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Noise Characteristics and Statistics of
Picosecond Stokes Pulses Generated in Optical
Fibers Through Stimulated Raman Scattering

Clifford Headley, III, and Govind P. Agrawal, Senior Member, IEEE

Abstract— The growth of the Stokes pulse from spontaneous
noise during stimulated Raman scattering of picosecond pump
pulses in optical fibers, is investigated by using a Langevin-noise
term in the coupled nonlinear Schriédinger equations, which in-
clude pump depletion, group-velocity mismatch, fiber dispersion,
and self- and cross-phase modulation. The model makes use of
the actual Raman-gain spectrum of optical fibers. Numerical
simulations are used to examine the average behavior of the
Stokes pulse, and shot-to-shot fluctuations that are likely to occur
in practice. It is shown that the Raman-induced energy transfer
is significantly affected by group-velocity dispersion for pump-
pulse widths shorter than 5 ps. Examination of the average
temporal width shows that the Stokes pulse is initially as wide
as the pump pulse, undergoes a gain induced compression and
then rebroadens for distances longer than a walk-off length. The
effect of varying pump and fiber parameters is to change the
minimum value of the Stokes-pulse width, and the distance at
which the minimum occurs. The shot-to-shot energy and pulse-
width fluctuations initially increase before being reduced at fiber
lengths longer than the walk-off length. The primary effect of
dispersive and nonlinear effects is to change the distance beyond
which fluctuations decrease.

1. INTRODUCTION

DVANCES IN fiber-optic communications require an

understanding of the nonlinear effects which take place
as ultrafast pulses propagate in an optical fiber [1]. These non-
linearities arise because fibers confine an intense pulse within
a small area over a long distance. One important nonlinear
effect is stimulated Raman scattering (SRS) [1]-[5]. This is
a process by which a fraction of the power from an optical
field (the pump field) incident on an optical fiber is converted
into an emitted field (the Stokes field), whose frequency is
red-shifted away from the frequency of the incident beam.
This process can be initiated by 1) spontaneously scattered
photons which are subsequently amplified as they propagate
with the pump beam, 2) propagating a weak optical pulse
whose frequency difference with an intense copropagating
pump pulse falls within the Raman-gain bandwidth, or 3)
high-frequency components of a single pulse pumping lower
frequency components of the same pulse. The first case de-
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scribes Raman generation [6], the second Raman amplification
[7], and the final intrapulse stimulated Raman scattering [8],
[9]. Additional nonlinear effects in optical fibers include self-
phase modulation (SPM) [10] and cross-phase modulation
(XPM) [11]. These nonlinearities arise from the intensity
dependence of the refractive index. SPM refers to the self-
induced phase shift experienced by a pulse, and XPM refers to
the phase shift induced on one pulse by another copropagating
pulse which may be at a different wavelength.

The study of SRS in fibers is of interest both for its
detrimental and beneficial effects. For high intensities and long
transmission lengths SRS can introduce a power-dependent
loss mechanism, as well as crosstalk in multichannel commu-
nication systems. On the other hand, SRS in optical fibers can
be used for making broadband amplifiers, wavelength-tunable
lasers, and pulse compressors.

One problem in the study of SRS is how to model the
noise that is an inherent part of the process. During Raman
generation, the Stokes pulse builds up from noise, while noise
is added to the signal pulse during Raman amplification. Past
methods for including spontaneous Raman scattering have
relied on the insertion of a weak Stokes signal at the fiber
input or inserted a constant source along the fiber [12]1-[14]
While this method allows the study of the effects of walk-off,
SPM and XPM, the shape and width of the input seed pulse
influences the output characteristics of the Stokes pulse.

The effect of noise during SRS has been studied extensively
in gases [15]-[19]. However, there are important differences
between gases and fibers. The shape and the width of the
Raman-gain spectrum in fibers is quite different from that
of gases [3]-[5]. The Raman-gain spectrum of gases can
be modeled with a Lorentzian lineshape, while there are no
good analytic expressions for the gain curve of fibers. In
addition, the gain curve of optical fibers is extremely broad
(~8 THz) compared to gases (640 MHz at 15 atm in Hs)
[20]. Furthermore, group-velocity dispersion (GVD) which is
negligible in gases becomes important for pulse propagation
in optical fibers. Finally, nonlinear effects such as SPM and
XPM, which have not been addressed in the study of gases
must be considered in optical fibers.

