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Analysis of Nonuniform Nonlinear Distributed
Feedback Structures: Generalized
Transfer Matrix Method

Stojan Radic, Nicholas George, and Govind P. Agrawal, Senior Member, IEEE

Abstract— A new method for the analysis of almost-periodic,
nonuniform, nonlinear distributed feedback (NLDFB) structures
is presented. A grating segmentation technique used for linear
DFB devices is combined with the analytic solutions correspond-
ing to a strictly periodic, uniform NLDFB device. The method is
demonstrated for tapered, chirped, and phase-shifted structures.
New results describing the operation of single- and multiple-
phase shifted NLDFB are reported. NLDFB structures with a
axially-varying effective Kerr index are also considered.

I. INTRODUCTION

ECENT reports about materials with high third-order

nonlinearities [1], [2] have revived interest in nonlinear
distributed feedback (NLDFB) structures and, particularly, in
their realization as integrated optical devices. The operating
characteristics of such structures have been thoroughly inves-
tigated by now, both theoretically [3]-[7] and experimentally
{8]-[10]. An array of possible applications including optical
limiting, switching, multistability and pulse shaping has been
proposed [11], [12]. A study of the transient response of
these structures [7], [13] has led to the discovery of soliton-
like solutions well within the Bragg stop-band, fueling high
expectations about their possible role in ultrafast, all-optical
switching applications.

Nonuniformities within the NLDFB are either intentionally
introduced (designed nonuniformities) or simply represent the
artifact of imperfections introduced during the fabrication
process. Designed nonuniformities in the form of a grating
chirp, taper or phase shift have proved to be quite important for
the device performance. It has been demonstrated recently [14]
that a combination of taper and chirp can dramatically increase
the excitation efficiency of nonlinear waveguide devices. Ta-
pered [15] and segmented {16] designs have been proposed
for optimized launching of the gap solitons into a nonlinear
periodic structure. Phase-shifted structures feature extremely
low switching threshold [17], and represent an important class
of nonuniform NLDFB structures. The bistable behavior of a
strictly periodic NLDFB device operating in the continuous-
wave (CW) regime has been described analytically by Winful
in terms of Jacobian elliptic functions [4]. Unfortunately, a
general analytic description of nonuniform NLDFB structures
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is not possible using this approach, leaving us with only
numerical techniques.

Considerable effort has been invested in developing the
numerical techniques for analyzing nonuniform linear DFB
structures [18]-[20]. The latest among these, the transfer-
matrix method, [20] divides a nonuniform linear DFB into
a set of strictly periodic, uniform segments represented by a
corresponding transfer-matrix set. Motivated by the simplicity
of this method, we combine the Winful’s analytic treatment
of the strictly periodic NLDFB and the idea of nonuniform-
structure segmentation. In our approach, analytic solutions in
the neighboring grating sections are connected by a proper
set of the boundary conditions, allowing the field distribution
throughout the entire structure to be found. Similar to the
transfer-matrix procedure, each grating section is considered
to be a two-port element whose transfer function can be
exactly calculated. Unlike the case of linear LDFB, where
the transfer function solely depends on the input wavelength,
the NLDFB transfer characteristic is also dictated by the input
magnitude. This approach can be thought as generalization of
the linear transfer-matrix method and should be distinguished
from existing numerical methods. For this reason, we refer to
the proposed method in this paper as the generalized transfer
matrix (GTM) method. While a wide class of existing numer-
ical techniques [21]-[24] usually start with the known field
distribution for a linear DFB in order to find a self-consistent
NLDFB solution by iterative means, our technique can be
regarded as a single-sweep, approximate analytic method that
demands far less computational effort than other numerical
techniques. Furthermore, in the important case of a multiple
phase-shifted NLDFB structure, the segmentation along the
phase shift locations leads to an exact solution of the problem.

II. GENERALIZED TRANSFER MATRIX METHOD

Consider a nonuniform NLDFB structure whose index vari-
ations are shown in Fig. 1(a) schematically. We assume that
optical medium remains uniform in the transverse (z—y) plane,
extending in the z and y directions sufficiently far to elim-
inate consideration of any boundaries. This effectively re-
duces the problem of finding the field-distribution E(z) to
a one-dimensional calculation in the z-direction. The structure
nonuniformity in this direction can be partially described by
its index of refraction n = ny, + n(®|E|?, where the linear
index nj, varies with 2 as

nr = ng +n1(2) cos [28p(2)z + Q(2)). ¢))
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(a) Schematic index variation in a nonuniform, almost-periodic NLDFB structure with multiple phase shifts A(2. The structure nonuniformity is

represented by the axial variation of the linear refractive index Any (z). Additional nonuniformities may include a variation of the Kerr index along the
z-axis, n(2)(z). (b) Segmentation of the NLDFB structure from Fig. 1(a) into N strictly-periodic, uniform sections. Each segment is fully characterized

by parameters xas, Bar, Yar, as, and L.

