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The multidimensional nonlinear Schrödinger equation governs the spatial and temporal evolution of an optical
field inside a nonlinear dispersive medium. Although spatial (diffractive) and temporal (dispersive) effects
can be studied independently in a linear medium, they become mutually coupled in a nonlinear medium.
We present the results of numerical simulations showing this spatiotemporal coupling for ultrashort pulses
propagating in dispersive Kerr media. We investigate how spatiotemporal coupling affects the behavior of the
optical field in each of the four regimes defined by the type of group-velocity dispersion (normal or anomalous)
and the type of nonlinearity (focusing or defocusing). We show that dispersion, through spatiotemporal
coupling, can either enhance or suppress self-focusing and self-defocusing. Similarly, we demonstrate that
diffraction can either enhance or suppress pulse compression or broadening. We also discuss how these effects
can be controlled with optical phase modulation, such as that provided by a lens (spatial phase modulation)
or frequency chirping (temporal phase modulation).  1995 Optical Society of America
1. INTRODUCTION

For many years, optical pulse propagation in fibers has
been a subject of intense investigation.1 Apart from the
obvious communication applications, optical fibers are
important because they provide a simplified environment
for studying nonlinear optical effects. Two important
consequences of the wave-guiding nature of fibers are
(i) that diffractive effects can be eliminated from consid-
eration and, perhaps more importantly, (ii) that nearly
constant pulse energies can be maintained over relatively
long propagation distances because of relatively low loss
in fibers. Thus fibers are excellent tools for studying the
interplay of chromatic dispersion and optical nonlineari-
ties, in particular the intensity-dependent refractive index
or the Kerr nonlinearity.1 Planar waveguides are simi-
lar to fibers in that there is still good field confinement.
But, because the confinement is only one dimensional,
it is possible to study the influence of diffractive effects
on the field dynamics in the presence of the Kerr non-
linearity responsible for self-focusing or self-defocusing.2,3

This interplay is particularly interesting when the optical
field is in the form of an ultrashort pulse, in which case
not only do the dispersive and diffractive effects occur
simultaneously but also the spatial behavior is coupled
through the nonlinearity to the temporal behavior.4 – 8

This nonlinear spatiotemporal coupling has been shown
to cause a localized pulse compression in the normal-
dispersion regime of self-focusing media4 and is behind
the mechanism by which ultrashort pulses alter the shape
of the beam in a defocusing medium.5 The spatiotempo-
ral coupling of pulses in nonlinear media also plays an
important role in Kerr-lens mode locking,6 in which the
self-focusing enhancement in the laser rod for the pulsed
field in combination with an effective aperture makes
the mode-locked state more stable than continuous-
wave operation. The effectiveness of this technique
0740-3224/95/122382-08$06.00 
makes it possible to use an intracavity nonlinear ele-
ment instead of the laser rod itself to induce self-mode
locking.7,8

In recent years there has been some discussion of the
most effective way to model pulse evolution in nonlin-
ear optical media. A full-wave vector Maxwell equation
approach9 is accurate but is also the most computationally
intensive. The multidimensional nonlinear Schrödinger
equation (NSE) has been a useful tool for the study of
pulse evolution in fibers and waveguides for the past
three decades.1 Recently, modifications to the NSE have
been suggested as means of compensating for discrepan-
cies caused by the breakdown of the slowly varying ampli-
tude approximation during the self-focusing of ultrashort
pulses.10,11 New beam-propagation algorithms have also
been introduced by studying nonparaxial field evolution.12

We limit the scope of our discussion to paraxial, slowly
varying fields and therefore employ a standard split-step
Fourier algorithm1 used for the NSE. We also limit our
investigations to planar waveguides and the range of non-
linearities over which the waveguide approximation re-
mains valid.2,13