In this paper, a realistic model is presented that effectively
simulates the actual noise process that leads to the growth of
the Stokes pulse during SRS. In addition the Raman-gain spec-
trum obtained from experimental data is used in the numerical
simulations [21]. The results of numerical simulations showing
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the dynamics of the Stokes pulse formation and its statistical
properties are then studied. This paper is organized as follows.
In Section II coupled nonlinear Schrodinger equations which
include a Langevin noise term to represent spontaneous noise
in the fiber are derived. The appropriate value of the noise
term is calculated in Section III, and in Section IV numerical
implementation of the model is discussed. In Section V, the
behavior of the Stokes pulse in the time and frequency domains
is studied for a given set of parameters. The effect of varying
these parameters on the average Stokes pulse energy and rms
width is explored in Section VI. Section VII examines statistics
of shot-to-shot fluctuations for various pump pulse and fiber
values. The results are summarized in Section VIIL

II. THEORETICAL MODEL

When an optical pulse propagates in a fiber, it affects the po-
larizability of the silica molecules in two ways. The electronic
structure is altered on what is essentially an instantaneous time
scale, leading to an intensity-dependent refractive index. In
addition, this perturbation in electronic structure leads to a
change in the field seen by the nuclei of the molecule, and may
result in the vibration of the molecule. This molecular vibration
is an intrinsic part of the Raman effect. In addition to these
two contributions, vibration of the molecule can occur spon-
taneously through, for example, thermal noise. A third-order
nonlinear polarization, Py (r,t), which accounts for these
three effects can be written as the sum of the instantaneous
electronic or Kerr polarization Pk (r,t), a Raman polarization
Pr(r,t), and a noise polarization Py (r,t) as {22]-[25]

Pyr(r,t) =Pg(r,t) + Pr(r,t) + Pn(r,t)

=eoE(r,t) {XKE(r, t)- E(r,t)

+ /oo xr(t —t)E(r,t") - E(r,t') dt’

-0

o0
+ / xn(t—t)Fn(t') dt’}, )
—oQ0
where E,. is the electric field, e is the permittivity of
free space, xx is the Kerr susceptibility representing the
contributions of electrons to the nonlinear process, xgr(t) is
a third-order time-dependent nonlinear susceptibility which
accounts for Raman scattering, F(t) is a Langevin noise
force representing all the processes, which lead to random
vibrations of silica molecules, and xn(t) is the response
function that converts Fy () into a spontaneous polarization.
xr(t) and xn(t) were obtained using a simple harmonic
oscillator equation to describe the displacement of a molecule
[25]-[27]. The driving forces for the oscillator were the applied
field and a randomly varying force that simulated noise. The
form of this equation is similar to a Langevin equation hence
the use of the term Langevin noise force. This equation
can be solved in the frequency domain, and its solution
has two terms, one containing the applied electric field, and
the other the random noise force. The displacement can be
related to the polarization with the first term leading to the
Raman polarization, and the second term leading to the noise

2059

polarization. Explicit expressions for xg(t) and xn(t) can be
obtained by following this procedure [25]-[27]. Unfortunately,
due to the amorphous nature of silica fibers, wherein many
closely spaced vibrational levels contribute to the scattering
process it is difficult to calculate the values of these parameters
[25]. It should also be noted that the form of the second term
on the right-hand side of (1) suggests that x z(t) is the Raman
response function presented in several recent articles [22],
[23].

Coupled nonlinear Schridinger equations which include the
first term in (1) are well known [1], [14], hence the focus
here is how to incorporate the Raman and noise polarizations
into coupled nonlinear Schrodinger equations. To proceed, the
Fourier transform of the last two terms in (1) can be written
as [22]-[24]

PR(T, w) =£&p /—oo /_Oo )ZR(wl - wz)E(T, wl)E(r, LU2)

-E(r,w — w1 + ws) dwy dwa, )
and
Py (r,w) = &0 /oo in(w — w1)Fn(w — w1)E(r,w) dor,
- 3

Both E and P are assumed to be linearly polarized, and
a tilde denotes the Fourier transform. If we assume the anti-
Stokes components do not grow significantly, the electric field
can be written as the sum of the pump and Stokes waves in
the form

E(r,t) = 1 {Ap(z, t)e Pormert)
+ Ay(2,1)eiP= N T (2, y) + cc.  (4)

Here A;(z,t) with j = p or s is the (complex) amplitude
of the pump and Stokes pulse envelopes respectively, w; is
the carrier frequency, 3; is the mode propagation constant,
and T(z,y) is the distribution of the field perpendicular to
the direction of propagation and is assumed to be equal for
both waves. The use of a carrier frequency is for convenience
and does not mean that the spectral width of the Stokes pulse
is narrow. The noise force can also be expressed in phasor
form as,

Fw(r,t) = ${fn (2, t)e’?m* 00 4 [ (z,t)e ™ Pr== 20}

(5)
where fn(z,t) is a slowly and randomly varying function of
the noise, Qg = w, — w; is the difference between the carrier
frequencies of the pump and Stokes waves, g = [, — s is
the difference between propagation constants of the pump and

Stokes waves, and fy is taken as a Gaussian white noise with
the statistical properties [15], [16]

(fn(z,8)) =0,
(fn(z, N (1)) =2D8(z = 2')6(t — ).
(In(z ) fn (2 ) = (Fa ()R (Z, 1) = 0. (6)

The symbol (- --) indicates an ensemble average, and D is a
diffusion constant, the value of which will be determined later.
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Substituting the Fourier transform of (4) into (2) and car-
rying out the indicated multiplications yields 64 terms, of
which only 36 terms are phase-matched. Among the 36 phase-
matched terms, 28 of the terms are approximately zero [24]
due to the finite extent of both the Raman gain curve and
the spectrum of the pump and Stokes waves. The inverse
Fourier transform of the remaining 8 terms yields the following
expression for the contribution of the pump and Stokes wave
to the Raman polarization Pry(r,t) and Pgs(r,t), respectively

