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Abstract 

We explore the existence of solitons in a nonlinear, dispersive, amplifying medium based on a model that makes neither the 
parabolic-gain approximation nor the rate-equation approximation. Without these approximations, the Maxwell-Bloch equations 
no longer reduce to a Ginzburg-Landau equation and do not appear to have analytic soliton solutions. We use numerical 
simulations to show that solitary waves can exist provided there is enough broadband loss such that the net gain is negative far 
away from the gain peak. In general, such solitons are chirped and the degree of chirp as well as the soliton width depend on the 

amount of loss. 

The propagation of short pulses in optical fibers is 
governed by the well-known nonlinear Schriidinger 
equation (NSE) which takes the dispersive and non- 

linear effects of the fiber into account [ 1,2]. Exact 
solutions of the NSE, called solitons, can be found 
through the inverse scattering method [ 31. Such pulses 

propagate unchanged over long distances in the 
absence of loss. However, optical fibers are inherently 

lossy, and some type of gain mechanism is required to 

compensate for the loss. A common technique consists 
of doping the silica fiber with rare-earth ions and pump- 

ing them optically to realize the optical gain [ 41. By 

modeling the doped optical fiber as a gain medium with 
a parabolic gain profile, the solitary-wave solutions of 
the modified NSE have been obtained [ 5,6]. This solu- 
tion shows that for a pulse to propagate undistorted in 
an amplifying medium, the soliton must be chirped in 
addition to satisfying a certain relationship between the 

peak power and the width of the pulse [5,6]. This 
analytic solution applies to any nonlinear gain medium 
that can be modeled with a parabolic gain profile. The 
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validity of this mode1 for realistic gain profiles raises 

many questions, the foremost among them being the 

artificial introduction of large losses in the spectral 

wings. Also, the appropriateness of the rate-equation 

approximation is questionable since the soliton width 

can become comparable to the dipole relaxation time. 

In this Letter we use numerical simulations to demon- 
strate that solitons in fiber amplifiers can exist under 
certain conditions even when both the rate-equation 
and parabolic-gain approximations are relaxed. 

Numerical simulations for pulse evolution in fiber 
amplifiers have been performed extensively [ 7-101. It 
was found necessary to use the full Maxwell-Bloch 
formalism for femtosecond pulses [S-IO]. Thus, we 
model the dopants as a two-level atomic system whose 
response is governed by the Bloch equations [ 111: 

dcrldt= -(iA+T;‘)a-i&?w, (la) 

W,= -T;‘(w-w,) -Im(flfl*) , (lb) 

where cr is the microscopic polarization, w is the pop- 
ulation inversion, W, is the pump rate, w. is the popu- 
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lation inversion at thermal equilibrium, A is the 

detuning of the optical field from the atomic resonance 
frequency, T, is the population decay time ( - 10 ms 

for erbium ions), T2 is the dipole relaxation time ( - 0.1 
ps) and fi = pElfi is the on-resonance Rabi frequency 
with /-L as the dipole moment and E the slowly varying 
complex amplitude of the electric field. 

The dopant-induced gain can be included by adding 

a source term to the standard NSE [ 11. The resulting 
equation becomes 

-2 

E++z+;,$ 

g 

-iyIEI’E+ fE= FP&) , 
0 

(2) 

where ug is the group velocity, & = ( d2/31dw2) o= wg is 

the group-velocity dispersion coefficient with 
p(w) = n( w) w/c, y= n,wolc is the nonlinearity coef- 
ficient, (Y is the loss coefficient, W, is the optical 
frequency, no is the value of the refractive index at the 

frequency w,, and p. is the permeability of free space. 
Assuming predominantly homogeneous broadening of 
the gain spectrum, the macroscopic polarization is 
given by PII = Npa, where N is the number density of 
dopants, and (+ is obtained from the Bloch equations. 
The effects of inhomogeneous broadening can be 
included if necessary. 

