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We study semianalytically soliton dynamics in a soliton-based communication line for which the amplifier
spacing is larger than the soliton period (referred to as the quasi-adiabatic regime). This regime allows
us to overcome the limit on the soliton duration (Trwam ~ 15 ps) imposed by the average-soliton regime.
Our calculations show that periodically stable propagation of short solitons (Trwam = 1-5 ps) is possible
for an amplifier spacing ranging from 5 to 20 km. We discuss the dynamical features associated with the
propagation of short solitons in the quasi-adiabatic regime and present a simple model capable of predicting the

width and the mean frequency of the steady-state soliton.

We compare the model with appropriate numerical

simulations. Our analysis may also be applied to fiber lasers that produce ultrashort solitons (Trwam < 1 ps)
in a relatively long-cavity configuration. [ 1995 Optical Society of America

1. INTRODUCTION

Soliton-based communication systems are attracting con-
siderable attention because of their potential for trans-
mitting high-bit-rate signals over transoceanic distances.
Because of intrinsic fiber losses, solitons lose energy con-
tinuously, and the energy loss become significant for
distances > 10 km. A continuous compensation of these
losses has been realized through the use of distributed
amplification in long active fibers.’? But, until now,
transmission schemes based on distributed amplifica-
tion have not been practical. Of course, one can also
compensate for fiber losses by periodic amplification of
solitons by placing equally spaced fiber amplifiers along
the transmission link. In such a case, the nonlinear
Schrodinger equation (NSE) with distributed loss and
periodic amplification can be transformed into a new
NSE for the averaged soliton amplitude with an addi-
tional term proportional to the square of the ratio of
the amplifier spacing to the soliton period.>* For this
term to be a small perturbation, the amplifier spacing
must be much smaller than the soliton period. In such
a case, even if the soliton experiences significant losses
between two amplifiers its average parameters are still
described by the NSE. Inasmuch as the soliton period
is proportional to the square of the soliton width, the
condition for realizing an average soliton leads to a lower
limit on the soliton duration for practical amplifier spac-
ings. This limit is approximately Trwaym = 15 ps for an
amplifier spacing of 30 km in a dispersion-shifted fiber
having an anomalous dispersion of —1 ps?/km. One can
reduce it slightly when the soliton period approaches
the amplifier spacing by making use of nonlinear com-
pression. This scheme is known as dynamic soliton
communication® because of the use that it makes of the
dynamic range of soliton stability. In such a regime the
average pulse propagating in the fiber is no longer a first-
order soliton but rather a soliton having a peak power
between a first- and a second-order soliton. However,
without any form of soliton control the periodic ampli-
fication scheme becomes unstable over multiple ampli-
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fier stages when the peak power of the input soliton is
too large.®

Soliton communication systems operating at bit rates
> 20 Gb/s generally require soliton pulses of widths
< 10 ps to minimize the mutual interaction between
neighboring solitons. Numerical simulations show that,
when such short solitons propagate over several am-
plification stages, dispersive waves are generated that
resonantly interact with the solitons, undermining their
stability.”® Clearly, the average soliton dynamics de-
scription is not appropriate for modeling the propagation
of short solitons (Trwam = 1-5 ps) for typical amplifier
spacings of 20—-30 km. In this paper we study the con-
ditions under which short solitons of 1-5 ps width can
be propagated stably over large distances. It so hap-
pens that in low-loss silica fibers such short solitons have
soliton periods that are not only smaller than a typical
amplifier spacing (~20-30 km) but also smaller than the
characteristic loss length (distance over which 50% of
the power is lost, ~15 km). In such a case the parame-
ters describing the soliton can be considered as evolving
slowly because the soliton reshapes itself continuously
during the propagation to follow the losses. For this
reason we refer to soliton dynamics as quasi-adiabatic in
this paper. The quasi-adiabatic regime is defined as the
regime in which the soliton period is smaller than the
amplifier spacing because in optical fibers both the loss
length and the typical amplifier spacing are of the same
order. Solitons propagating in this regime are called
short solitons for simplicity.