Prp(r,t) = jeoT>(2,y)Ap(2,t) As(2,1)

. Uoo Yr(w + Qr)AL(—w)e "t dw’]

—00

. eH(Bpz—wpt) %)
and
Pra(r,t) = §e0T>(2,9)| 45 (2, )]
. [/00 xr(w — Qr)A (W) ™' dw'}
. ei(,;::—wst). 8)

Equations (7) and (8) assume that the pump spectrum is very
narrow compared to the Raman gain spectrum, which is true
for pulse widths greater than 1 ps. A similar expression can
be obtained for the noise portion of the polarization by sub-
stituting (4) and (5) into (3) yielding for the pump and Stokes
noise contributions Py, (r,t) and Pn,(r,t), respectively,

PNp(Ta t) = %EOT(‘T’ y)As(Zﬁt)

. [/ xn (W + QR)fN(w')e_i“It dw’]
. ei(ﬂpz_“’pt)’ )]
and

PNS("" t) = %50T(m7 y)AP(za t)

'[/ XN@/—QRH;«wa”*“ﬁ

—00

. ei{Bsz—wst) (10)
To incorporate (7)—(10) into coupled amplitude equations

for the pump and Stokes wave, the starting point is Maxwell’s

wave equation

9 1 92E(r,t)
VEnD - Z 5
82PL(T, t) 82PNL(1‘, t)
- “0 at2 ND 8t2 (11)

where P (r,t) is the linear contribution to polarization, c is
the velocity of light in vacuum, and f is the vacuum per-
meability. By substituting (4), and (7)~(10), into (1), placing
the result along with (4) into (11), using the expression for
Py (r,t) in [1}, and assuming 1) the pump and Stokes pulses
maintain their polarization along the fiber, 2) the nonlinear
and noise contributions to Py (r,t) are a small perturbation
to the refractive index, and 3) the loss in the fiber can be
neglected, and following the derivation laid out in [1] the
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following coupled equations for the pump and Stokes waves
are obtained:

dup | 1 Duyp oy Oy
8z g Ot 2 Ot?
= i'Yp“p[lupP +2(1 - 8) usl*]
+ %upu5 /~OO Gp(w' + QR)ﬁz(—w')e_i“’It dw'
+ %us/ Hy(w' + QR)fN(z,w')e—i“’/t dw'
(12)
and
Bu | 1w,
0z wvgs Ot 2 Ot?

= iyt [|us|? + 2(1 = 8)up ]
+ %Iuplz/ Gs(w' — QR)ds(w')e'i“"t du'’

+ %up/ Hy(w' - Qr)fr(z, —u)e ™t du'.
13)

In (12) and (13), B2; is the GVD coefficient, 6 is the
fraction of the XPM contribution which arises from molecular
vibrations [22], [24], and v,; is the group velocity. The
lack of symmetry in (12) and (13) is due to the assumption
that the pump pulse spectral width is much narrower than
the spectral width of the Raman gain curve. The variables
u;(z,t), G(w),7;, and H;(w) are defined as follows:

= e vz kixr(w)
kjng ~ kj)ZN (w)
_ () = DIXN) 14
Y5 Aefflﬁlz H}(w) mn ( )

where & is introduced to normalize u; such that |u,|* repre-
sents power. k and A.g are defined as

2
1 . 1/2 (//T2 d.’l?dy)
K2 = 511(—0) Ag = (15)
Ho //T4 dz dy

and k; = 2w /A; is the vacuum wavenumber, n is the linear
refractive index, no = 3X i /8n is the nonlinear coefficient, and
A.g is the effective core area of the fiber. The first terms on the
right-hand side of (12) and (13) account for SPM and XPM,
the real part of the third term is an additional contribution to
XPM, while the imaginary part is responsible for the Raman
gain, and finally the fourth term accounts for linearly amplified
noise in the system.

III. PHYSICAL PARAMETERS

The relationship between éj (w) in (12) and (13) and the
gain and index spectra associated with SRS are well known
[22]-[25]. The imaginary part of G;(w) is equal to the Raman
gain g;(w), and the real part of G;(w) can be calculated from
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g;(w) using the Kramers-Kronig relationship. Less well known
is the relationship between H j(w) and physical parameters.

In order to calculate the value of H;(w), the spectral
density of the Stokes pulse must be calculated in the linear
regime, where spontaneous scattering is the most important
term in the Stokes equation. Assuming i) the length of fiber
under consideration is short enough that dispersion and pump
depletion effects are negligible, ii) the pump power is small
enough that nonlinear effects can be neglected, and iii) the
pump pulse temporal width is broad enough that its spectrum
is a delta function compared to the noise and Raman gain
spectrum, (13) reduces to

Ous(z,t) 4 < i "N, —iw'
T =5 /-oo H, (' — Qr)fr(z,—w)e ™t du'.
(16)

Taking the Fourier transform of (16) and integrating over
z yields,

. L
iis(L,w) = %uI,I:IS(w — QR)/O o, —w)ds  (17)

where L is the length of fiber under consideration. The spectral
density, S(w), is defined as [28]

