1126 dJ. Opt. Soc. Am. B/Vol. 12, No. 6/June 1995

Yu et al.

Pump-wave effects on the propagation of
noisy signals in nonlinear dispersive media

M. Yu

Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627,
and Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14623

G. P. Agrawal

The Institute of Optics, University of Rochester, Rochester, New York 14627

C. J. McKinstrie

Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627,
and Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14623

Received September 22, 1994; revised manuscript received January 12, 1995

Stochastic field propagation in nonlinear dispersive media is studied in the undepleted-pump approximation in

both the normal- and the anomalous-dispersion regimes.

A statistical description of modulational instability

is given in the anomalous-dispersion regime. Nonlinear dispersive effects are present even in the normal-
dispersion regime. Analytical results are obtained for the evolution of the power spectrum and the relative
intensity noise and are confirmed by numerical simulations. The results are applied to the four-wave mixing

of broadband signals in nonlinear dispersive media.

1. INTRODUCTION

When a partially coherent electromagnetic field propa-
gates through a medium, its coherence properties usu-
ally change.’”” More specifically, the output power
spectrum and relative intensity noise (RIN) may differ
substantially from the input power spectrum and RIN
associated with the stationary stochastic field. Transfor-
mation between the input and the output power spectra
is a basic statistical property for many systems. For a
linear system the spectral transformation is related to
the impulse-response function and can be calculated eas-
ily by use of the Wiener—Khinchin theorem.®® In this
paper we consider an optical field propagating through
a single-mode optical fiber used as an example of a non-
linear dispersive medium. The deterministic transfor-
mation of the input signal, in this case an optical field,
is governed by a nonlinear Schridinger equation (NSE),
which takes into account group-velocity dispersion (GVD)
and the Kerr-type nonlinearity responsible for self-phase
modulation [see Eq. (1) below].!%! Thus the statisti-
cal properties of the output signal, such as the power
spectrum and the RIN, are determined not only by the
statistics of the input signal but also by the dispersive
and nonlinear properties of the fiber.?

In such systems there exists an intrinsic frequency
for a given average power of propagation that permits a
direct comparison between the dispersive and nonlinear
terms in the NSE. This frequency corresponds to the
peak gain frequency of modulational instability (MI) in
the anomalous-dispersion regime!®!! and is also a useful
parameter in the normal-dispersion regime. Here the
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power used for calculating this frequency refers to the
average power of the stationary stochastic field. If
the spectral width is much larger that this intrinsic fre-
quency, the nonlinear term can be neglected and the
system can be considered linear. It is easy to see that
the Wiener—Khinchin theorem predicts no change in the
power spectrum in this case. On the other hand, the
dispersive term can be neglected if the spectral width is
much smaller than this intrinsic frequency. For systems
with negligible dispersion the problem of spectral evolu-
tion has been studied for an input field with Gaussian
statistics.!

Generally, the coexistence of dispersion and self-phase
modulation makes the problem of stochastic propagation
impossible to study analytically.? If, however, the input
consists of a continuous-wave (cw) field plus a small noise
field whose amplitude is much smaller than that of the
cw field, a linearization technique can be applied to ana-
lyze the problem, with the small part treated as pertur-
bation. This case is considered in detail in the following
sections, where analytical expressions for the evolution
of the power spectrum and the RIN are given and are
confirmed by numerical simulation. It should be pointed
out that the linearization method was first developed to
study squeezing in quantum optics.!>'* Here we con-
cerned ourselves with the classical case.

In the spectral domain the situation described above
corresponds to an input power spectrum that consists
of a §-function portion plus a small part whose area is
much smaller than the area of the §-function portion. In
practice our analysis applies to a laser light with a small
component of broadband background noise. It can also

01995 Optical Society of America



Yu et al.

be applied to the case of four-wave mixing!! (FWM) of
a partially coherent (broadband) signal in the presence
of a cw pump. Because without the small perturbation
the cw pump spectrum is unchanged, the linearization
method used here gives only the pump effects on the
propagation of a partially coherent field in a nonlinear
dispersive medium. It is well known that MI occurs in
the anomalous-dispersion regime. Thus our results will
provide a statistical description of MI.