This paper is devoted to studying the effects of spa-
tiotemporal coupling on the optical field behavior in dis-
persive nonlinear waveguides. In Section 2 we review
the multidimensional NSE and then in Section 3 dis-
cuss the special cases under which it supports solitons.
Sections 4 and 5 present the results of numerical simula-
tions for self-focusing and self-defocusing media, respec-
tively, showing how dispersion can alter the spatial profile
of pulsed beam and under which circumstances diffraction
can affect temporal pulse shape. We also show that, be-
cause of the spatiotemporal coupling implied by the multi-
dimensional NSE, one can control the pulse width in time
with manipulation of the optical phase in space, and, con-
versely, one can control the beam width in space by ma-
nipulating the optical phase in time.
1995 Optical Society of America
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2. NONLINEAR SCHRÖDINGER EQUATION
The numerical simulations presented here are based
on the multidimensional NSE.1 The NSE is derived
from Maxwell’s equations for the case of an intensity-
dependent (Kerr-type) index of refraction of the form
nsvd ­ n0svd 1 n2I (resulting in a cubic nonlinearity in
the field dependence of the polarization), where the fre-
quency dependence of the linear index nsvd results from
chromatic dispersion. We model pulse propagation with
the NSE in the two-dimensional (one space and one time
dimension) or waveguide approximation, which consists
of assuming that diffraction occurs in only one transverse
direction, the field behavior in the other direction be-
ing determined by the structure of the waveguide. This
approximation also holds for the propagation of highly
elliptical beams in bulk nonlinear media, where diffrac-
tion in one dimension occurs over a much larger distance
scale than in the other.

To simplify the model and broaden the applicability
of the results, we normalize all variables including the
field, which is normalized so that its peak input value is
unity. The coordinates are normalized as follows: the
transverse spatial coordinate j ­ xys is normalized to
the input beam width s, the temporal coordinate t ­
ft 2 szyvgdgyT0 is the reduced time normalized to the
incident pulse width T0, and the propagation distance
z ­ zyLd is measured in units of the diffraction length
Ld ­ s2pylds2, where l is the optical wavelength. The
normalized NSE then takes the form
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Here the parameter N2 ­ s2psyld2n0jn2jI0 represents the
strength of the Kerr nonlinearity (it will be seen below
that N represents the soliton order). The quantity n2I0

is the maximum nonlinear index change for an input
pulse of peak intensity I0, and, depending on the sign
of n2, it can be either positive (self-focusing) or nega-
tive (self-defocusing). The magnitude of the parameter
d ­ sgnsb2dLdyLD ­ s2pylds2b2yT0

2 is the ratio of the
diffraction length to the dispersion length sLD ­ T0

2yjb2jd
and represents the relative strengths of dispersion and
diffraction. Here b2 is the group-velocity-dispersion pa-
rameter, defined as b2 ­ s≠2by≠v2dv­v0 , and bsvd is the
propagation constant of the fundamental waveguide mode
dispersion. The d parameter can also be either positive
or negative, depending on whether the medium is nor-
mally sb2 . 0d or anomalously sb2 , 0d dispersive.

For a linear medium sN ­ 0d, the NSE is separable in j

and t, leading to solutions whose space- and time-domain
features evolve independently of each other. The inclu-
sion of the nonlinearity makes the NSE inseparable in j

and t, thereby coupling the behavior in the two domains
together. It also makes analytical solutions extremely
difficult to achieve; hence our numerical approach. We
use the well-known split-step Fourier method1 to model
the evolution of an input Gaussian field of the form
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Here we use fsj, td to represent the optical phase modu-
lation, which is typically of the form fsj, td ­ 2j2y2f 2
Ct2y2. Depending on the medium parameters n2 and b2,
quadratic spatial phase modulation (e.g., a lens of focal
length fLd) may be used, by means of the spatiotempo-
ral coupling provided by the nonlinearity, to control the
width of the field in the time domain (the pulse width).
Similarly, imposing a frequency chirp sC fi 0d on the in-
put pulse can alter the spatial width of the beam. Be-
cause both b2 and n2 can be positive or negative, pulse
propagation can be classified in four different propagation
regimes. These regimes were previously investigated14

in the context of modulation instability, and it was found
that a cw beam can be modulationally unstable in the
normal-dispersion regime in both the self-focusing and the
self-defocusing cases because of spatiotemporal coupling.
It was also shown that the anomalous-dispersion regime
of a self-defocusing medium was modulationally stable.
We discuss the field behavior in each regime separately
with an emphasis on the pulse and beam widths. How-
ever, before doing so it is useful to consider spatial and
temporal solitons that are exact solutions15 of Eq. (1) un-
der certain special conditions.

