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Abstract 

Starting from the density-matrix equations, we have obtained a new set of generalized macroscopic Maxwell-Bloch equations 
for semiconductor lasers which can be used to study ultrafast phenomena at femtosecond time scales where the conventional 
rate equations are no longer valid. The band-structure details are included in these Maxwell-Bloch equations through two 
parameters K and i which can be determined numerically by using their definitions or obtained experimentally by fitting the 
measured data. In the limit of ultrafast intraband relaxation (the rate-equation approximation), these equations reduce to the 
conventional rate equations. As an illustration of the usefulness of the new Maxwell-Bloch equations we have obtained the 
analytic expressions for several important laser parameters such as the differential gain, the linewidth enhancement factor and 
the nonlinear gain coefficient, in terms of the parameters K and i when the semiconductor laser is operating continuously (the 
cw operation). The results obtained from these analytic expressions agree with those obtained numerically from the density- 
matrix equations under steady-state conditions by integrating over the density of states. 

1. Introduction 

The dynamic response of semiconductor lasers is 
generally modelled through a set of rate equations [ 1 ] 
similar to those used for other solid-state lasers [ 21. 

Although the standard rate equations have proved 
extremely useful [ 11, their use becomes questionable 
at femtosecond time scales since the gain medium can- 
not be assumed to respond instantaneously in that case. 
When the induced polarization cannot be eliminated 
adiabatically, the well-known quantities such as the 
optical gain and the refractive index cannot even be 
defined since one cannot describe the medium response 
in term of dielectric susceptibilities. It is then necessary 
to employ the density-matrix formalism (3-51. 
Although this formalism is quite general and permits 

even the introduction of many-body effects [ 61, its use 
typically requires multiple integrations over the density 
of states, making it necessary to resort to extensive 
numerical computations. 

Recently an approximate technique was developed 
to carry out the integration over the density of states 
analytically and obtain a set of macroscopic dynamic 

equations [ 7,8], which represent a generalization of 
the Maxwell-Bloch equations commonly used for 
homogeneously broadened two-level systems [ 91 to 
the case of semiconductors. These equations include 

the band-structure details through a single parameters 
and should be useful for describing semiconductor laser 
dynamics once the parameters has been evaluated for 
a specific laser structure. However, the calculation of s 
is not straightforward. In fact, the integration over the 
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band states may even diverge depending upon the form 

of density of states. In this paper, we present an alter- 

native formulation of the density-matrix equations and 

obtain a modified set of macroscopic Maxwell-Bloch 

equations for semiconductor lasers. In this new set, 

band-structure information is included through two 

parameters, both of which can be complex in general. 

We solve these equations exactly at the steady state and 

obtain analytic expressions for the laser parameters 

such as the differential gain, linewidth enhancement 

factor, and the nonlinear gain parameter. These analytic 

expressions agree with the results obtained previously 

by using numerical integration over the band states. 

2. Density-matrix equations 

In the density-matrix approach [3-51, the system 

dynamics is described by the density-matrix operator P 
which satisfies the Liouville equation 

dp 
ih; =[H,,-p.E,p]+ 

where ZZ,, is the unperturbed Hamiltonian, P is the 
dipole-moment, E is the electric field associated with 

the electromagnetic radiation, and the last two terms 

incorporate the effects of relaxation and pumping phe- 

nomenologically. The induced polarization P is 

obtained from 

P(t) = A c /+p2,(t) +c.c. , 
r 

k 

where V is the volume, C.C. stands for complex conju- 

gate, p2,=(1)pj2), and Pzl=(2]P]1). The states 

11) and 12) correspond to electronic Bloch states of 

momentum tik in the conduction and valence bands 

respectively. The sum in Eq. (2) is over all the elec- 

tronic states of different momenta. By defining the 

matrix elements piJ = (i 1 plj) for i, j = 1 and 2, and 

using Eq. ( 1) , the density-matrix equations can be writ- 

ten as [3-51: 