2. NOISE PROPAGATION

The governing NSE can be written as'!

9,A = —é BoduA + iy|APA, 1)

where A is the complex field amplitude, z is the propaga-
tion distance, ¢ is the retarded time measured in a frame
moving at the group velocity, Bs is the GVD coefficient,
and y is the nonlinear coefficient. To simplify the no-
tation, we will often use 8 = B5/2 in what follows. The
input field is assumed to be A(z, 0) = Ay + §A(z, 0), where
|6A(t, 0)] << |Ap|l. To the zeroth order (without noise)
we have the solution A,(¢, z) = Aj exp(iy|Apl?2z). Thus
we assume a solution of the form A(¢, z) = A, + §A; =
[Ay + 8A(¢, 2)]lexp(iy|Apl?2) and linearize Eq. (1) in the
small perturbation §A to obtain the linear partial differ-
ential equation

0,0A=—iB0,28A+ iy(|Ag|?6A + A?8A%). 2)

The solution to Eq. (2) is easily expressed in the Fourier
domain. By taking the Fourier transforms of the above
equation and its complex conjugate, we have

d.8A(w, z) — iBw?6A(w, 2) — iy|A¢*6 A(w, 2)
= iylAol?A¢*6 A" (—w, 2),

d,0A%(~w, 2) + iBw?8A (~w, 2) + iy|A|?6 A% (~w, 2)
= —iylAol?A)*SA(-w, 2), 3

where SA refers to the Fourier transform of SA [i.e.,
5A(w) = [7. 8A exp(iwt)dt]. Equations (3) show that
the basic physics is related to FWM that causes coupling
between the two sidebands §A(w, z) and 6A*(~w, z) lo-
cated symmetrically around the cw pump frequency.

It is easy to obtain the general solution of the above
coupled, linear, first-order, ordinary differential equa-
tions. For each w there are two independent solutions.
Thus, in terms of the two eigenmodes, the general solu-
tion is given by

] o s
T cz[ | }‘*Xpukz), “)

where ¢; and ¢y are constants and k- and r- are defined as

k() = £[(y|Aol® + Bw®)? — (v]Al»?]", (5)
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ki(w) — Bw® = ylAol?

ri(w) = y A2
_ YA0*2
T k(@) T Bo? + YIAE ©)
_ YAOZ
(@) = o)~ Bw? — AP
k(@) + B’ + Aol .

yAy*2

Here r.(w) are the relative amplitudes of the sidebands
8A(w, z) and §A*(—w, z) for each eigenmode and k- (w)
represents the corresponding dispersion relation.

If the field at the input z = 0 is known, Eq. (4) can
be used to determine the two constants c¢; and ¢y, and the
field at any distance later can be expressed in terms of the
input. After some straightforward algebra, we obtain

_5_A(a), z) _ My(w, 2) My(w, 2)
SA*(~w, 2) May(w, 2) My (w, 2)

5A(w, 0)
x |:ﬂ*(—w,0):| ’ ®)

M,y = [exp(ik.2z) — rir_ exp(ik-2)]/(1 — rir-),

=
|

=r_[exp(ik-z) — exp(ik,2)]/(1 — rir_),
My, = ri[exp(ik.z) — exp(ik-2)]/(1 — rir-),
= [exp(ik_2z) — rir_ exp(ik+2)]/(1 —rir-). (9)

=
|

3. POWER SPECTRUM OF THE FIELD

From the Wiener—Khinchin theorem,® the power spec-
trum S(w, z), defined as the Fourier transform of the au-
tocorrelation of the field, can be calculated as

S(w, 2) = (1A, + 8A,I*)/T
= (AT + (ABA" + AT SA)/T + (I6A%)/T
= Aol*6(w) + (15 A(w, 2)I*)/T, (10)

where the time window T extends to infinity in the limit.
The cross term vanishes after averaging because A, can
be moved out of the average and (6 A;) = 0.