3. SPATIAL AND TEMPORAL SOLITONS
To understand better the effects of a self-focusing non-
linearity sn2 . 0d we should first investigate solutions of
the NSE under some simplified conditions. For a rela-
tively wide pulse (T0 . 10 ps) the dispersion length be-
comes much larger than the diffraction length, such that
d ,, 1. We can then neglect the third term in Eq. (1) so
that Eq. (1) takes the form

i
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≠z
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1 sgnsn2dN2juj2u ­ 0 . (3)

For a self-focusing medium sn2 . 0d Eq. (3) has exact
solutions,15 known as spatial solitons, for integer values
of N such that N represents the order of the spatial soli-
ton. The fundamental soliton sN ­ 1d is characterized
by an unchanging, hyperbolic secant profile sechsjd that
occurs because the nonlinearity and the diffraction add
phase curvatures of opposite sign to the field that exactly
balance each other. Higher-order solitons sN . 1d do not
maintain their shapes consistently but return to them pe-
riodically with a period z ­ py2. Between these revivals
the FWHM of the beam passes through a minimum that
gets narrower and closer to z ­ 0 as the order of the soli-
ton increases. After the beam narrows, it splits into a
multipeaked structure before returning to its initial shape
at z ­ py2. This behavior is demonstrated in Fig. 1(a)
for an N ­ 3 spatial soliton.

A similar situation occurs for relatively wide input
beams (s . 1 cm) with short pulses (T0 , 1 ps) for which
the plane-wave approximation holds and the diffraction
length becomes much larger than the dispersion length
sd .. 1d. In this case we renormalize the NSE to the
dispersion length. When the diffractive term is dropped,
Eq. (1) becomes

i
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≠z 0

2
sgnsb2d

2
≠2u
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1 sgnsn2dN 0 2juj2u ­ 0 . (4)

Equation (4) also models pulse evolution in fibers for
which diffractive effects are controlled by the fiber geo-
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Fig. 1. Results of one-dimensional simulations showing the two
types of behavior described by the NSE for a self-focusing non-
linearity. For an input Gaussian field with N ­ 3 we have (a)
the evolution through compression, splitting, and recovery of a
bright spatial soliton and (b) the monotonic broadening of a pulse
in the normal-dispersion regime.

metry. Here the parameters N 0 2 ­ s2pT0
2ylb2dn0jn2jI0

and z 0 ­ zyLD reflect the new normalization. If n2 and
b2 have the same signs, soliton solutions of Eq. (4) do
not exist, and the pulse monotonically broadens, as can
be seen from Fig. 1(b) for N 0 ­ 3. However, if n2 and b2

have opposite signs, Eq. (4) becomes isomorphic to Eq. (3),
except that it describes the temporal evolution of the field.
The NSE then supports temporal solitons. Higher-order
temporal solitons also recover their input shape periodi-
cally but go through an initial compression stage, an effect
known as soliton-effect pulse compression.1 The evolu-
tion of a third-order temporal soliton is identical to that in
Fig. 1(a), except that the j direction now represents time
and the propagation distance is normalized to the disper-
sion length. As can be seen there, even a nonlinearity
as low as N ­ 3 can generate a significantly compressed
pulse. We can also see that the compression is followed
by pulse splitting and then a return to its initial shape,
as discussed above.