. L 2
S(w) = i { lin(Ew) ) 1s)
where us(L,t) = 0 when ¢ > T. Substituting (17) into (18)
and carrying out the ensemble average indicated using (6), the
spectral density is given by

S(w) = Dlu,|*|Hy(w — Qr)|’L. (19)

S(w) can now be related to the Raman-scattering cross
section o,(w), which is defined as the fraction of pump
photons incident on a medium that is scattered per unit
distance, per unit solid angle, per unit frequency and is given
in SI units by [12], [13],

chn?

os(w) = —z-gs(w)n(w) + 1]

3 (20)

where h is the Planck constant, = [exp(hw/kpT) — 1]~}
is the Bose-Einstien population factor, kg is the Boltzmann
constant, and T the temperature of the fiber. Equation (19)
can be cast into the form of (20) by dividing it by the pump
power, fiber length and solid angle. Equating this result to
os(w) yields,

D|Hy(w — Qg)|? = fr(N.A)%0,(w) 1)

where f is the fraction of light scattered per steradian that
is guided, and N.A. is the numerical aperture of the fiber
[12], [13]). Assuming H:(w) is real, this means the form and
amplitude of the parameters needed to calculate the numerical
values of the noise terms in (12) and (13) are known. The
result given in (21) agrees with the value of the input seed
Stokes pulse used in some previous work, the difference here
is that the noise source is now being treated as a random
variable [13].
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IV. COMPUTER MODEL

Equations (12) and (13) are the propagation equations for
the study of Stokes pulse formation. A numerical code was
written based on the fast-Fourier-transform (FFT) split-step
method to simulate evolution of the pump and Stokes pulses
[1]. The Raman gain spectrum used for these simulations was
obtained from measured data [21]. The noise force, fn(z,t)
is simulated by random numbers generated with a Gaussian
distribution of zero mean and unit variance [29]. The complex
amplitude, u;(z,t) = |u;(z,t)] explid(z,t)], of the pump and
Stokes pulses after propagating a distance z is used to obtain
the pulse shape governed by the intensity profile |u;(z, )%
The pulse spectrum |ii;(z,v)|*> is obtained by taking the
Fourier transform of u;(z,t). The parameter used to quantify
the temporal pulse widths the rms width 7(z) which is defined

as
o] oo 2
/ t?|us(z,t)|% dt — </ tlus(z,t)|? dt)

/ lus(z,t)|? dt

72(2) =

(22)

The shot-to-shot fluctuations that would be observed in the
laboratory were obtained by repeating the simulation of the
passage of the pump and Stokes pulses many times through
the fiber. For each trail, the value of fx(z,t) was fluctuating
leading to quantifiable differences in the Stokes pulse energy
and rms width. In this way ensembles of these parameters
under various conditions were collected.

Several tests were applied to the code. Simulations with the
input parameters used to obtain the results given in [1, ch.
8], with the noise term set to zero were performed, and the
results agreed with the previously published results. In order
to test the noise term, simulations were performed to produce
the experimental results given in [6].

The simulations correspond to the experimental situation
of a Nd:YAG laser source producing Gaussian-shaped pi-
cosecond pulses at 1.064 pm, coupled into a single-mode
optical fiber, and producing Stokes pulses at 1.12 pm. The
fiber parameters are taken from [6] and are (2, = 25.2 ps 2
km~!,y, =506 km~' W~! and g, = 2.34 km~! WL, The
value of these parameters for the Stokes pulse is calculated
by multiplying them by the ratio A\,/A; = 0.95. The walk-
off between the two pulses is governed by the parameter d,
defined as

1 1
d= —— —

Ugp  Ugs

(23)

and was set to d = 2.2 ps/m. Furthermore § = 0.2 and f =
0.5 are used in (21) [12], [13].

In order to quantify the relative importance of various
parameters, two length scales are used [1],

_ T -5
B2y’ ld]’

The dispersion length and the effective walk-off length
describe respectively the length scales over which GVD and

Lp and L, (24)
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Fig. 1. Normalized Stokes pulse intensity profiles at (i) 0.25 Luw, (i) Lw,
and (iii) 2 L. Tp = 10 ps and the input pump power is 1.2 Pep,. Fiber
parameters are B2, = 25.2 ps® km™!, v, = 5.06 km™! W1, g, =234
km—! W1, By, = 23.8 ps2 km™!, v, = 479 km~! W1, g, = 221
km—! W1, and d = 2.2 ps/m.

walk-off become important. T is the 1/e-intensity pulse width
and T}, is the intensity full width at half-maximum of the pump
pulse. For Gaussian pulses, the two are related through the
expression T, = 1.665 Ty. For a T, = 10-ps pulse, Lp =
1.4 km and L,, = 4.5 m. The walk-off length can be used to
calculate a threshold power, Py, from the criterion [1],

Ga= gthth = 16. (25)

This yields a threshold power of approximately 1500 W. The
results of simulations are presented in the following sections
for different peak pump powers temporal widths and various
fiber parameters.