Erbium-doped fibers have a relatively high satura- 
tion energy [ 121 ( N 10 kJ> . For typical pulse energies 
( < 1 nJ) , gain saturation is negligible during amplifi- 
cation of a single pulse, and the population inversion 
of the dopants is expected to remain relatively constant 

[ lo] at the value a = w, + WpTl. Assuming that the 

amplifier operates at the gain peak (A = 0), Eq. (la) 
can be solved in the frequency domain. The result can 

be used to obtain the susceptibility of the gain medium 
given by 

n,cg, (w-wo)T2-i 
X(W) = - 

wo 1+[(w-wo>T212' 
(3) 

where go is the small-signal gain coefficient. By using 
P,(z,w) = E~X( w)E(z,w), where a tilde denotes the 
Fourier transform, together with Eq. (3)) Eq. (2) can 
be written as a generalized NSE: 

WO 1 =-- 
2noc 27T I 

x(w) i(z,w) exp( -iwt) dw . 

-m 

(4) 

It is important to note that the rate-equation approxi- 
mation is not made in obtaining Eq. (4) so that this 

equation is valid even for pulses of widths shorter than 
T2. Eq. (4) includes the dopant-induced dispersion of 
both the gain and the refractive index. Under the homo- 
geneous broadening assumption made in Eq. (3)) the 
gain spectrum is Lorentzian. 

In the parabolic-gain approximation, the complex 
susceptibility is expanded in a Taylor series around the 
carrier frequency W, up to the quadratic term. This 
results in a modified NSE which can be rewritten in a 
normalized form [ 1,7]. 

(5) 

where c= zlL,, with the dispersion length LD= 
Ts/ 1 &I, T= (t-z/v&/T, is the normalized time, 

s = sgn ( p2) = + 1, d = g&, which is related to the cur- 
vature of the gain profile at the gain peak, and 
p = (go - cr) LD is the net gain. Eq. (5) is in the form 
of a Ginzburg-Landau equation that has been well stud- 
ied in different fields [ 131. Despite the fact that the 
loss and gain make it a non-conservative system, Eq. 
(5) is known to have a chirped solitary-wave solution 
given by [ 1,5] 

u(&r) =N[sech(Pr)]f’+iq) exp(irt) , (6) 

where the soliton amplitudehJ, width parameterp, chirp 
parameter 4, and propagation constant r must satisfy 
certain relationships as given in Ref. [ 11. This para- 
bolic-gain model supports gain-guided chirped solitons 
in both the normal and anomalous dispersion regimes. 

It is not clear whether the generalized NSE in Eq. 
(4) obtained without making the rate-equation and par- 
abolic-gain approximations will support a solitary 
wave since, unlike with the parabolic-gain approxi- 
mation where a large amount of loss is artificially intro- 
duced in the spectral wings, some gain exists at all 
frequencies. However, this situation can be remedied 
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in practice by requiring the fiber amplifier to have a 
certain amount of broadband loss to counter the gain 
in the spectral wings of the pulse (net loss) while the 

central part of the pulse spectrum experiences net gain. 
To study whether solitary waves exist under such 

conditions, Eq. (4) is solved numerically by using a 
split-step algorithm [ 11. The chirped soliton given in 

Eq. (6) is taken as the input pulse shape after choosing 
T, = 0.2 ps. Fig. 1 shows the evolution of the pulse in 

the anomalous-dispersion region of a distributed-gain 
fiber amplifier out to 40 dispersion lengths. Fig. la 
corresponds to cr/g, = 0.6, and Fig. lb corresponds to 
a/g, = 0.8. In Fig. la, the shape of the input pulse, or 
the parabolic-gain soliton (PGS), evolves into a 
steady-state pulse which is narrower and has a higher 
peak power than the PGS. In contrast, Fig. lb shows 
that the PGS evolves into a wider pulse having a smaller 
peak power. In both cases a steady-state appears to have 
been reached, despite a slight shifting of the pulse in 
the time domain which is due to the dopant-induced 

index dispersion mentioned earlier. 