4. SELF-FOCUSING NONLINEARITY
For a narrow beam of ultrashort pulses, Ld ø LD and
d ø 1. We can then make neither of the approxima-
tions discussed above and so must use Eq. (1) to describe
the field evolution. One might guess that, inasmuch as
anomalous dispersion and diffraction both lead to field
compression in the presence of the self-focusing non-
linearity, when both effects are included the degree of
compression would increase. In fact it does, and, for
nonlinearities such that N .

p
2, self-focusing eventually

leads to wave collapse and a breakdown16 of our model
[in reality the wave collapse is averted by higher-order
dispersion and self-steepening terms neglected in Eq. (1)].
The dynamics of the wave collapse have been investigated
by several authors16 – 18 and are beyond the scope of this
paper.

To show how spatiotemporal coupling can be used to
advantage we apply a quadratic spatial phase modula-
tion (a thin lens) to the input field by choosing fsj, td ­
2j2y2f in Eq. (2). In Fig. 2 we plot the spatially aver-
aged pulse width (FWHM) and the time-averaged beam
width (FWHM) as a function of propagation distance for a
range of focal lengths f with N ­ 3 and d ­ 21. As Fig. 2
shows, a focusing modulation s f . 0d can hasten the col-
lapse, whereas a defocusing modulation can either delay
or eliminate it entirely, depending on the modulation am-
plitude, with larger amplitudes (smaller values of f ) being
required for overcoming larger nonlinearities. The note-
worthy point here is that the time-domain behavior is al-
tered with a spatial manipulation. The mechanism at
work is fairly simple. The spatial phase modulation for
f , 0 merely spreads energy out (or helps to concentrate
it for f . 0) from the center of the field, thereby reducing
(or enhancing) the nonlinearity-induced phase curvature
of the field, which is the cause of the collapse. This result
is analogous to that of Ref. 16, in which the self-focusing
of chirped pulses in the anomalous-dispersion regime was
numerically and analytically investigated.

In the normal-dispersion regime and for negligible
diffraction (plane-wave approximation) the interaction of
the dispersion and the nonlinearity leads to a monotonic
pulse spreading, as shown in Fig. 1(b). However, the
inclusion of the diffractive term can lead to a modest

Fig. 2. To show the influence of spatial phase modulation on the
wave collapse that occurs for N ­ 3 and d ­ 21, the integrated
pulse and beam widths as a function of propagation distance
are plotted. In (a) the pulse compression can be increased or
decreased depending on the type of lens employed, and in (b) the
beam width behaves in a corresponding fashion.
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Fig. 3. The amount of localized pulse compression in the
normal-dispersion regime depends on both the amount of
dispersion and the strength of the nonlinearity. The normalized
pulse width at j ­ 0 is plotted, showing that (a) the amount of
localized compression decreases as the strength of the dispersion
is increased and that (b) for d ­ 1, compression of the pulse
below its input width requires a strong nonlinearity sN ­ 5d.

degree of localized pulse compression. We see this in
Fig. 3(a), where we plot the pulse width wt0 (FWHM) at
the beam center j ­ 0, normalized to its input value, as a
function of propagation distance for a range of dispersion
strengths. We can understand this effect by recalling
that higher-order sN . 1d spatial solitons in waveguides
undergo periodic beam narrowing (and a corresponding
increase in intensity) and that the distance to the first
minimum decreases as N increases. In the nondisper-
sive case sd ­ 0d an input pulse with N . 1 can be
viewed as a continuous series of spatial solitons ranging
from zeroth order at the wings of the pulse to order N at
its center. As the center has the highest order, it will
spatially narrow at a shorter distance than the wings.
As a result, the pulse appears compressed because the
center has become more intense whereas the wings have
remained virtually unchanged. When normal dispersion
is included for a self-focusing nonlinearity sn2 . 0d the
effect is to spread power from the peak of the pulse to
the wings. For weak dispersion sd ø 0.1d this effect is
minimal compared with the spatial soliton effects; thus
the compression is strongest. As the strength of the dis-
persion is increased, the effect becomes more important,
until at d ­ 1 a large nonlinearity sN ­ 5d is required for
even a minimal (3%) reduction in pulse width [Fig. 3(b)]
at the beam center.