V. AVERAGED PULSE SHAPES AND SPECTRA

Fig. 1 shows Stokes pulse shapes, averaged over 300 shots,
at fiber lengths of (i) 0.25Lw, (ii) Lw, and (iii) 2Lw, for
an input pump-pulse power of Py = 1.2 P, and T, = 10
ps. The pulse shapes have all been normalized with respect to
their individual peak power values.

Fig. 1 shows that the temporal width of the Stokes pulse
initially narrows, and then widens. This behavior can be ex-
plained as follows. The amplification of the Stokes pulse by the
pump pulse is proportional to the factor exp(g|up(z,t)[%2).
Due to the time dependence of the pump power, the gain
experienced by the Stokes pulse will vary across its temporal
profile. Initially the center portion of the Stokes pulse, which
overlaps with the center of the pump pulse, experiences more
amplification than the wings causing gain narrowing of the
pulse width. As the Stokes pulse walks away from the pump
pulse, the center of the pump pulse amplifies the trailing edge
of the Stokes pulse increasing the Stokes pulse temporal width.
In Fig. 1 it is seen that at z = 2 Lw the Stokes pulse
has developed a tail on the right side. This feature is easily
understood by noting that in the case of normal GVD the
trailing edge of the Stokes pulse continues to overlap with
the pump pulse and is continuously being amplified, while the
leading edge has completely walked out of the pump pulse.
Note also that the high-frequency oscillations seen at z = 0.25
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Fig. 2. Normalized Stokes pulse spectrum profiles at 0.25 L., (dark solid
line), L., (solid line) and 2 L., (dashed line). The pulse and fiber parameters
are identical to Fig. 1.

L., [curve (i)] decrease as the Stokes pulse propagates along
the fiber. Initially the Stokes pulse is formed out of noise, and a
noisy structure shows up in the Stokes intensity profile. As the
process becomes stimulated, the high-frequency oscillations
dampen out.

Fig. 2 shows the Stokes-pulse spectra that correspond to
the pulse shapes shown in Fig. 1. The Stokes-pulse spectrum
narrows as the pulse propagates through the fiber because
of gain narrowing as discussed above. This compression can
be accounted for by considering the spectral shape of the
Raman gain curve, which peaks at the center frequency of the
Stokes light. The center frequencies of the Stokes spectrum
are preferentially amplified over the wings, and narrowing of
the spectrum occurs. For the parameters used, the effects of
SPM and XPM are negligible.

VI. EVOLUTION OF AVERAGE
STOKES PULSE ENERGY AND WIDTH

In order to compare the effect of different pump pulse and
fiber parameters on the average Stokes pulse characteristics,
it is useful to introduce the following normalized quantities.
The energy growth factor G is defined as

/°° lus(2,t)|% dt
G(z) = == (26)

/ [y (0,8)]2 dt

—0oC

while the normalized propagation distance &, and the normal-
ized Stokes rms width X are defined respectively as
z 7s(§)
&= I. and X(¢) = (0
Fig. 3 shows the variation of the energy amplification factor
G(¢&) in decibels as a function of the normalized distance £ An
important point to be made is that the values of P, and Ly,
change for the different conditions described and whenever
appropriate, these values were recalculated. The simulations
show that the energy in the Stokes pulse steadily increases
due to SRS, with the rate of energy increase eventually

27)
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G(&) dB

Fig. 3. Average Stokes pulse energy normalized to input pump energy and
expressed in decibels versus distance expressed as a fraction of the walk-off
length, (i) for the same parameters as Fig. 1 with the other curves having the
following exceptions, (ii) T, = 2 ps, (iii) T, = 10 ps and B2, = B2s = 0,
(iv) Tp = 2 ps and B2, = B2s = 0, and (v) T, = 10 ps and input pump
power equal 1.5 P,

approaching zero due to the walk-off between the Stokes and
pump pulses. Curve (i) in Fig. 3 is obtained under the same
conditions as in Fig. 1.

The result of reducing the input pump pulse width from
10 ps to 2 ps is shown by curve (ii) in Fig. 3. The initial
amplification of the Stokes pulse is reduced compared with
the case of a 10-ps pump pulse. However, by 2 L,, the
energy transfered to the Stokes pulse for the two pulse widths
are approximately equal. This behavior can be understood as
follows. Equations (24) show that the effect of dispersion is
greater for a 2-ps pump pulse than for a 10-ps pump pulse,
as a result the 2-ps pump pulse will broaden faster than the
10-ps pump pulse. This broadening means that the intensity of
the pump pulse is reduced and less amplification takes place
for the 2-ps pump pulse. However, because of the increased
spreading of the pump pulse due to GVD, the Stokes pulse
continues to overlap with the pump pulse for a longer length
of fiber, so that at £ = 2, the amplification factor for the two
cases are about equal.