dPl1 _A _ Pll -611 PI1 -Pihl 
dt e 7c rc 

+ ; (Pi? -p21) E(f) , (3) 

dp22 _ _ n _ ~22 - ~722 
lh 

P22 - P22 -_ 

dt 
h 

7” *c 

- 5 (~12 -p21) E(f) 7 (4) 

dp,, 
- = - Ciw+ 1/Tin)P12 + z (PII -P22) E(f) * 

dr 

(5) 

where P = Es (2 1 p ) 1) is the transition dipole moment 
with I? being the polarization unit vector of the electric 
field, w is the transition frequency, 7, is the interband 

carrier relaxation time (7, _ 1 ns), TV and T” are the 
intraband relaxation times ( - 0.1 ps) for conduction 

and valence band, and Tin is the dipole relaxation time 

( < 0.1 ps) due to intraband scattering. pIh and P are 
the density matrices at thermal and quasi-equilibrium 
respectively. The pumping rates A, and Ai, present the 
electron and hole injection rates and are related to the 
injected current Z as 

n = 1 1 - 62 

h ;ck[l-p?2] 
(6) 

It should be stressed that the use of phenomenolog- 
ical intraband relaxation times and a simplified injec- 
tion-rate model makes Eqs. (3)-( 5) valid only on time 

scales longer than the intraband relaxation time ( > 0.1 

ps) . For pulses shorter than 100 fs it becomes necessary 
to consider finer details of carrier injection and relax- 
ation process. 

Eqs. (3)-(5) are microscopic Bloch equations and 
can be easily generalized to include the many-body 
effects [ 61. They can be simplified considerably by 
making the rotating-wave approximation which 
amounts to assuming that one is interested in time 
scales much longer than the optical cycle associated 
with the laser carrier frequency wo. By introducing the 
slowly varying quantities E and p through 

E(r) =t?i[Eexp( -iwot) fee.] , 

p12 =p exp( - iwd) , (7) 
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and neglecting the rapidly oscillating terms at the fre- 
quency 2w,,, the microscopic Bloch equations can be 

written as 

dn 31, - 3ic 32 -il’h 
-L,:,~,__-L-z_ 

dr 7, 7C 

+ & (E*p-Ep*) , (8) 

+ Y& (E*P-Ep") , 

dp l+iS 

dt- - - -p+ $ (n,+nh-l), 
7,n 

f 10) 

where we have introduced n, = p,, and nh = 1 - pz2 as 
the occupation probabilities for electrons and holes 
respectively. The detuning parameter 6 is defined as 

s=(o-w,)7j”. (11) 

Integration over the band states is equivalent to inte- 

grating over S. 

3. Macroscopic Maxwell-Bloch equations 

The use of microscopic Bloch equations requires an 

integration over the band states in order to evaluate the 
total induced polarization given by (2). In this section, 
we follow an approximate technique that permits us to 
perform this integration analytically. The macroscopic 
variables we want to use are the injected carrier density 
N related to n, and nh as 

(12) 

and the slowly varying pol~i~tion P defined in a man- 

ner similar to Eq. (7) by using 

P= $&[Pexp( -io,f) +c.c.] . (13) 

By using Eqs. (2), (7) and ( l3), P is related top as 

P=2& p. 
k 

(14) 

If the sum over k is replaced by an integration over the 
density of states Df E), N and P are defined as 

cc 

N= 
i 

q(E’) D(E’) dE’ 

4 

f’=2p [ p(E’) D(E’) dE’ 

-% 

where the integration over band energies was converted 

to integration over the detuning by using Eq. ( 11) with 
E’=iiw. The lower limit 6, is then given by 
Sg = (w. - E,lii) T,, where Eg is the band gap energy. 
In Eq. ( 15) angular brackets denote macroscopic quan- 
tities obtained after integration over the band states. 