Both the index perturbation n1(z) and the Bragg wave vector
Bp(z) are slowly-varying functions of z. The Bragg wave
vector can be written as

Br(2) = Bo + f1(2). 03]

The unperturbed Bragg vector f is defined as By = 27/,
and )¢ is related to the fundamental grating period by 2A =
kMo, where k is an integer. The grating phase €(z) remains
constant along the structure, except for discrete changes intro-
duced by localized phase shifts AQ(z). In the most general
case the effective Kerr index can also be allowed to vary along
the z-axis as

n® = n((]z) + ngz)(z). 3)

The nonlinear coupled-mode description of the field within
the periodic structure implies standard assumptions such as
a slowly-varying envelope and moderate coupling strengths
[25], [26]. These assumptions remain valid in a wide class
of devices (thin-film waveguides, nonlinear multilayer stacks,
fiber gratings, etc.), thus allowing us to apply our solutions
to a variety of seemingly different problems. The field within
the structure is written in its standard form that separates the
forward and the backward traveling wave as

E(2) = E4(2)e?* + E_(2)e™97%, @)

leading to a set of nonlinear coupled mode equations

% =ik(z)E_ exp[-2iA0(2)z + iQ(2)] + iv(2)
[|E+|* +2|E-|YEy, (5a)
dfz‘ — —in(2) B, exp[2iAB(2)z — i02)] — i7(2)

- [21E-? + |E4P|E-. (5b)

The linear coupling parameter x(z) is defined by 7ny(z)/Ao,
and the parameter ~(z), responsible for the self- and cross-
phase modulation, is defined by 7n{?(z)/\. Frequency de-
tuning from the axially-varying Bragg wave vector is given
by AB(z) = B — Bp(z). The analytic solution of (5a) and
(5b) is possible only in the case of strictly periodic, uniform
or phase-shifted DFB structure characterized by the constant
parameters Bp, &, and n(2), Most of the existing numerical
techniques used to treat the general case outlined here are
computationally intensive and do not provide the necessary
insight into the physics of device operation.

In our approach, we approximate the nonuniform DFB
structure by a set of N strictly periodic, uniform segments, as
shown in Fig. 1(b). The field distribution within each segment
can be calculated analytically, provided that the boundary
conditions at one of its interfaces are given. Specifying the
field at the end of the structure (z = L), one can find the
distribution within the Nth segment (2y < z < L) and at the
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Nth interface (z = zn). Repeating this procedure N times, the
front end of the device is reached and the transmittivity of the
entire structure is calculated. The coupled mode description
of the segmented structure will remain valid as long as the
condition

Ly > 27 /Bum 6)

is satisfied, i.e., as long as the segment length is kept much
longer than the period of the DFB grating [20].

Consider now, only the Mth segment, described by a set of a
constant parameters (kar, On, Ya, Qar, Lag). We show that,
given the field distribution for z > 2741, the field distribution
within zps < 2z < 2zp41 can be calculated exactly, thus
allowing for the repetition of the procedure in the (M — 1)th
segment. To solve (5a) and (5b) applied to Mth segment, it
is necessary to express the electric field in form separating its
magnitude and phase

E = |EL(2)| exp[id+(2)] = Ar(2) exp[id+(2)]. (D)

Substitution of (7) into (5a) and (5b) leads to two constants of
motion within the Mth segment (Appendix A)

GM =IT,ML\/ I(I — TM) Ccos \I/M

+ [ABML + 2na (I = T, ®)
Ty=I-J ()]

where
Un(z) = 200m2 + ¢4(2) — ¢—(2) — Q- (10)

The normalized variables I = A2 /A? and J = A% /A? are
defined as the forward and backward flux, respectively. The
critical intensity is defined using the axially-averaged Kerr
index

N
@ =35 nPLy/L.

=1

A% = 4)/3mn @ L;

Parameter 7y, defines the nonlinearity of the Mth segment:
oM = ns\?/n(z). To give a physical meaning to the critical
intensity parameter, consider the case of a 1-cm long GaAs
device (n(® ~ 1.6 x 1070 esu) operating at Ao = 1 pm.
The critical intensity of a such device corresponds to ~1.5
GW/cm?, a level difficult to reach without inducing thermal
damage within the optical medium.