When we view the entire beam by integrating over j

before measuring the pulse width we find that if d . 0
the average pulse width increases and if d , 0 the pulse
is compressed, provided that jN2ydj . 1, which is pre-
cisely the result obtained for the one-dimensional case
described by Eq. (4). However, spatiotemporal coupling
still plays a role in the field behavior. The spatial self-
focusing dominates the field behavior initially, creating
the large peak intensity and localized pulse compression
of Fig. 3(a). The large peak intensity creates a large
nonlinearity-induced field curvature, which is what fuels
the pulse broadening. Consequently, the more dominant
the initial self-focusing, the broader the pulse will be at
large z . To understand the influence of spatiotemporal
coupling we should plot the pulse width as a function of
dispersion length for a constant value of N2yd. Thus,
from Fig. 4(a), where we plot the spatially averaged pulse
width wt as a function of z 0 ­ zd for two dispersion
strengths sd ­ 0.1, 1d and jN2ydj ­ 16, we see that the
pulse is broader at z 0 ­ 0.4 for the d ­ 1 case because the
spatial self-focusing is initially ten times stronger than
in the d ­ 0.1 case. Similarly, a strong initial disper-
sion, which reduces the peak-field strength quickly, will
in turn reduce the strength of the spatial self-focusing.
Referring to Fig. 4(b), where we plot the temporally av-
eraged beam width wj normalized to its input value for
N ­ 3 and a range of dispersion strengths, we see that,
as the strength of the dispersion is increased, the over-

Fig. 4. Interplay of spatial self-focusing and dispersive pulse
broadening. In (a), for jN2ydj ­ 16 the integrated pulse width
as a function of dispersion length, the stronger self-focusing (for
d ­ 1) eventually creates a broader pulse. In (b) for N ­ 3,
increasing the strength of the dispersion first enhances sd ­ 0.5d
the self-focusing and then saturates it so that for d ­ 1 the
self-focusing is actually weaker.
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Fig. 5. Influence of spatial phase modulation on the temporal
behavior for d ­ 0.5 and two different nonlinearites. In (a)
the plot of the pulse width at j ­ 0 shows that, depending on
the lens, the localized compression can be either enhanced or
suppressed with spatial phase modulation, whereas in (b) the
localized compression is seen to enhance the integrated-pulse
broadening.

all beam-narrowing influence of the self-focusing medium
is first reduced before increasing again. The reason for
this is that the strength of the nonlinear pulse broadening
depends on N2yd, whereas the distance over which its ef-
fects become important is proportional to d; consequently
the beam-broadening influence of the dispersion reaches
a maximum at approximately d ­ 0.5.

We can further exploit the spatiotemporal coupling with
spatial phase modulation and either enhance or suppress
the pulse compression. As seen from Fig. 5(a), where we
plot wt0 as a function of z , the degree of localized pulse
compression changes with both the modulation ampli-
tude and the strength of the nonlinearity. In Fig. 5(b)
we see that the effect of the modulation on the spatially
integrated pulse width wt is as expected from the dis-
cussion in the preceding paragraph. Whatever enhances
(reduces) wt0 for small z will reduce (enhance) wt at large
z 0. Also note that, with the spatial phase modulation, lo-
calized pulse compression can occur over a wide range of
nonlinearities where it would not occur at all in its ab-
sence. However, even with a large modulation amplitude
and a weak positive dispersion sd ­ 0.1d there is still no
spatially averaged pulse compression.

5. SELF-DEFOCUSING NONLINEARITY
In the self-defocusing case with the plane-wave approxi-
mation the roles of the two dispersion regimes are re-
versed. The nonlinearity now works with anomalous
dispersion, and the pulse broadens exactly as it does in
the normal-dispersion regime of a self-focusing medium
[Fig. 1(b)]. Conversely, the normal-dispersion regime
with a defocusing nonlinearity supports temporal solitons
[Fig. 1(a)]. The picture becomes more interesting when
we include diffraction. In the anomalous-dispersion
case, diffraction and dispersion work together to broaden
the field in both dimensions. As a result, for small z

the pulse at the beam center broadens more quickly than
in the one-dimensional case, but, because this reduces
the strength of the nonlinearity, the effect for large z is
a more slowly broadening spatially averaged pulse, as
shown in Fig. 6. Spatial phase modulation in this case
can slow the rate of pulse broadening, but at the expense
of broadening the beam spatially.