The carrier density equation is readily obtained by 

multiplying Eq. (8) or (9) by D( 8) and performing 
the integration. The result is: 

dN I 
- N + L Im(E*P) , 

Z = v Te 2fi 
(16) 

where the term containing rC or 7” does not appear since 
the total carrier density remains unaffected by intraband 

relaxation of individual electrons. We have also 
assumed that carrier density is negligible in thermal 
equilibrium. 

When the same process is repeated for the induced 
polarization P, it is not possible to get a closed form 

for dPldt because of the presence of the term (Sp). 

This is a well-known feature in the literature on inhom- 
ogeneously broadened two-level systems [ lo]. If we 
define a new dynamic variable (6p), we obtain a term 
containing (8’~) and so on, resulting in an infinite 
hierarchy of coupled equations. The only solution is to 
solve the problem approximately by truncating the infi- 
nite hierarchy. In a recent paper [ 71, the hierarchy was 
truncated at the term containing (S*p). The band-struc- 
ture details were then incorporated through a single 
parameter s defined as s2 = (~*~)/{~). However, 
when this parameter s is evaluated by performing the 
integration over 6, the integral 
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S*p( 6) D(S) dS, (17) 

diverges. In this paper, we adopt an alternative 
approach. Specifically, we divide Eq. (10) by 1 +iS 

before integrating over the band states, and introduce 
two parameters K and 5 as 

(18) 

i ) p P 

l+i6 = G<’ 
(19) 

In terms of the parameters K and 5, the induced polar- 
ization is given by 

dP - =: - 
dr 

iP+y kp2 EN 

rin 1n . 
(20) 

Eqs. ( 16) and (20) are the macroscopic Bloch equa- 

tions. In the evaluation of both equations, the depend- 
ence of dipole moment on the transition energy has 

been neglected. Their approximate nature results from 
Eqs. ( 18) and ( 19). This approximation can be par- 
tially justified by noting that the main contribution to 
the integral comes for values of 6 such that S < 1. 
Thus, we expect the approximation to hold reasonably 
well in the vicinity of the gain peak. 

The usefulness of Eq. (20) hinges on whether the 
parameters K and 6 are constants or depend on the 

carrier density N and the mode intensity 1 E I*. It will 
be seen in the next section that these parameters are 
nearly independent of the mode intensity at typical 

operating powers well below the intraband saturation 
intensity. However, they depend on the carrier density 
N. The dependence of K on N is quite weak in the above- 
threshold regime and it can be treated approximately 
as constant. In contrast, the dependence of l on N can- 
not be ignored. We discuss in Section 4 how this 
dependence can be included in Eq. (20). 

The field equation is obtained by considering the 
Maxwell wave equation [ 31 

V’E - 
LT 

kc 
2 

aE -- 
at -7 

c- 

In the case of semiconductor lasers the conductivity CT 
can be used to include cavity losses. By using Eqs. (7) 

and ( 13), and adopting a mean-field approach for the 
intracavity field E(t), Eq. (21) in the slowly varying 
envelope approximation becomes 

dE iw, E __-P-- 
dt 2nn,e() 27, ’ 

(22) 

where the photon lifetime or takes into account cavity 

losses. The dynamics of semiconductor lasers is thus 

governed by a set of three coupled equations, Eqs. 

( 16)) (20) and (22)) similar to Maxwell-Bloch equa- 
tions obtained for a two-level atomic system. The 
effects of band structure appear through two parameters 

K and 5. These macroscopic equations do not include 
the effects of carrier heating. However, as discussed in 

the Appendix, carrier heating can be included in a 

straightforward manner. 

4. Determination of the parameters K and 5 

The parameters K and cdepend on the band-structure 
details as indicated by Eqs. ( 18) and ( 19). Physically 

from Eq. (20)) lgoverns modification of the intraband 
relaxation time for the macroscopic polarization P. 
Since l is generally complex, such a modification not 

only alters the damping time of polarization but also 
introduces an effective detuning. By introducing 
l= 5; + i&, we can identify &I 7,” and &I rin as the effec- 

tive damping rate and detuning for the macroscopic 

polarization. By contrast, the K parameter governs 
changes in the medium susceptibility resulting from 

integrating over the band states in semiconductors and 
affects both the gain and the refractive index. 