The main phenomena that occur during the propaga-
tion of short solitons in a communication line can be sum-
marized as follows. First, the soliton evolves over many
soliton periods, permitting soliton broadening and nonlin-
ear pulse compression on a scale shorter than the ampli-
fier spacing. Second, this dynamical evolution increases
the energy spread in the form of dispersive waves, which
may enhance resonant instabilities associated with the
copropagation of dispersive waves and solitons. Third,
the intrapulse Raman scattering becomes significant, and
so does, to a lesser extent, the (linear) third-order dis-

0 1995 Optical Society of America



R.-J. Essiambre and G. P. Agrawal

persion. Fourth, effects of the limited bandwidth of the
gain may become important and may even be necessary to
cancel the Raman-induced frequency shift. Our numeri-
cal simulations have shown that the effects of intrapulse
Raman scattering and the resonant instabilities are the
most harmful effects that need to be addressed before
short solitons can be used for communication purposes.
In particular, if it is not controlled, the effect of the in-
trapulse Raman scattering will be to shift the soliton to
frequencies at which the group-velocity dispersion can
be considerably different from its value at the frequency
of the input soliton. Such a change in the conditions
of propagation together with the resonance of dispersive
waves with the soliton eventually results in the destruc-
tion of the soliton bit stream and the loss of information
content.

2. MODEL

We present in Fig. 1 a schematic of the communication
line considered. The two main elements are a limited-
bandwidth amplifier and a fast saturable absorber (FSA).°
The former element (alone or in combination with a
frequency filter) is used to compensate for the down-
ward frequency shift of solitons (the soliton self-frequency
shift!®, SSFS) associated with the intrapulse Raman scat-
tering. Such compensation is possible only if the gain
(filter) bandwidth approaches the soliton spectral width.
The FSA has been introduced to reduce the resonant
instabilities!! and to prevent the production of secondary
solitons.’? To illustrate the importance of a FSA, we
show in Fig. 2(a) the evolution of a 4.5-ps soliton over
eight amplification stages in absence of FSA. Figure 2(b)
presents the same simulation over 51 amplification stages
when a FSA is inserted at every amplifier, allowing a pe-
riodic regime to settle. The amplifier spacing is 20 km
in both cases. In the quasi-adiabatic regime, because
the soliton period (z; = 7 Lp/2 with the dispersion length
Lp = T,2/|Bsl, where T, is the soliton width) is smaller
than the amplifier spacing z,, the dispersive waves, gen-
erated because of nonideal soliton propagation, spread
significantly over one stage. A FSA-type element can re-
move these waves efficiently in this regime without per-
turbing the soliton too much.!® It is worth noticing that
the effects of a FSA-type element on the accumulation
of dispersive waves created by filtering have been stud-
ied in the context of the average soliton.!* Such an ele-
ment has been shown to lead to a reduction of resonant
effects between dispersive waves and the soliton simul-
taneously with a reduction of the Gordon—Haus effect.!
Because of the relatively low rate of emission of the dis-
persive waves in the average-soliton regime, the period of
insertion of the FSA was of the order of 1000 km.
Unlike in the average-soliton regime, the propagation
of short solitons can hardly be described in terms of av-
eraged parameters mainly because, in addition to such
solitons’ having large variations in amplitude (and hence
in width), their mean frequency is likely to change consid-
erably over one amplifier spacing. One can then obtain
the steady-state conditions by studying a two-dimensional
map formed by the soliton amplitude and the mean fre-
quency. The mapping relates the soliton amplitude and
the mean frequency at one amplifier to their values at
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the previous amplifier. The special case in which the
two-dimensional map can be reduced to one dimension
in presence of dispersive losses has been considered
analytically.’® In this paper we numerically solve the
two equations that together form a two-dimensional map
describing the soliton energy (equivalent to the soliton
amplitude in the adiabatic approximation) and the mean
frequency by imposing periodic conditions of propagation.