It can be shown that the spatial derivative of the forward
flux is related to the segment’s phase ¥ ,, through the relation,
(Appendix A)

dl

E =2I§M\/I(I—TM) sin \I’M. (12)
The importance of the last expression in establishing the proper
boundary conditions between two neighboring segments will
be seen shortly. The discrete change AQj, of the grating
phase introduced at the interface between the two segments
introduces the discontinuity in the flux derivative, while main-
taining the continuity of the flux itself. The continuity of the
flux written in the form

I(Lm - 5)'6—*0 = I(Lm + E) |E—>Oa
J(Lm - 6)'5-50 = J(Lm + E)IeHD

(13a)
(13b)
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can be combined with (9) to show that the transmitted flux
T remains conserved not only within each grating section,
but also throughout the entire structure

Ty=Ty= - =Ty=--=Ty=T. (14)

Equation (14) is a direct consequence of the zero-gain, lossless
model that has been used to describe the response of the optical
medium. Finally, elimination of ¥, from (8) and (12) allows
the construction of the forward flux equation within the Mth
segment

2
(L dI) =k LTI -T) — {(kmML)Gu

2 dz
— [ABML + 20 (I = T)I}?

=P(I). 1s)

Equation (15) can be integrated directly, provided the con-
served quantity Gy is given. We now show that such a
requirement is equivalent to a knowledge of the intensity
distribution I(z) for z > zpr41. According to (8), the phase
Uary1(2ar41) within the (M +1)th segment can be calculated
from

cos Uprp1(zm41) ={Gm+1 — [ABM L
+ 201 (Iv+1 = T)Ir4a]}/
[(Ing41 — T)Ing 2]
The sign of sin ¥y recovered from (12), together with

(16) provides sufficient information to uniquely define Wpsy1.
Phase within the Mth section is then calculated as follows:

an

(16)

Unr(zm+1) = Yar1(em41) — Ay

The constant of motion Gy is calculated by substitution of
(17) into (8), thus allowing explicit integration of the equation
governing forward flux distribution. The integration can be
expressed in the form:
Tuer dI
%z/ — =2(2m41 — 2)/- (18)
1) VP
Evaluation of the integral on the left side of (18) is dependent
on the relation among the integration limits /(2), Ipr4.1, and
zeros of the polynomial P(I) = —4n2, T[i_, (I — I'V). We
focus on the most frequently encountered case in which all
Zeros Iz.(o) (i =1, 2,3, 4) are real and Ifo) > I(2), Ipg41 >
Iéo) > I. éo) > 1, io), discussing other cases in the Appendix B.
In this case the integral & is evaluated as
dI Tavr g1

L
3= / S 2
1) VPUI) i /P

— 9 fon™ e} K - s [u(T(2))s K} (19)
M

where

u() =[(I® - 1T - 1)/

(1® - )1 - )72 20)
=11 - 5" - L) @b
k? =10 - D)1 - I)g”. (22)
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Fig. 2.

(a) Low-intensity transmission of a linearly tapered NLDFB with kL = 2.5 for three taper parameters: Ax = 0, 1, and 2. (b) Low-intensity

transmittivity of a linearly chirped NLDFB with kL. = 2.5 for S = 0, 4, and 10 and 10-section segmentation is used in the transmission calculation.
(c) Low-intensity transmission for uniform (short-dashed curve), A/8-shifted (long-dashed curve), and X/4-shifted NLDFB (solid curve) NLDFB devices.
The phase shift in both cases is located at the center of the structure. (d) Low-intensity transmissivity of a NLDFB device with three equispaced
A/4 shifts (solid curve). Transmittivity of the uniform NLDFB without phase shifts is indicated by the dashed line. The same intensity parameter

T = 1075 is used in plots (a)(d).

Unfortunately, the inverse elliptic function sn=!(u; k) is
multivalued and branches into two distinctive solutions.

sn™(u; k) = Flsin™(u); k]

_{F(<P;k)

T\ 2K - F(n — ¢; k) 23

where F(p; k) is the incomplete elliptic integral of the first
kind, and K = F(r/2; k). The argument ¢ is defined by both
u = sin(p + 27n) and v = sin[—¢ + (2n + 1)x]. Let us
for the moment assume that the proper branch of the function
sn~1(u; k) is chosen. Combining the (18) and (19), one can
find the explicit formula for the intensity distribution within
the Mth segment

150) _ I§°)

I(z) =19 +
3 Ifo) _ I§0)

(24)