Exact determination of K and 4’ is not easy and, in 
fact, is not even possible if we note from Eqs. ( 18) and 
(19) that they can be calculated only if the time 
dependence of the microscopic variables n,, n,,, and p 
is known. However, one expects them to vary slowly 
with time since the macroscopic variables N and P take 
into account the time dependence in Eqs. ( 18) and 
( 19). For a first approximation, we can use the steady- 
state values of p, n, and n,,, denoted by p’, n: and ni 

respectively, to calculate K and 5. The steady-state solu- 

tion of Eqs. (8)-( 10) is the same as that of a two-level 
atomic system [9] and is given by 



(23) 

(24) 

where I, = ?I’ [ p’( 7c + T”) TJ- ’ is the intraband satu- 
ration intensity, and rC and rV are assumed to be much 

smaller than rC. By using Eqs. (18), (19) and (23)- 
(25), we can determine the values of K and [ for a 

specific laser structure by performing the integration 
numerically. In the calculation of Ki, we encounter the 

following divergent integral 

x 
1 

Ki=-- 
O(S) (n,+n,,-1)6d6 

N 1+@ 
(261 

-4 

This is not surprising since ~~ is related to the refractive 
index whose evaluation has always been found to 
encounter the divergence problem within the density- 
matrix formalism [ 111. Therefore, we adopt an 
approach similar to that used in previous work. We 

expand n, and n, in a Taylor series with respect to the 
injected carrier density N and approximate Ki by 

Ki = - 
i 

ri D(6) (dn,ldN+dni,/dh’)SdS 

1+@ 
(27) 

-- % 

The contribution to ~~ under thermal equilibrium con- 
ditions (occurring in the absence of carrier inj~tion) 
is ignored here by assuming that it can be included in 
the definition of the background refractive index (dis- 
cussed in the next section). 

In the following we consider bulk and quantum-well 

lasers operating near 1.5 pm to show how K and 5 vary 
with various laser parameters, such as the operating 

wavelength, the carrier density and the laser intensity. 
Our model structures are an In~,s~G~_~,As/InP bulk 
laser and an In,,,,G~,~~As/In0.72G~.28A~,6P0.4/InP 
separated confinement quantum-well (QW) laser with 
well thickness equal to 10 nm. The values of material 
parameters used in numerical calculations are given in 
Table 1. 

The wavelength dependence of K at a carrier density 
N= 3 X 1Or8 cm-j is shown in Fig. I for the case in 

Table 1 
Material parameters used in numerical calculations. 

Materiai parameters 

Temperature 

Effective mass of electrons 

Effective mass of holes 

Average refractive index 

Group index 

Band gap 

Spin-orbit splitting 

Intmb~d relaxation time for 

dipole moment 

lntraband relaxation time for 

electrons 

intraband relaxation time for 

holes 

Values 

300 K 

0.041 ml, 

0.4235m, 

3.4 

4.0 

0.75 ev 

0.33 ev 

0.07 ps 

0.1 ps 

0.2 ps 

which gain and index nonlinearities are ignored by 
assuming 1 El I/& GC 1. The real and irna~n~y parts 
are shown separately and compared for bulk and QW 
lasers. As discussed in the next section, the parameters 
K, and ~~ are in fact linearly related to the optical gain 
and flier-induced refractive index respectively. For 
this reason, the curves in Fig. 1 a mimic the gain curves 
expected for bulk and QW lasers. For example, the 
maximum value of K~ is larger for QW lasers since QW 
lasers exhibit larger gain at a given carrier density. As 
seen in Fig. 1 b, Ki is negative since carrier injection 

reduces the refractive index. The absolute value of Ki 

is smaller in QW lasers than in bulk laser since QW 

lasers generally have smaller index changes for a given 
carrier density. 