The first and obvious condition of periodicity is that all
losses within one stage be compensated for by the lumped
gain. However, unlike in the average-soliton regime, a
second condition appears for short solitons because the
SSFS can be larger by more than 4 orders of magnitude
for such a case [see Eq. (7) below]. This frequency shift-
ing should be compensated for stability. This leads to
the second condition that the downward shift of the soli-
ton mean frequency be periodically compensated for by
an appropriate upward frequency shift (we are not con-
sidering here the case of sliding-frequency filters).!” For
lumped amplification, significant upward frequency shifts
at the amplifier can be accomplished only when the gain
(or filter) bandwidth becomes close to the soliton spectral
width. Thus the effects of bandwidth-limited amplifica-
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Fig. 1. Schematic of the proposed transmission line. The am-
plifier spacing z, can be larger than the soliton period z;. G’s,
amplifier gain.

power (mW>

(b)
Fig. 2. Comparison of soliton evolution (a) without and (b) with
a FSA. The amplifier spacing is 20 km and the soliton width
(FWHM) is 4.5 ps.
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tion need to be carefully addressed when one is model-
ing short-soliton communication systems. For the sake
of generality, no approximations are made about the form
of the amplifier spectrum for the calculations.

As mentioned above, we look for the steady-state
evolution of a periodically amplified short soliton by con-
sidering the soliton’s amplitude and mean frequency just
before the amplifier (point P in Fig. 1). The steady-state
conditions can be written as

G(”Oy uO) L= 1’ (1)
AVamp(vo, Uo) + Avssrs(uo) =0, (2)

where G and L are the amplification and the loss,
respectively, during one stage and Avamp, and Awgsrs
represent the frequency shifts associated with the am-
plification process and the intrapulse Raman scattering,
respectively. We find the stable soliton characteristics
by solving Eqgs. (1) and (2) for the soliton amplitude ug
and the mean frequency vy.

The amplification factor G corresponds to the relative
gain in energy at the amplifier and is evaluated by the
following integrals in the frequency domain:

") o) dv
G(vo,up) = —F= ) 3)

f ) lv(v)|2 dv

where G1(v) is the amplifier spectrum and v(v) is the soli-
ton spectrum at point P. The fundamental soliton!® is
represented by u(7) = uy sech(uo7)exp[—i2 7 vy 7], where
7 = T/T, is the normalized time (T, is a normalization
constant and 7' the running time), and v, accounts for
a shift of the soliton mean frequency from the carrier
frequency. All frequencies are measured with respect
to the gain peak of the amplifier. The soliton width is
given by Trwam = 1.763/uy. We have neglected phase
terms not dependent on 7 and the frequency-dependent
time shift when writing u(7) because they do not mod-
ify the results of our analysis. We note that the two
parameters uy, and v, are necessary for a unique defi-
nition of the soliton. The soliton spectrum is given by
v(v) = 7 sech[w%(v — vy)/uo] with the spectral width
(FWHM) 1.763 uy/ 2.

Consider first the case of an amplification stage con-
sisting of a homogeneously broadened gain medium with
a Lorentzian gain spectrum:

Gr(v) = L; exp{go/[1 + (v/Ave)*T, 4)

where gy is the unsaturated gain coefficient and Avg is
the gain bandwidth and where we have included in the
effective gain G, a transmission factor L; that accounts
for insertion loss when the energy is coupled to the fiber.
The loss factor L in Eq. (1) that represents the fraction
of energy left in the soliton after propagation in the fiber
and through the FSA can be written as

L = exp(—az,)(1 — Lgsa), (5)

where a represents distributed fiber losses and has a
value of 0.04835 km ™! for a loss of 0.21 dB/km, z, is the
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amplifier spacing, and Lysa represents the energy loss
through the FSA (normalized to the soliton energy).