In the absence of diffraction the natural effect of
normal dispersion interacting with the defocusing non-
linearity is to compress the pulse, the compression factor
becoming larger as the nonlinearity is increased. Simi-
larly, cw simulations show that the effect of diffraction
interacting with the nonlinearity is to broaden the beam.
It is therefore not surprising that, when the diffractive
effects of a waveguide are included with a defocusing non-
linearity, the result is a more moderate pulse compression
(rather than a wave collapse), as shown in Fig. 7(a). The
reason for this is that, although the dispersion and the
nonlinearity are acting to bring energy in from the tem-
poral wings of the field, the diffraction is using the non-
linearity to move energy out to the spatial wings, thereby

Fig. 6. In the anomalous-dispersion regime with a self-
defocusing nonlinearity the pulse and the beam broaden
monotonically. In (a) including diffraction in the model is seen
initially to slightly increase the pulse width at the beam center,
whereas in (b) the effect of diffraction on the spatially integrated
pulse width is the opposite: the rate of broadening is decreased.
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Fig. 7. In the normal-dispersion regime with a self-defocusing
nonlinearity the pulse compresses and the beam broadens. In
(a) the effect of including diffractive effects on the spatially
integrated pulse is to reduce the broadening, and in (b) spatial
phase modulation is employed to enhance the pulse compression.

reducing the peak field strength and thus the pulse com-
pression. We can counteract the self-defocusing-induced
beam spreading by imposing a focusing spatial phase
curvature on the input field that the diffraction must
overcome before it can reduce the peak power. Thus,
because of the spatiotemporal coupling, we are again able
to enhance (or reduce) the pulse compression with spatial
phase modulation. As shown in Fig. 7(b), with a very
tight focus such as f ­ 0.5 we can achieve even greater
pulse compression than that obtained without diffraction.

Another interesting aspect of the spatiotemporal
coupling that occurs in planar waveguides is the coun-
terintuitive result that, as the strength of the defocusing
nonlinearity is increased, the spatial width of the field at
the peak of the pulse can be reduced (the beam can be fo-
cused), as evidenced by the data in Fig. 8. In Fig. 8(a) we
plot the beam width (FWHM) at the pulse peak wj0 nor-
malized to its input value as a function of the propagation
distance for d ­ 2 and a range of beam intensities. We
see that, except for the N ­ 2 case, there is a secondary
minimum in wj0 that gets deeper as the strength of the
nonlinearity is increased. Were we to plot the analogous
parameter for the temporal FWHM at the beam center,
we would find that the (spatial) secondary minima occur
at approximately the same position as the point of maxi-
mum temporal compression. Of course for d ­ 2 and
N ­ 2 there is no temporal compression, which explains
why there is no secondary wj0 minimum either. The
dependence of the spatial width on the pulse compression
takes an interesting turn when we consider the effect
of increasing dispersion, as in Fig. 8(b). Here we again
plot the beam width at the pulse peak wj0 as a function
of propagation distance but for a constant nonlinearity
sN ­ 4d and for dispersion parameters ranging from 0 to
10. We again see the secondary minima associated with
the point of maximum pulse compression. Because the
distance to the point of maximum temporal compression
is roughly proportional to d, and this is also the distance
over which self-defocusing must act to spread the field,
one might expect the minimum wj0 to decrease as the
strength of the dispersion increases. But, inasmuch as
the maximum pulse compression increases as N2yd, the
temporal compression weakens as the strength of the dis-
persion is increased. Therefore, as we see from Fig. 8(b),
the minimum wj0 actually occurs at ,d ­ 5, where the
pulse is compressed quickly and strongly enough to domi-
nate the self-defocusing. This is also the dispersion for
which the beam is broadest at large z .