We have also investigated the carrier-density 
dependence of K and 5 for the wavelengths at which 
the gain is maximum. The results are shown in Figs. 2 
and 3. One can see from Fig. 2a that for both structures, 
with increasing carrier densities, K, increases with Nat 
low catrier densities but eventually saturates and begins 

to decrease at high carrier densities. Because the refrac- 
tive index decreases with carrier density, the absolute 

value of Ki should decrease with N for both structures, 
as seen in Fig. 2b. From Fig. 3a, we note that the value 
of f; increases with carrier density and is normally 
larger than 1 in the usual carrier density region for both 
structures. This feature indicates that macroscopic 
pol~ization decays more rapidly compared with the 
microscopic dipole moments associated with individ- 
ual transitions in bulk and QW lasers. Note also that at 
a given carrier density I& is larger for QW lasers com- 
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- Bulk 
Q.04 

0.03 

0.02 

0.01 

0.00 

1.2 1.3 1.4 1.5 1.6 1 

wavelength (pm) 

-0.14 

1.3 1.4 1.5 1.6 1.7 

(a) 

rier density is very small in the QW laser while in the 

bulk laser it increases considerably with carrier density. 
The parameter K depends on the laser intensity in 

view of the steady-state solution given by Eqs. (23)- 
(25). The dependence of K~ on the intensity is shown 

in the Fig. 4 for both QW and bulk lasers. Dashed lines 

show that this dependence fits quite well an expression 

of the form K, = Krl/ 1 f 1 El “/Z, for both structures. 

It is important to note that our analysis includes gain 

and index nonlinearities automatically. 

As seen in the Figs. 2 and 3, the parameters K and 5 
appearing in Eq. (20) vary with the carrier density N. 

The dependence of K on N is quite weak for N> 

wavelength (pm) 

Fig. 1. The real (a) and imaginary (b) parts of K at a canier density 

of 3 X IO” cm-’ as a function of wavelength for an In,53Ga(,,47As/ 

InP bulk laser and an In, ,,G~,,,As/InO,,,Ga, 28A~0 ,P,,/InP quan- 

tum well (QW) laser with well thickness equal to 10 nm. Other 

parameters are given in Table 1, 

pared with bulk lasers, resulting in a more rapid decay 
of macroscopic polarization. This is consistent with 
Fig. 1 a which shows that QW lasers have a wider gain 
spectrum. It is well known [ 21 that the gain bandwidth 
is inversely related to the damping time of macroscopic 
polarization. In the Fig. 3b, we can observe that the 
absolute value of ii is smaller in QW lasers than in bulk 
lasers. This is quite understandable in view of the step- 
like nature of the density of states associated with the 
QW lasers. Since most transitions correspond to the 
lowest QW states, effective detuning is expected to be 
quite small. The change of effective detuning with car- 

I -- QW 
- BuIk 

0.04 

Kr 

0.02 

0.00 

0 I 2 3 4 5 

Carrier Density (10 ” cmm3 ) 

(8) 

-0.20 j.““J 
1 2 3 4 5 

Carrier Density (10 ” cmq3 ) 

Fig. 2. The real (a) and imaginary (b) parts of K as a function of 

carrier density for the bulk and QW lasers operating at the gain peak. 

Other parameters are the same as in Fig. I. 
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By using the dielectric constant E= 1 +x= (n + 
An)* -- @/we, where n is the background refractive 
index, the optical gain g, the carrier-induced refractive 
index An, and the linewidth enhancement factor (Y are 

given by 

An= &Re(X)= 
P*TnN 

T&z- Ki ’ 

(30) 

(31) 

Wx) 4 
a=-=-- 

Wx> 4. 
(32) 

By substituting the Eq. (28) into Eq. (16), we 

recover the conventional rate equation for carrier den- 
sity 

dN I N -- 
Tt=qv rC 

-u&S, (33) 

where S= Qnn, 1 E) */2tiw, is the photon density, 

ug= cln, is the group velocity, and ng is the group 
index. 