We evaluate the frequency shift imposed by the ampli-
fier by taking the first moment of the power spectrum of
the amplified soliton, and it is given by

0

v GL) lo(¥)* dv

(6)

AVamp(IJOa uO) =

[ 60wtz av

The expression for the SSFS associated with the Raman
effect is derived from the formula for an ideal fundamen-
tal soliton!®1:

81/0(2) — 4 TR 1

9z 157 To 7p*(2)

’ (7

where z is the normalized distance, T; is a characteristic
time (chosen to be 6 fs), Ty is the normalization time
set to 1 ps, and 7,(z) is the normalized soliton width,
which, unlike in the average soliton regime, depends on
the position of the soliton in the fiber. One can relate
the soliton width at the end of one stage to the soliton
width of the amplified soliton launched into the fiber by
considering energy losses. Because the soliton evolves in
the fiber with a relatively low loss per soliton period, we
assume that the soliton width growth rate is inversely
related to the rate of decay of the soliton energy:

7p(2) = 75(0) exp(az). (8)

By replacing Eq. (8) in Eq. (7), integrating over the
fiber length z,, and expressing the result in terms of the
soliton width at z = z,[7,(2,) = 1/uo] we obtain

Tr [1 — exp(4daz,)] o
157aT, o>

Avssrs(uo) = (9)
which expresses the value of the SSFS in terms of the
soliton amplitude at point P for different amplifier spac-
ings. Equation (9) can also be derived through adiabatic
perturbation theory.'®

It is worth noticing that our numerical simulations
show that a nonlinear compression generally occurs in the
first part of the fiber, indicating that the amplified pulse
entering the fiber is not an exact fundamental soliton.
But this effect is small enough (typical compression ratios
between 1.2 and 1.6) that Eq. (8) can represent the evolu-
tion of the average soliton width and Eq. (9) remains quite
accurate when compared with numerical simulations.

When communication lines of different amplifier spac-
ings are considered, the gain peak Gy = G(v = 0) must be
adjusted to compensate for different fiber losses and thus
depends on the amplifier spacing z, through the relation

Eg exp(az,)

Golza) = = — Lisa

(10)
where we include an excess gain factor E; in addition
to the loss compensation because, in general, the soli-
ton spectrum is not small compared with the gain band-
width and the mean frequency of the soliton does not
coincide with the central frequency of the gain, leading
to a reduced effective gain compared with the peak gain
Gy. The last parameter to be set (Lgsa) represents losses
through a FSA, which in general depend on the propaga-
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tion of the perturbed soliton and the type of FSA used.
We numerically observed that Lrga is an increasing func-
tion of distance (as it is related to the emission of disper-
sive waves), but we fixed it to 0.05 for simplicity.

3. RESULTS

We now solve the coupled set of Egs. (1) and (2) for v¢ and
ug, using Egs. (3), (5), (6), and (9). Inasmuch as Egs. (1)
and (2) are not easily solvable analytically under general
conditions, we present here numerical solutions of these
equations.

We first consider the case of different amplifier spacings
with the gain bandwidth Avg fixed to 1/7 THz (of the
order of the spectral width of a 1-ps soliton). Figure 3
shows the steady-state soliton width and the mean fre-
quency for three different situations: (i) a Lorentzian
gain spectrum with 50% insertion losses (L; = 0.5), (ii) a
Lorentzian gain spectrum without insertion losses (L; =
1), and (iii) a large-bandwidth gain spectrum in combi-
nation with an optical filter, i.e., G.(v) — Gr(v)|H (v)|?,
where H(v) = 1/(1 + iv/Avr) and Avg >> Avyp. These
three effective gains have the same gain peak, and their
bandwidths are adjusted to provide the same amplifica-
tion to a 1-ps soliton centered at the gain peak for a given
amplifier spacing. Note that we neglect dispersion and
nonlinear effects within the amplifier because of the small
length (~10 m) of a typical amplifier compared with the
soliton period (>1 km).