The effect on the energy growth of the Stokes pulse of
neglecting GVD for input pump pulse widths of 10 ps and 2 ps
is shown by curves (iii) and (iv), respectively. The results are
quite different for the two cases. This is because the effect of
GVD on the amplification process is both beneficial and detri-
mental. It is beneficial to amplification because during walk-off
the Stokes wave will interact with the pump pulse over a
longer length of fiber due to dispersion-induced broadening of
the pump pulse. The dispersion is detrimental to amplification
because as the pump pulse broadens, the intensity of the pump
profile is reduced so that the amplification of the Stokes pulse
decreases. When the dispersion length is long, and the effect
of dispersion is small, dispersion benefits the amplification
process which is the case for 10-ps pulses. When the dispersion
length is short, the detrimental aspect of dispersion is more
important which is the case for 2-ps pulses. These results are
reflected in the curves of Fig. 3, and are similar to that obtained
by Scalora et al. [19] if we note that GVD is the temporal
analog of diffraction.
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Fig. 4. Average Stokes pulse rms width normalized with respect to the input
pump pulse rms width, versus distance expressed as a fraction of the walk-off
length, with parameters corresponding to those in Fig. 3 for the various curves.

Finally, the effect of increasing the pump power is shown
by curve (v) of Fig. 3. There is an increase in energy transfered
to the Stokes pulse, a consequence of gain being proportional
to the exponential of the pump pulse.

Fig. 4 is a plot of the normalized rms Stokes width X as a
function of £. The five curves shown correspond to the same
conditions as in Fig. 3. Curve (i) is for conditions identical to
that in Fig. 1 and shows the narrowing and eventual broadening
of the Stokes pulse. The effect of decreasing input-pump pulse
width is shown by curve (ii) in Fig. 4. The narrowing of the
Stokes pulse is reduced, but the pulse remains at its minimum
width for a longer length of fiber. Both of these results
can be explained by considering the increased GVD-induced
broadening of the pump pulse resulting from the reduction of
its input pulse width. As a result of greater pulse broadening,
the difference between the amplification factors at the center
and wings of the Stokes pulse (as it walks off from the pump
pulse) is reduced, leading to less gain narrowing of the Stokes
pulse. In addition the increased flattening of the pump pulse
means that once the Stokes pulse has reached its minimum
width it remains narrow for a longer distance, because the
center of the pulse is amplified at nearly the same rate as the
wings.

The effect of neglecting dispersion for 10-ps [curve (iii)] and
2-ps [curve (iv)] pump pulses respectively on the Stokes pulse
rms width is shown in Fig. 4. In both cases the pulse narrowing
has increased and broadening occurs at a shorter fiber length
than without GVD. In the absence of GVD, the pulse shape
remains unchanged. The decrease in the rms width of the
Stokes pulse is due to the lack of GVD-induced broadening
of the pump pulse. The difference between the amplification
factor of the center and wings of the Stokes pulse is larger
without GVD, leading to more gain narrowing. The increase in
the eventual broadening of the Stokes pulse over the situation
where there is GVD is a continuation of this argument. The
center of the pump pulse is not decreasing in intensity as the
Stokes pulse walks off, so therefore it is able to more quickly
amplify the wings of the Stokes pulse, leading to the increased
broadening seen in Fig. 4. For the case of a 2-ps pump pulse
two minima are observed. This is because the intensity of the
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pump pulse remains large enough that a second Stokes pulse
builds up after the major portion of the first Stokes pulse has
walked away from the pump pulse.

Finally, curve (v) in Fig. 4 shows that the effect of increas-
ing the pump power is to cause a decrease in the minimum rms
pulse width of the Stokes pulse, over a shorter length of fiber.
However, broadening of the Stokes pulse occurs at a much
faster rate. The explanation for this runs parallel to that given
above when GVD is neglected. An increased pump power,
increases the difference in amplification factors between the
center and wings of the Stokes pulse, thereby increasing the
gain narrowing experienced. This increased pump power also
means that the wings of the Stokes pulse are more strongly
amplified during walk-off, leading to an increased broadening
of the Stokes pulse over a shorter distance.

VII. STATISTICS OF FLUCTUATIONS

Fluctuations in the Stokes-pulse energy and temporal shape
arise because of the uncertainty in the time, position and
energy of the first few spontaneously scattered photons, that
will be amplified to produce the Stokes light. This leads to
variations in the macroscopic properties of the Stokes pulse.
In the following subsections the statistics of the energy and
the rms width of the Stokes pulse are investigated. The work
is also compared to that done with gases [15]-[19].

In the work done on gases several criteria were used to
chart the behavior of Raman statistics. One criterion for
determining when the Stokes pulse energy and width statistical
distributions changed from exponential to Gaussian is given by
[151-[17): TT, > 2g,|u,(0,t)|?2, where I is the full width at
half maximum of the Raman gain spectrum. A value of ' = 8
THz will be used for the discussions to follow. This criterion
can be expressed in terms of a variable m as

T,

m=———. (28)
2gp1uy(0,1)]22

The transition from exponential to Gaussian statistics is of
interest because in the work done on gases this change marked
the change in Stokes amplification from the linear (undepleted
pump) region to the nonlinear (depleted pump) region.