Define AS(w, z) = S(w, z) — |A¢|?8(w), i.e., remove the
unchanged portion of the spectrum corresponding to the
cw signal. As 6A(w, 2z) can be calculated from Eq. (8),
we have

AS(w, 2) = (IM116A(w, 0) + M136A™ (—w, 0)?)/T
= |M1;1*AS(w, 0) + [M12|?°AS(—w, 0), (11)

where we have assumed that (§A(w, 0)6 A(—w, 0))/T =0
or (5A(t, 0)8A(t + 7, 0)) = 0, which is true in most of the
cases. Equation (11) is a linear transformation between
the spectra, AS, at the output and the input. Both side-
bands participating in the FWM process contribute to the
output.

After further simplification, the output spectrum is
given by
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AS(w, z) = AS(w, 0) + ('y|A0|2)2[AS(w, 0) + AS(—w, 0)]
X sin®[k(w)z]/[k(0)]?, (12)

where % is given by Eq. (5) regardless of the sign con-
vention. Notice that when % is imaginary, which cor-
responds to MI, sin?[k(w)z]/k2(w) = (1/4)[exp(klz) —
exp(—|kl2) /|

Equation (12) predicts no spectral change in the limit
of weak pump power, consistent with the result for a
linear dispersive system. In the limit of zero dispersion
Eq. (12) becomes

AS(w, z) = AS(w, 0) + (zy|Aol*)?
X [AS(w, 0) + AS(—w, 0)], (13)

which is valid as long as z is small enough that the noise
power remains much smaller than the pump power.

Figures 1 and 2 display the output spectrum at differ-
ent distances for the symmetric input spectrum for the
cases of normal and anomalous dispersion, respectively.
Notice that even in the normal-dispersion region, where
MI does not occur, the nonlinear dispersive effects greatly
affect the spectral evolution. From Eq. (12), the spec-
tral intensity at any frequency is oscillating with dis-
tance (except at zero frequency, where it grows as z?)
because of the factor sin?[k(w)z]/[k(w)]2. The period is
1/k(w), which is longer for smaller frequency and goes
to infinity at the zero frequency. Thus the frequency
components around zero keep growing, while fringes will
be formed on the spectrum. For a fixed distance the
power spectrum is an oscillating function of frequency,
and the oscillations become faster at larger distances
[see Eq. (12) and also Fig. 9 below]. The formation of
the fine fringes indicates a long correlation time in a
sense (because the autocorrelation of the field is just the
Fourier transform of this spectrum) even if it is short
at the input. This is an interesting statistical phenom-
enon inasmuch as it seems to indicate that the input
field becomes more coherent on propagation because of
pump-induced FWM. The quadratic growth of the field
spectrum near zero frequency where the dispersion is
negligible can also be explained in terms of self-phase
modulation because the total field can then be writ-
ten as [Ag + SA(t, 0)]exp[iy|Ay + 8A(t, 0)?°z] = A, +
S5A(t, 0)exp(iylAol?z) + iyAoz[AgSA(t, 0)* + c.c.], where
the term linear in z causes the quadratic power-spectrum
growth.

In the anomalous-dispersion region and at large dis-
tances the exponential growth that is due to MI will domi-
nate. Equation (12) for this case can be written as

AS(w, 2) = (ylAo|*)*[AS(w, 0) + AS(—w, 0)]
X exp(2|k|z)/(2|k|) (14)

for large z. The output spectrum is symmetric indepen-
dent of the symmetry of the input. If the input spectrum
is broad enough (as in Fig. 2), the two peaks are