From Eq. (30), we can obtain an analytic expression 

for the differential gain in terms of K~. The result is 

dg - =: 
dN 

(34) 

Normally for low carrier densities, the second term in 
the bracket of Eq. (34) is smaller than K~. Therefore, 
as a first approximation, we can neglect the second term 
and obtain the following approximate analytic expres- 

sion for the differential gain 

(35) 

Since K~ and Ki can be calculated for any laser struc- 
ture as discussed in Section 4, Eqs. (30)-(32), and 
(34) provide us with the analytic expressions for the 
gain, refractive index, the linewidth enhancement fac- 
tor and differential gain in terms of a single parameter 

K. We have calculated g, An, and cr by using these 
equations and have verified that their values are exactly 
the same as those obtained directly from the density- 
matrix equations when the dependence of dipole 
moment on the transition energy is neglected. The dif- 
ferential gain for a carrier density of 3 X 1018 cme3 

obtained by using the approximate expression Eq. (35) 
is 2.44X lo-l6 cm* and 8.32 X lo-l6 cm* for our 
model bulk and QW lasers operating at the gain peak, 
while its exact value is 4.13X lo-l6 cm* and 

7.26X lo-i6 cm* respectively. We find reasonable 
agreement between the values of differential gain 

obtained from the approximate and the exact calcula- 

tions for both structures. However, the accord is better 
in the QW laser because of the larger value of K, in this 

laser. In general, one must use Eq. (34) for calculating 
the differential gain. 

The carrier-density dependence of maximum gain, 
refractive index and linewidth enhancement factor can 
be obtained by using Eqs. (30)-( 32). Our model pre- 

dicts gain saturation for high carrier densities in the 
QW laser and the quasi-linear increase of the maximum 

gain carrier density for the bulk laser. These well- 
known features have been obtained from direct evalu- 

ation of the density-matrix equations and confirmed by 
experimental observations. As a further usefulness of 

our approach, Fig. 5 plots the linewidth enhancement 
factor (Y as a function of carrier density for bulk an QW 
lasers operating at the gain peak. Normally, cy is treated 

as independent of carrier density N. As seen in Fig. 5, 

this is not generally the case. The linewidth enhance- 
ment factor decreases with carrier density for both 
structures and, as one should expect, the value of (Y is 

smaller for the QW laser compared with bulk laser. 
From Eq. (30)) we note that the intensity depend- 

ence of K~ reflects the nonlinear nature of the optical 

_c_ Bulk 

1 2 3 4 5 

Carrier Density (10 t8 an-’ ) 
Fig. 5. Dependence of linewidth enhancement factor on carrier den- 

sity for the bulk and QW lasers operating at the gain peak. 



gain. Numerical results shown in Fig. 4 indicate the 

e of K~ can be well approximated 

g =g,/Jl 
‘ii,; the gain g then also varies as 

+ 1 El ‘/I,. This form of nonlinear gain was 

predicted analytically by Agrawal [ 51 in 1988 by eval- 
uating the integration over the band states approxi- 
mately. For IEJ’fl, c 1, g=g,( 1 -ES), where •e is 

nonlinear gain coefficient, defined as 

(36) 

Thus our analysis provides an analytic expression for 
the nonlinear gain coefficient E. The value of E for a 
carrier density of 3 X IO’” cm-j obtained by using Eq. 
(36) is 3.2X lo-” m’ and 4.9X IO-“” n? for our 

model bulk and QW lasers operating at peak gain. The 
higher gain nonlinearity in QW lasers mainly comes 

from the hither value of dipole moment. Note that Eq. 
(36) provides only the contribution of spectral hole- 
burning to the nonlinear gain. The contribution of car- 
rier heating can be included by following the details 
given in the Appendix. 