A. Pulse Energy

Fig. 5 is the energy distribution function for the Stokes
pulse, for a sample of 300 shots, at walk-off lengths of 0.015
L., Ly, and 2.5 L,. The pulse and fiber parameters are
the same as in Fig. 1. In Fig. 5, the curve at a distance of
0.015 L., shows that the Stokes energy distribution is nearly
Gaussian. As the pulse propagates further along the fiber it
loses its Gaussian like shape. Not only is the distribution at L,,,,
bimodal but it is also skewed slightly towards lower energies.
By 2.5 L, the distribution has reacquired a nearly Gaussian
form, with a width similar to that at 0.015 L,,.

The pattern that the energy fluctuations initially increase,
peak, and then decrease is repeated throughout all the simu-
lations to be presented. It is therefore worthwhile to explain
this overall behavior here. A good analogy for understanding
this cycle is to envision the total Stokes energy, as the
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Fig. 5. Stokes-pulse energy probability distributions versus energy normal-
ized to the average energy of a given ensemble at fiber lengths of 0.015 L.,
L., and 2.5 L,,, under the same conditions as Fig. 1.

cumulative sum of the energy of all the Stokes photons
of various frequencies. The energy values of the photons
that can be amplified, and the probability of a photon of a
particular energy being amplified, can be determined from
the frequency distribution of the Raman gain spectrum. The
ratio of the widths of the Raman-gain spectrum to the pump-
pulse spectrum determines the number of different frequency
components that can contribute to the Stokes pulse growth.
In (28) this ratio is approximated by I'T,. Initially, only the
frequency components at the peak of the Raman-gain spectrum
are above threshold and are amplified. The energy fluctuations
are relatively low, as seen at z = 0.015 L,,. As the pulses
propagate in the fiber, more frequency components satisfy the
threshold condition given by (25). This factor corresponds to
the denominator of (28). The range of frequencies amplified
widens, increasing the energy fluctuations of the Stokes pulse.
This agrees with the results in Fig. 5 at z = L,,. Eventually,
the fluctuations decrease because the frequency components
that are initially highly amplified saturate the pump, while
those components that received less amplification continue to
grow. In the limit of total pump depletion, all the energy of the
pump pulse is transferred to the Stokes pulse, and the energy
fluctuations stabilize. In Fig. 5 at z = 2.5 L, the fluctuations
decrease as the tail of Stokes pulse begins to deplete the pump
pulse.

This pattern is predicted from the work on gases. The
parameters m is calculated to be 139 at z = 0015 L,,
which clearly predicts Gaussian statistics. At z = L,,, the
value of this parameter has fallen and is now m = 2, which
indicates the energy distribution will have less of a Gaussian
shape. Finally, at z = 2.5 L,, the nonlinear regime has been
reached and there is some pump depletion. This reduces energy
fluctuations and suggests once again nearly Gaussian statistics
[18].

With this overall pattern established, Fig. 6 is a plot of
the normalized standard deviation of the Stokes pulse energy
distributions under various conditions. Curve (i) is a plot for
the conditions described in Fig. 1, curve (ii) is with zero
SPM, XPM, GVD and walk-off, and curve (iii) was obtained
using the same parameters as in Fig. 1 except the input pump
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Fig. 6. Stokes pulse energy standard deviation normalized to average Stokes
energy versus fiber length normalized to walk-off length for values of (i) same
parameters as Fig. 1, (ii) same as Fig. 1 withyp = 7s = f2p = B2 =d =0
and (iii) same as Fig. 1 with Py = 1.5F,.

power is now Py = 1.5P;,. The behavior seen in curve
(i) was described above using Fig. 5 and is shown here
for reference. Curve (ii) shows that the energy fluctuations
without nonlinear or dispersive effects initially follows the
behavior of curve (i), but the energy fluctuations are dampened
after a much shorter length of fiber. This is because for the
parameters of curve (ii), the Stokes pulse does not walk away
from the pump pulse, and the pump pulse does not broaden
temporally or spectrally. Depletion of the pump pulse occurs
over much shorter lengths of fiber, and therefore so to does the
corresponding stabilization of energy statistics. A result which
agrees with the work on gases.

Curve (iii) shows that the the effect of increasing pump
power is to initially increase energy fluctuations, but at the
same time to cause them to decrease after a shorter length of
fiber. Returning to the analogy being used, a higher input pump
power means that a larger number of frequency components
satisfy the power threshold condition and are amplified, which
increases energy fluctuations. However, stabilization of energy
statistics occurs for shorter lengths of fiber due to the more
rapid depletion of the pump. This behavior is also predicted
by (28). A higher input power reduces the value of m.

Fig. 7 shows the standard deviation of energy distributions
versus normalized distance under three different conditions.
Curve (i) is for the same parameters as curve (i) in Fig. 6
and is shown here for reference. Curves (ii) and (iii) are for 2
ps pulses, with an input pump power 20% above threshold
with (i) GVD 0 and (iii)) GVD # 0. Fig. 7 shows that
energy fluctuations increase when the pump-pulse width is
reduced. For a narrower pulse width, the frequency spectrum
of the pump pulse is broader, which in our analogy means
more frequency components are amplified, and hence energy
fluctuations are increased. Reducing the input pump-pulse
width reduces m, which also predicts increased fluctuations
in the Stokes pulse energy. Again, the work here corresponds
to that done for gases.