at the frequency of the peak gain of MI, which is the
maximum of |k(w)| at @ = *(y|A¢|?/B)Y2. The linear
approximation will eventually break down when the noise
amplitude is comparable with the pump amplitude.
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To confirm the validity of the linear approximation
we have also performed numerical simulations by as-
suming Gaussian statistics® for the input field. Our
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Fig. 1. Spectral evolution at different distances in the normal-
dispersion region for a symmetric input spectrum. FWM causes
the quadratic growth and fringe formations. The distance is
normalized to & = zy|Ag|?, and the frequency is normalized as
ollBl/(y|Ag|2)1Y2/(47). The FWHM of the input noise spectrum
is 0.4, and its average intensity is 3.2 X 1075 times the pump
intensity. The vertical axis has a relative unit.
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Fig. 2. Same as Fig. 1, except for the sign of the GVD param-
eter. MI effects dominate at a large distance.
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numerical model is constructed as follows. For the noise
field, two independent Gaussian random-number gener-
ators are used as the real and the imaginary parts of
the input field, which is passed through a filter that
determines the shape of spectrum. This noise field
is added to the cw field to form the input field. We
solve Eq. (1) for each preparation of the input, using the
split-step Fourier method.!! To avoid complications at
the temporal boundaries, a broad Gaussian-pulse car-
rier is used whose width is much larger than the time
scale of fluctuations, and the nonstationary effects in-
troduced by the carrier are eliminated by application of
a smaller (than the pulse width) window for calculating
the power spectrum and the RIN. The results are av-
eraged over 100 realizations by integration of the NSE
100 times.

Figures 3 and 4 are the spectral evolutions from our nu-
merical simulations corresponding to Figs. 1 and 2. The
analytical results agree with numerical simulations, al-
though, because of MI, deviations begin to occur for large
distances in the anomalous case when the amplitude of
the noise field becomes comparable with the pump ampli-
tude. The appearance of additional peaks on the spec-
trum, which are attributed to the higher-order FWM
effect, indicates that our analytical treatment becomes
invalid in this situation.

4. RELATIVE INTENSITY NOISE

Besides the autocorrelation or the power spectrum of the
field, another quantity of statistical importance is the
RIN. It is defined as the Fourier transform of the au-
tocorrelation of the relative intensity fluctuation 61/(I)
of the field, where 61 =1 — (I) and I = |A|? is the in-
tensity. Thus it is related to the fourth-order moment
of the stochastic field. In our case, I = |Ay + SA(Z, 2)|%.
Consistent with the linear approximation, this leads to

81(t, 2)/(I) =[Ag"8A(t, 2) + AgdA™ (¢, 2)]/|Al*. (15)

By use of the Wiener—Khinchin theorem, the RIN is
given by
RIN(w, 2) = (|4 8 A(w, 2) + A)SA™(—w, 2)I*)/(T|Ao*).
(16)
By using Eq. (8) we obtain
RIN(w, 2) = |A0*M11 + AoMa1|(|5A(w, 0)[2)/(T1Aol*)
+ |Ag" Mz + AgMas|X(I8A(—w, 0)1%)/(T| Al

= |Ag" M1 + AoM2|*AS (w, 0)/|A,l*
+ A" My + AgMyy*AS(—w, 0)/|Aol*.

(e¥))
Further simplification gives
RIN(w, 2) = |Ao| 2[AS(w, 0) + AS(—w, 0)]
o 11— 2714 sin’[k(w)z2] (18)

2y|Aol? + Bo?

where % is given by Eq. (5) regardless of the sign con-
vention. From Eq.(18) we have RIN(w, 0) = |Ag|™2
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[AS(w, 0) + AS(—w, 0)], indicating that the RIN is al-
ways symmetric at the input. The final result is thus
given by

_ 2y|Aql? sin’[k(w)z]

RIN(w, z) = RIN(w, 0)1 2y Agl? + Bu? (19)
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Fig. 3. Numerical simulation result corresponding to Fig. 1.
The center portion is the cw spectrum subjected to finite
resolution that is due to the temporal window for calculating
the spectrum.
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Fig. 4. Same as Fig. 3, except for the sign of the GVD
parameter.
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Fig. 5. Analytic RIN spectra at different distances in the
normal-dispersion region under conditions identical to those
of Fig. 1. FWM causes fringe formations.
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Fig. 6. Same as Fig. 5, except for the sign of the GVD parame-
ter. MI effects dominate at a large distance.