By the same reasoning, a temporal phase modulation
(frequency chirp) that will enhance (suppress) the pulse
compression will also enhance (suppress) the localized
beam narrowing at small z . This behavior is shown in
Fig. 9(a), where we plot the normalized beam width at
the pulse peak wj0 for N ­ 3 and a range of chirp param-
eters, C is 25 to 5. As before, when we observe the effect
of modulation on the temporally integrated beam width
at large z we see that the effect of the spatiotemporal
coupling on the field behavior is the opposite of that ob-

Fig. 8. To show the effect of the N and d parameters, the width
(FWHM) of the spatial intensity distribution through the center
of the pulse st ­ 0d normalized to its input value is plotted as a
function of propagation distance. In (a) the effect of increasing
the strength of the nonlinearity is to increase the localized spatial
narrowing, whereas in (b) the dispersion-induced enhancement
of the localized narrowing saturates near d ­ 5.
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Fig. 9. Temporal phase modulation can be used to control the
beam width in a self-defocusing medium. In (a) an upchirp
sC . 0d is seen to reduce the localized beam narrowing that
occurs at t ­ 0, whereas a downchirp sC , 0d is seen to enhance
it. In (b) the effect of chirp on the time-integrated beam width
is such that an upchirp leads to a slower beam broadening
and a downchirp increases the beam width. In an anomalously
dispersive medium the effects of the upchirp and the downchirp
would be reversed.

served at the pulse peak for small z . In Fig. 9(b) we plot
the time-integrated beam width wj for the same param-
eters as in Fig. 9(a) and see that at large z the effect of
positive chirp is to reduce the influence of self-defocusing,
whereas the effect of negative chirp is to enhance it. In
neither case, however, does the modulation come close to
eliminating the influence of the nonlinearity on the beam
width.

6. CONCLUSIONS
We have presented an overview of the effects of spatiotem-
poral coupling on the behavior of ultrashort pulses trav-
eling in nonlinear planar optical waveguides. We have
seen that in a waveguide with n2 . 0 and b2 . 0 a
strong nonlinearity can bring energy in from the spa-
tial wings of the field faster than the normal disper-
sion can move it to the temporal wings, thus making a
localized pulse compression possible in the normal dis-
persion regime. This initial compression at the center
of the beam, however, creates an enhanced pulse broad-
ening at larger propagation distances. Further, as the
initial compression is driven by spatial self-focusing, a fo-
cusing spatial phase modulation will enhance both the
initial compression and the eventual pulse broadening
that occurs at large z . Conversely, a defocusing spa-
tial phase modulation will reduce both the initial com-
pression and the later broadening. We have also seen
that with n2 , 0 and b2 . 0 a strong nonlinearity can
bring energy in from the temporal wings faster than the
diffraction can spread it to the spatial wings, making a lo-
calized beam narrowing in a self-defocusing medium pos-
sible. This initial narrowing at the peak of the pulse
fuels an even greater self-defocusing at large distances,
which may be enhanced or reduced with temporal phase
modulation (frequency chirp). In both cases the mecha-
nism is the same: a strong compressive effect initially
overpowers a broadening effect, which in turn strength-
ens the eventual broadening that occurs at larger propa-
gation distances.

There is a variety of materials and devices in which
nonlinearity-induced spatiotemporal coupling plays an
important role. This coupling will also be important
in materials that exhibit Kerr-like nonlinearities, such
as the resonant nonlinearities of semiconductors and
semiconductor-doped glasses. As discussed above, spa-
tiotemporal coupling is behind the self-mode locking6 – 8

of the new generation of ultrafast solid-state lasers
(Ti:Al2O3, Cr:LiSrAlF6, etc.), and further developments
in this area necessarily require a clear understanding
of this mechanism. A proposed ultrafast pulse-shaping
technique also exploits the spatiotemporal coupling pro-
vided by the Kerr nonlinearity.19 Another application
in which spatiotemporal coupling should be important is
in Z-scan measurements of the nonlinearity of dispersive
materials by ultrashort pulses, particularly for thicker
samples. Both numerical and experimental investiga-
tions in this area are now under way.
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