Figure 3(a) shows the steady-state soliton width as
a function of the amplifier spacing for the three effec-
tive gain models, and Fig. 3(b) shows the corresponding
mean frequencies. The peak gain G is adjusted for the
different amplifier spacings according to Eq. (10) with
Es = 1.4. As may be expected, the mean frequency of
the soliton is shifted to lower frequencies to receive an up-
ward frequency shift at every amplifier. As we increase
the amplifier spacing, broader solitons are predicted, al-
lowing the SSFS to be low enough to keep the soliton
within the amplifier spectrum. It is worth noting that
the shift of the soliton mean frequency is relatively small
for the Lorentzian gain spectrum with 50% insertion loss
or when a bandpass filter is inserted in the line. How-
ever, a much larger frequency shift occurs in the absence
of insertion losses. This suggests that insertion losses
may play an important role in the frequency stabilization
of periodically amplified short solitons if bandpass filters
are not used.

The influence of the value of the gain bandwidth on
the soliton duration is presented in Fig. 4 for two effec-
tive gains. Figure 4(a) shows the steady-state soliton
width for different gain bandwidths for the Lorentzian
gain spectrum with loss [case (i)] for three different
amplifier spacings. For amplifier spacings of 10 and
15 km, the steady-state soliton durations range from 1.5
to 3 ps, whereas for an amplifier spacing of 20 km the
range of bandwidth to generate short solitons is reduced.
Figure 4(b) shows the soliton width for case (iii) (inser-
tion of a bandpass filter). Similar results are obtained
for an amplifier spacing of 10 or 15 km, but, clearly, for a
large amplifier spacing the bandwidth must be reduced to
produce the shortest pulses. However, numerical simu-
lations show that, for such a filtering scheme, more energy
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is lost through emission of dispersive waves, which re-
duces the effectiveness of this configuration. This may
be due to the strong spectral reshaping introduced by the
filter [contrary to the case of Fig. 4(a), the filter is opaque
outside the bandpass windowl], leading to an increase in
the generation of dispersive waves.

Figure 5 compares the results obtained by solution of
Egs. (1) and (2) with those obtained by numerical integra-
tion of the generalized NSE:

u i Pu . a alul?  Bs 9%u
— + - Ba— —ilufu=——-u—Tgru = =
oz T g P i 2 B ot 6 ot3

(11)

where standard notation has been used.!® The parame-
ters « = 0.21 dB/km and Ty = 6 fs have the same val-
ues in both cases. We have included the third-order
dispersion in the numerical simulations for complete-
ness by choosing 83 = 0.1 ps®/km. Our simulations have
shown that the third-order dispersion accounts for a very
small frequency shift (2 orders of magnitude smaller than
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Fig. 3. Steady-state (a) soliton width and (b) mean frequency
shift for different effective gain models. (i) Solid curve, a
Lorentzian amplifier spectrum with 50% insertion losses;
(i1) short-dashed curve, a Lorentzian amplifier spectrum
without insertion losses; (iii) long-and-short-dashed curve, a
large-bandwidth amplifier spectrum with a narrow-bandwidth
bandpass filter.
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Fig. 4. Steady-state soliton width plotted as a function of the
gain bandwidth for three different amplifier spacings: (a) a
Lorentzian amplifier spectrum with 50% insertion losses and
(b) a large-bandwidth amplifier spectrum with a narrow-
bandwidth bandpass filter.

the SSFS). The saturation power of the FSA has been
fixed to ~50 mW for every simulation so that the ratio
of the saturation power to the soliton peak power ranges
from 2% to 30% depending on the amplifier spacing. The
energy loss through the FSA is evaluated numerically for
each amplifier spacing and used in the semianalytic calcu-
lations. The differences between numerical results and
solutions of Eqgs. (1) and (2) are attributed mainly to the
fact that we have neglected energy losses through emis-
sion of dispersive waves when writing the evolution of the
average soliton width [Eq. (8)]. As expected, larger dis-
crepancies are observed for large amplifier spacings be-
cause more dispersive waves are generated.