This is a linear transformation between the RIN of the
input and of the output. Equation (19) also predicts
that, without nonlinearity or dispersion (i.e., [4¢|> = 0
or By = 0), the RIN will not change (under our linear
approximation).
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Figures 5 and 6 show the evolution of the RIN
corresponding to the cases of Figs. 1 and 2, respec-
tively. Figures 7 and 8 are the corresponding numerical-
simulation results. Like the power spectrum, even in the
normal-dispersion region where no MI is present the non-
linear dispersive effects change the RIN. Because of the
factor sin?[k(w)z]/(2y|Ao|% + Bw?) in Eq. (19) the RIN at

20 :
Lo
15}
4 Wy

B
!

c | Mt
§_ 10 | 3 e M /\/ ,
05 | j’w J
M M\
o
0'0-0.5 0.0 0.5

Normalized frequency

Fig. 7. Numerical simulation result corresponding to Fig. 5.
The center portion is the cw residue.
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Fig. 8. Same as Fig. 7, except for the sign of the GVD
parameter.
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any frequency is oscillating with distance, except at zero
frequency where the RIN is always unchanged. The pe-
riod 1/k(w) is longer for smaller frequencies, and it goes
to infinity at zero frequency. Thus the RIN at zero fre-
quency is unchanged, while fringes will be formed at other
frequencies. For a fixed distance the power spectrum is
an oscillating function of frequency, and the oscillation
becomes faster at larger distances. The numerical sim-
ulation confirms our analysis.

In the anomalous-dispersion region and at large dis-
tances the MI will dominate, because for large z Eq. (19)
can be written as

Y|Aol® exp(2|kl2)

RIN(w, z) = RIN(w, 0) 4y]Aol? + Brw?

(20)

indicating an exponential increase that is due to MI gain.
If the input spectrum is broad enough (as in Figs. 5-8),
the two peaks are at the frequency of the peak gain of
the MI, o = *+(2y|A¢l?>/B2)"2. The linear approximation
will eventually break down at extremely large z when
the noise amplitude grows to be comparable with the
pump amplitude. This is evident from the numerical
simulation in which the appearance of additional peaks
on the RIN is from a higher-order FWM effect.

5. NOISE-INDUCED FOUR-WAVE MIXING

FWM occurs when a cw pump and a weak signal or probe
(usually with different carrier frequency) coexist in a non-
linear medium.!! It has found many applications, in-
cluding the use of its phase-conjugation effect to cancel
the dispersive spreading of optical pulses in a fiber link for
a broadband communication system.!®® In many cases
it is important to understand the statistical properties of
the fields after they undergo FWM, such as the shape of
the field spectrum and the correlation time. Although
it was developed in a different context, our formalism
for the propagation of a stochastic field is well suited
to describe the situation in FWM. In fact, Eq. (12) can
be applied directly to the case of FWM in which a cw
pump and a weak noisy or broadband probe are present
at the input. In our linear approximation the cw pump
is undepleted. Because Eq. (12) is a linear transforma-
tion between the spectrum of the nonpump part at the
input and the output, we first consider a probe of nar-
row spectrum at o’ at the input, i.e., a form of § func-
tion, AS(w, 0) = I.(0)6(w — '), where I, (0) is a constant.
From Eq. (12) we have

AS(w, 2) =1,(2)8(w — @) + I_(2)8(w + '), (21)
where

L.(2) = L.(0){1 + (y|Aol*)* sin®[k(w")2]/[k()]},
I_(2) = L.(0) (y|Aol*)? sin®[k(w")2]/[k("). (22)

Equation (21) describes the FWM generation of the side-
band at the idler frequency —w’ because of its coupling to
the sideband at w'.

Notice that in the weak-pump limit, ie., y|A]? <<
|k(w")|, the sideband at —w’ will not be generated be-
cause there is no coupling in this limit. In the case of

Vol. 12, No. 6/June 1995/J. Opt. Soc. Am. B 1131

the zero GVD the coupling behavior also changes, and
Eq. (12) leads to

I.(z) = L.(0)[1 + (zy]AoI*)],
I_(z) = L. (0)(zyl|Aol?). (23)

Equations (23) become invalid when I. grows to be com-
parable to |Ao|%.