6. Conclusions 

In this paper, we have obtained a new set of gener- 
alized macroscopic Maxwell-Blochequations for sem- 
iconductor lasers which can be used to study ultrafast 
phenomena at femtosecond time scales where the con- 
ventional rate equations normally used to study semi- 

conductor laser dynamics are no longer valid. This set 
of Maxwell-Bloch equations is an alternative approx- 
imate form of microscopic density-matrix equations. 
In spite of its approximate nature, it should prove useful 
for studying the ultrafast optical phenomena in semi- 
conductor lasers because one does not have to perform 
multiple integrations over the band states as in the case 
of using the density-matrix equations. The band-struc- 
ture details appear in these Maxwell-Bloch equations 
through two parameters K and IJ which can be deter- 
mined either numerically by using their definitions or 
by fitting experimental results. In the rate equation 
approximation, the macroscopic MaxwelI-Blah equa- 
tions reduce to the conventiona rate equations. Fur- 
thermore, they provide us with the analytic expressions 
for the gain, differential gain, carrier-inducedrefractive 
index change, the Iinewidth enhancement factor and 

nonlinear gain coefficient in terms of a single parameter 
K. The results obtained from these analytic expression 
agree with those obtained numerically from the den- 
sity-mat~x equations under steady state condition. 

It is important to emphasize that Eq. (20) for mac- 
roscopic polarization describes laser dynamics only 
approximately, and the results are not expected to be 

as accurate as those obtained using microscopic semi- 
conductor Bloch equations inco~orating the many- 
body effects [ 61. It should nonetheless be useful as it 
extents the validity of conventional rate equations to 
femtosecond time scales as short as _ 100 fs and can 
be used to obtain qualitative trends and dependence on 
various device parameters in a simple way. The estab- 
lishment of the validity of our Maxwell-Bloch equa- 
tions under dynamical conditions requires the solution 
of a time-dependent problem such as the amplification 
of ultrashort pulses in semiconductor laser ampli~~rs. 
However, such a solution is of little use unless it is 
compared with the solution of microscopic semicon- 
ductor Bloch equations and/or with the experimental 
data. Further work is necessary to establish the condi- 
tions under which the macroscopic equations of this 

paper can be used in practice. We have recently suc- 
ceeded in incorporating the many-buy effects in the 
macroscopic Maxwell-Bloch equations, and the results 

appear elsewhere [ 121. 
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Appendix: inclusion of carrier heating 

The macroscopic Maxwell-Bloch equations 
obtained in Section 3 include the nonline~-gun reduc- 
tion occurring because of spectral hole-burning. In fact, 
they were used in Section 5 to obtain an analytic expres- 
sion for the nonlinear-g~np~ameter E. However, these 
equations do not include the effects of carrier heating. 
Since, the phenomenon of carrier heating plays an 
important role in governing the ultrafast dynamics of 
semiconductor laser amplifiers [ 13- 15 I and occurs on 
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a time scale -600 fs, it is important to discuss how 

carrier heating can be incorporated in the formalism 
used in this paper. 

A simple approach consists of considering the tem- 

poral evolution of the energy densities U, and Vi, of 
electrons in the conduction band and of holes in the 
valence band [ 1.51. These energy densities are defined 

as 

UC = E’n,(E’) D(E’) D(E’) dr , (Al) 
I?? 

u, = E’n,(E’ ) D(P) dE’ . (AT) 
Es 

In terms of the detuning parameter S (see Eq. ( 11) ), 
U, and CJ,, can be related to the macroscopic quantities 

(Sn,) and (&,) respectively. At this point, one can 
follow the analysis of Ref. [ 151 to derive the macro- 

scopic rate equations for U, and U,,, which should be 

solved together with the macroscopic Maxwell-Bloch 

equations obtained in Section 3. 
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