0 
&.__ 
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Fig. 2. Comparison of the steady-state soliton shapes of Fig. 1 for 

o/g, = 0.6 and 0.8 with the parabolic-gain soliton (solid curve) for 

which (Y = 0. Inset shows the steady-state pulse width (normalized 

to the PGS soliton width) as a function of a/g,. 

case of a/g0 = 0.6 in Fig. laremains stable to distances 
as long as 80 dispersion lengths while the soliton in 
Fig. lb for a/g, = 0.8 shows some signs of instability 
around 30 dispersion lengths. 

Extensive numerical simulations show that a steady- Fig. 2 shows a comparison of the PGS (solid curve), 
state is reached over a wide range of ‘Y/g, = 0.4-0.9, obtained under identical conditions except for CY = 0, 
but the pulse shapes are significantly different except with the final steady-state pulses of Fig. 1 (dashed 
for a/g,= 213 for which the external loss roughly curves). Pulse spectra are not shown since their shapes 
equals the artificial loss introduced by the parabolic- are similar except for their widths. The pulse width of 
gain approximation. This means that the Maxwell- the soliton varies with the ratio ‘Y/g, as shown in the 
Bloch model of the fiber amplifier does indeed have inset of Fig. 2. In general, the soliton becomes narrower 
solitary-wave solutions. However, the stability of such as a/g, decreases. This is because the higher net gain 

solutions is not guaranteed and may depend on the causes pulse compression. Outside the range of values 

operating parameters. For example, the soliton for the shown for a/g,, steady-state pulses were not seen. This 

(b) 

Fig. 1. Evolution toward the steady-state soliton over 40 dispersion lengths for (a) ‘y/g, = 0.6 and (b) a/g, = 0.8 in a distributed fiber amplifier 

having 3 dB gain per dispersion length. The input pulse corresponds to the parabolic-gain soliton. 
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Fig. 3. Frequency chirp profiles for the three solitons shown inFig. 2. 

can be understood for the case of small losses by noting 
that so much energy is shed as dispersive waves that a 
steady-state pulse is never formed. In the other extreme 
of large losses, there is not enough gain to overcome 
the dispersion of the fiber. Note that it is the ratio a/g, 
that determines the final pulse width in the steady state, 
not the actual values of the gain and loss. In the PGS 
case, external loss is not necessary since loss is artifi- 
cially introduced in the spectral wings. 

The most significant difference between the PGS 
solution of Eq. (6) and the solitary-wave solutions 
obtained from the Maxwell-Bloch model is the chirp 
imposed across the soliton. This change is important 
since it is the frequency chirp that allows the PGS to 
exist in the parabolic-gain model. Fig. 3 compares the 
frequency chirp for the three solitons seen in Fig. 2. 
The solid curve corresponds to the PGS. For large 
losses (a/g, >, 0.7)) the chirp is nearly zero across the 
center of the pulse. However, as a/g,, decreases, the 
amount of chirp imposed on the soliton increases in an 
oscillatory manner. The physical reason behind chirp 
oscillations is not clear at present. 

The results shown in Figs. l-3 correspond to a fixed 
value of g, given by exp (g&J = 2. For moderate val- 
ues of g,, the final pulse characteristics are virtually 
identical with those shown in Figs. 1-3; the important 
parameter is the ratio a/g0 as mentioned earlier. How- 
ever, for much larger values of net gain, the qualitative 
behavior may change significantly. For example, for a 
net gain of 10 dB per dispersion length, the input pulse 
quickly compresses and then begins to split into mul- 
tiple subpulses. This behavior is similar to that of Ref. 
[ 71 where the parabolic-gain approximation was used 
in the model. One major difference is that the subpulses 

are narrower in this case (pulse width < T2) which is 
allowed since the rate-equation approximation was not 

used in this model. This feature also suggests that fiber 
amplifiers can be used to simultaneously amplify and 
compress optical pulses down to about 100 fs. For these 
ultrashort pulse widths, higher order nonlinear effects 
which were not included in this model may effect the 
final pulse characteristics as well. 

