of
Raman scattering on the cross phase modulation in optical
fibers,’’ Opt. Commun. 102, 329–335 (1993).

9. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A.
Haus, ‘‘Raman response function of silica-core fibers,’’ J.
Opt. Soc. Am. B 6, 1159–1166 (1989).

10. C. Headley III, ‘‘Ultrafast stimulated Raman scattering in
optical fibers,’’ Ph.D. dissertation (University of Rochester,
Rochester, N.Y., 1995).
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