In the normal-dispersion case, I. and I_ exhibit in-
phase oscillations with the propagation distance, with
the period 1/k(w’), which is longer at the lower fre-
quency. In the anomalous-dispersion case, I.(z) ~
I-(2) ~ 1.(0)(1/4) (y|Aol*)? exp(2lklz)/|k|* at large dis-
tance with exponential growth caused by the gain of MI.

Figures 9 and 10 show the spectral evolution in the case
of FWM induced by a probe of finite bandwidth for the
cases of normal and anomalous dispersion, respectively,
by assuming a Gaussian probe spectrum: AS(w, 0) <
exp{—[(0 — w')/Aw]?}). With the above analysis for a
narrow-bandwidth probe the qualitative behavior can be

.
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Fig. 9. Spectral evolution at different distances in the normal-
dispersion region for an asymmetric input spectrum correspond-
ing to FWM with a noisy probe. The noise spectrum is centered
at 0.05 with a FWHM of 0.02; other parameters are identical to
those of Fig. 1.
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Fig. 10. Same as Fig. 9, except that the noise spectrum is
centered at 0.15 with a FWHM of 0.04 and the GVD is anomalous.
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understood easily because the spectrum can be lin-
early decomposed into the problem of many independent
narrow-bandwidth probes. In the normal-dispersion
region a spectral wing is generated at the symmet-
ric position to the probe. The intensity oscillates with
propagation distance initially. As each frequency com-
ponent has a different oscillation period and a different
initial intensity, the wings will be shifted and split to de-
velop fringes. The average oscillation with distance will
be saturated as more and more fringes appear because
the fringes are all out of phase with one another. In fact,
for large distance, the envelope of the two wings will set-
tle down at the frequencies around *w’, with an average
intensity of «[1 + (y|A¢|?)?/k%(w)]exp —[(w — o')/Aw]?
and *[(y|Ao|?)?/k%(w)]exp — [(0 + ')/Aw]?, respectively.
But it is the inverse width of the fringes under the enve-
lope that gives the approximate correlation time. Thus
the coherence times of the noisy signal and idler keep in-
creasing with propagation. In the anomalous-dispersion
case MI will produce symmetric wings at large distances.
Because the gain peak is at =(2y|Aq|?/B2)"?, the wings
will be pulled toward this frequency position as they
grow with distance.

Note that in both the normal- and the anomalous-
dispersion cases the spectrum of the generated idler is
not simply the mirror image of the input spectrum of the
signal. This is due to the effect of GVD on the process of
FWM. From a practical point of view this phenomenon
implies that the midsystem spectral inversion by FWM in
a dispersion-shifted fiber, a technique proposed recently
for compensation of dispersion in fiber-optic communica-
tion systems,'® can be affected by the residual dispersion
in the dispersion-shifted fiber.

6. CONCLUSION

The pump effects on the propagation of a stochastic field
in a nonlinear dispersive medium were studied both
analytically and numerically. Simple expressions were
obtained for the evolution of the power spectrum and
the RIN as propagation distance changes. It was found
that, in the case of anomalous GVD, MI plays a domi-
nant role at large distances, as expected, where both the
power spectrum and the RIN grow exponentially accord-
ing to the MI gain to achieve symmetric patterns about
the pump frequency. Even for normal GVD the FWM
effects are not negligible. Each sideband generates the
other sideband at the FWM frequency, thus establishing
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correlations between frequencies symmetrically located
about the pump frequency. This causes oscillations in
the power spectrum (and the quadratic growth near the
pump frequency) and in the RIN with propagation dis-
tance. Because the oscillations are frequency dependent,
fringe formations are found on the power spectrum and
the RIN. The results were applied to the case of a sym-
metric input spectrum, which can correspond to laser
intensity noise, and to the case of an asymmetric input
spectrum, which can correspond to the FWM of a broad-
band probe in the presence of a cw pump.
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