4. DISCUSSION AND CONCLUSION

We found numerically that the limit of the validity of the
model presented in this paper is settled by the maximum
energy gain that can be provided to a soliton without in-
ducing a fission of solitons.!> We estimate this maximal
value of G to be ~2.8, which puts a limit of ~23 km on
the amplifier spacing. This limit is fixed by the fiber loss
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and could be increased by the development of very low-
loss fibers in contrast to the amplification spacing of the
average-soliton regime, which depends on the width of the
propagating soliton. We also numerically observed that
in some cases, although a stable solution exists, it cannot
be reached through an input soliton of mean frequency
centered at the peak gain because soliton fission occurs
before the steady state is achieved. These cases corre-
spond to regimes in which the effective gain is near the
critical value at which the generation of multiple solitons
occurs. We can understand this splitting by considering
that, at steady state, because of the offset between the
soliton mean frequency and the gain central frequency,
the effective gain received by a soliton is less than that
which occurred when both frequencies were equal. Thus,
near the critical gain value, a soliton will not generate
secondary solitons if its mean frequency is close to the
steady-state value but may undergo soliton splitting if its
frequency lies in the region near the gain peak. Opera-
tion of a communication line near the critical gain value
(hence for large amplifier spacings) may thus require tun-
ing of the input soliton in a proper frequency range [down-
shifted from the gain peak; see Fig. 3(b)]. Numerical
simulations indicate that an increase in the saturation
power of the FSA may, to a certain extent, prevent the
generation of secondary solitons. As these parasitic soli-
tons are usually of low power, the FSA absorbs sufficiently
of their energy to inhibit their growth. However, as the
saturation power increases, less energy pass through the
FSA, resulting in no stable pulse transmission for a sat-
uration power too large.

The existence of solutions of the set of Egs. (1) and (2)
does not guarantee their stability, but numerical simu-
lations have shown a range of stability for various soli-
ton peak powers. We can understand this by noting that
a soliton of higher energy will experience a larger fre-
quency shift and will thus receive lower gain at the next
amplifier, reducing its excess energy. A similar negative
feedback applies to solitons of low energy. On the other
hand, for some gain parameters the soliton energy oscil-
lates periodically, which is typical of the dynamics of a
nonlinear system.
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Fig. 5. Comparison of steady-state soliton widths for numeri-
cal simulations and the semianalytic model for some amplifier
spacings.
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As mentioned above, unlike in the average-soliton
regime, in the quasi-adiabatic regime the soliton pa-
rameters changes considerably over one amplifier spac-
ing. The condition of having a small amplifier spacing
compared with the soliton period allows one to describe
the propagation over many amplification stages by an
averaged NSE for the average soliton.® In the quasi-
adiabatic regime a nonlinear mapping of the soliton pa-
rameters seems to be more appropriate to analyze the
soliton dynamics of a long chain of amplifiers.'® More-
over, as shown above, the amplifier bandwidth has to be
small to control the SSFS, suggesting the use of an accu-
rate description of the amplification process (particularly
for large amplifier spacings) as used in this paper.

In conclusion, we have analytically expressed two con-
ditions for periodic amplification of short solitons (Trwanm
from 1 to 5 ps) and numerically solved this set of cou-
pled nonlinear equations in terms of the soliton width and
mean frequency for different amplifier spacings and gain
bandwidths. Stable periodic short solitons are predicted
as long as the dispersive waves are properly removed at
every amplifier and provided that a gain or a filter of
bandwidth comparable with the soliton spectral width is
used to compensate for the soliton self-frequency shift.
This approach may be applied to finding the soliton char-
acteristics in a fiber laser having a significant frequency
shift per round trip owing to intrapulse Raman scattering
and a long-cavity configuration (several soliton periods).
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