It is interesting to point out that the parabolic-gain 
model predicts the existence of a PGS even in the nor- 
mal-dispersion region [5], whereas solitons do not 

exist in this regime in undoped fibers. Thus, the ques- 
tion arises as to whether the model given in Eq. (4) 
can support a solitary wave in the normal dispersion 
regime. Numerical simulations were carried out under 
the same conditions as for Fig. 1 except in the normal 
dispersion regime. The input PGS was seen to disperse 
rapidly and then to break-up into subpulses. The reason 
for this behavior is that the chirp imposed across the 

pulse in the normal dispersion regime is quite large 
compared to the chirp acquired by the pulse in the 
anomalous dispersion regime. This large chirp com- 

bined with the dopant-induced index dispersion pre- 

vents the pulse from approaching the steady-state. Fig. 
4 shows the pulse shape and spectrum for a pulse after 
it has propagated 10 and 12 dispersion lengths in the 
amplifier. The loss cy is set to 4.5 dBlL,, and g, is set 
to 7.5 dBIL,, yielding a ratio of a/g, of 0.6. It is seen 
that the pulse width is fairly wide (26 ps, FWHM). 
The chirp (not shown) also has a hyperbolic tangent 

Fig. 4. Comparison of pulse characteristics for pulse propagating in 

the normal dispersion regime for a/g,, = 0.6; (a) pulse shape at lOLo, 
(b) spectrum at 10 Lo, (c) pulse shape at 12 Z+, (d) spectrum at 12 

LD. 
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profile with a maximum nearly two orders of magnitude 
greater than the chirp imposed on the pulse in the anom- 
alous dispersion regime shown in Fig. 3. The shape and 
spectrum (Fig. 4a and 4b) are very smooth up to 10 

L,,, but soon afterwards the pulse begins exhibiting 
signs of instability. Fig. 4d shows a fast ripple across 
the spectrum at 12 Lb and manifests itself as a distortion 
of the pulse shape which leads to the eventual break- 
up of the pulse. 

To verify the impact of the dopant-induced disper- 
sion on the stability of propagating pulses, this effect 
was removed from the model and the simulations were 
repeated. Under this restriction, a steady-state was 
indeed found, as reported in Ref. [ 71. This leads to the 
conclusion that the large chirp imposed on the pulse in 
the normal dispersion regime in combination with the 
dopant-induced dispersion prevents the development 
of a steady-state solution. 

Finally, in the case of a distributed fiber amplifier 
(operating in the anomalous dispersion regime), where 
the fiber is lightly doped over the entire length so as to 
just compensate the loss of the fiber ( - 0.2 dB/km) , 
the required small-signal gain would be quite small, on 
the order of exp( g&b) = 1.07. This would minimize 
the amount of reshaping that the pulse undergoes as it 
attempts to reach a steady state, and thus also minimizes 
the dispersive waves shed in the process, in contrast 
with the traditional lumped fiber amplifiers. In addition, 
special filters may be placed in the system to control 
the pulse width to prevent higher-order effects such as 
third-order dispersion and intrapulse stimulated Raman 
scattering from playing an important role in the evo- 
lution of the pulse. Results for a distributed fiber ampli- 
fier system will be discussed in a future publication. 

In conclusion, the results of .numerical simulations 
based on Maxwell-Bloch equations [Eq. (4)] show 

that solitary waves can exist even when the parabolic- 
gain and rate-equation approximations are not made. 
However, in contrast with the parabolic-gain model, 
such solitons exist only in the anomalous-dispersion 
region. The characteristics of the chirp imposed across 
the pulse depends on the amount of losses in the system 
relative to the amplifier gain, and the final pulse width 

of the soliton can also be changed by controlling the 
amount of loss. 
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