The differences in curves (ii) and (iii) of Fig. 7 suggests
that the effect of GVD is to reduce the variations in Stokes
energy. When GVD is present, the pump pulse spreads and
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Fig. 7. Stokes pulse energy standard deviation normalized to average
Stokes energy versus fiber length normalized to walk-off length with
(i) same parameters as Fig. 1, (ii) same as Fig. 1 with T, = 2 ps
Yp = s = Bap = B2s = d = 0, and (jii) same as Fig. 1 with T, =
2 ps and B2, = Ba2s = 0.

its peak intensity decreases. This means that the number of
frequency components above threshold decreases, leading to
reduced energy fluctuations. There is a kink in the energy
fluctuations when there is no GVD (curve (iii)). This kink
corresponds to the amplification of a secondary Stokes pulse
after the initial Stokes pulse has walked off from the pump
pulse. As the Stokes pulse begins to deplete the pump pulse,
there is a rapid drop in the energy fluctuations, and shortly
after 2L, the standard deviation for the case of zero GVD
has dropped below that of the situation where GVD is present.
In gases it was noted that an increase in diffraction increased
energy fluctuations by preventing depletion of the pump pulse
[18]. In Fig. 7 this result is seen by the fact that the energy
fluctuations without GVD begin to dip below that with GVD
before a secondary Stokes pulse is amplified.

B. Pulse Width

The behavior of the temporal fluctuations follows the same
trend as the energy fluctuations with few exceptions. Specifi-
cally, temporal fluctuations also initially increase as the pulses
propagate down the fiber, then peak and eventually start to
decline. In some sense this pattern is expected. As energy is
being added to the Stokes pulse its width will also be changing.
As the energy fluctuate so too should its width.

One noticeable difference between the width distribution
and energy fluctuations is the rate at which fluctuations de-
crease. Fig. 8 shows the temporal fluctuations at z = 2.5 L,,
have not reduced to a width comparable to that at z = 0.015
L,, as is the case for energy shown in Fig. 5. This is because
energy fluctuations are stabilizing through the growth of the
tail in the Stokes pulse. If the Stokes pulse has significantly
(slightly) depleted the pump pulse, the tail of the Stokes pulse
is weakly (strongly) amplified. In these two extremes, the
energy transferred to the Stokes pulse is about equal, but the
pulse widths are very different.

The pulse width fluctuations corresponding to the energy
fluctuations in Fig. 6 are not shown here since they have
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Fig. 8. Stokes pulse-width probability distributions versus rms pulse width

normalized to the average rms width at fiber lengths of 0.015 Ly, Ly, and
2.5 L., under the same conditions as Fig. 1.
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Fig. 9. Stokes pulse width standard deviation normalized to average Stokes
pulse width versus fiber length normalized to walk-off length with parameters
corresponding to those in Fig. 7 for the various curves.

the same qualitative behavior as the energy fluctuations. The
most striking difference between the temporal fluctuations and
energy fluctuations can be seen by comparing Fig. 7 with
9. Fig. 9 shows the pulse width fluctuations under the same
conditions as in Fig. 7. The major difference seen here is that
GVD affects temporal fluctuations much more than it does
energy fluctuations. When there is no GVD, the Stokes pulse
walks away from the pump pulse after a shorter length of fiber,
and the pump pulse begins to amplify the tail of the Stokes
pulse. Therefore even though there are large fluctuations in the
energy, the width of the Stokes pulse is steadily broadening
with less fluctuations. Again a kink corresponding to the
amplification of a secondary Stokes pulse is observed.

VIII. CONCLUSION

In this paper, a model for the build up of the Stokes pulse
during stimulated Raman scattering of picosecond pulses has
been presented. A Langevin-noise term and an experimentally
obtained Raman-gain spectrum were used in coupled nonlinear
Schridinger equations. The results show that the temporal
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profile of the Stokes pulse initially narrows during growth
and then expands, whereas the spectrum narrows and remains
fairly constant. The effect of GVD was seen to be negligible on
both Stokes energy transfer and compression for pulse widths
as narrow as 10 ps. The effect of lowering the pump pulse
width to 2 ps was to reduce the amount of energy transferred
and the pulse narrowing of the Stokes pulse. The GVD effects
become important for 2-ps pump pulses. Increasing the pump
power increases Stokes-pulse amplification while reducing the
minimum pulse width.

The shot-to-shot fluctuations of the Stokes-pulse energy and
temporal width were also examined. It was seen that the energy
and pulse width fluctuations both initially increase with fiber
length, then decrease in the regime of pump depletion. This
behavior was observed under a variety of pump pulse and fiber
conditions. The effect of reducing pump pulse width was to
increase both energy and pulse fluctuations of the Stokes pulse.
An increase in the input pump power, while causing an initial
increase in the Stokes energy and pulse width fluctuations,
also causes a decrease in the length of fiber needed before
fluctuations are damped. The presence of GVD reduces Stokes
fluctuations, but by dispersing the pump pulse, it delays the
onset of pump depletion and the corresponding reduction in
fluctuations. However, the effect of GVD is more significant
for fluctuation in pulse widths than energy.
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