4 Tl 2
Iio) — I§O) sn?(z)

where sn(z) is a symbolic notation for
sn(z) = sn{sn Hu(In11); k] — 4nar(2ar41 — 2)/9L; k2}5

The axial derivative of the intensity distribution is calculz(ite(;
from (24) in the form

I(z) - 1"

dI(z
d(z ) =2 OO sn(z)en(z) dn(z).
1 3

Ifo) _ I§°)

(26)

— sn2(2)

Equation (12) provides an independent mean to calculate this
derivative at the interface z = 2zp741

dI (50 Up)amay s e
(E)um“_e T (sin Warg1) ez te
(%)
dz z=zmp1te

The calculation of the flux derivative using either of (26) and
(27) produces the identical result only if the proper branch of

(27)



IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 31, NO. 7, JULY 1995

1330
10 + I—‘\‘ T I I-\\ AK=0 T
‘l’ \\\ xL=2.5 " \\\ K
! Ax=0 s ABL=0 ! \\ /]
.' 2 ! % .
08 ' ' -1 5
] !
] [}
: |
= ; |
S L ! _
g 0.6 |'| :
E 1 i
[2] 1 ]
o \ '
E 0.4 ‘\ l' b
=TT \ !
[}
]
!
0.2 | k=25 1
ABL=2.5
N=1
00 N 1 . L N 1 1 L on 1 L
0.3 0.8 1.4 1.9 24 0.0 0.5 1.0
Input Intensity Input Intensity
(a) (®)
Fig. 3. (a) Transmission characteristics of linearly tapered NLDFB with kL = 2.5, tuned to the center of Bragg stop-band (ASL = 0) for parameters
Ak = —2, —1, 0, and 1. (b) Transmission characteristics of an identical structure tuned to the edge of the stop-band (A3L = 2.5).
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Fig. 4. (a) Transmission characteristics of linearly chirped NLDFB with kL = 2.5, tuned to the center of the stop-band (ABL = 0) for S = .—1, 0, 1,
and 2. (b) Transmissivity of an identical NLDFB structure tuned to an edge of the stop-band.

the function sn™1! is chosen, thus allowing us to find a unique To summarize, the following procedure should be followed
distribution I(z) within the Mth segment. when using the GTM technique.
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Fig. 5. (a) Transmittivity of A/4-shifted structure with L = 4 for three different input intensities: Iy
(heavy solid curve). (b) Transmittivity of NLI
(c) Transmittivity of NLDFB with kL = 4 and AQ = 120° for I =
4 and two identical phase shifts of 180° located at z = 0.35 L and z = 0.65 L. Dashed and solid line correspond to I; =
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Divide the structure into a proper number of segments
in order to satisfy both the sectional length condition (6)
and to achieve convergence of the solution.

Provide the boundary condition at the output of the device
(z = L) first. It is convenient to use a nonreflective
condition at the interface z = L simply by setting the
value of transmitted flux 7' = I(L). Reflective interfaces
can be considered with a straightforward modification.
Use (24) to calculate the forward flux distribution within
each uniform section of the grating and its axial derivative
to connect solutions in the neighboring segments.

Once the front end of the device is reached, the trans-
mitted flux parameter 7' can be changed and the above
procedure repeated. This is equivalent to generating an
ordered triplets (I, T, AB). For each output parameter
T, the one and only one input value I is found for a
given frequency detuning. Due to a multistable behavior
of NLDFB, the opposite does not have to be true. The
calculation of the device transmittivity requires fixed
input I across the entire frequency detuning region and
is easily performed by sorting the triplets with a given I;.
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= 1075 (thin solid curve), 0.1 (dashed curve), and 0.2

DFB with L = 4 and AQ = —120° (located at its center) for I; = 105 (dashed line) and I; = 0.1 (solid line).
10~% (dashed line) and I; = 0.1 (solid line). (d) Transmission of NLDFB with kL =

1072 and I; = 0.1, respectively.

III. RESULTS AND DISCUSSION

We now illustrate the GTM technique by analyzing tapered,
chirped and phase-shifted NLDFB structures. The method
is also demonstrated for NLDFB devices with an axially-
varying Kerr index. Before considering each case in detail,
we first need to test the GTM performance in the low-
intensity operating regime. In this limit, the NLDFB transfer
characteristics approaches that of the linear DFB structure.
Since they are well known, [18]-[20] they can serve as a
reference for the GTM algorithm. Fig. 2(a)—(d) shows the
transmittivities of the linearly tapered, linearly chirped, single-
and multiple-phase shifted NLDFB device operating at T = 5
x 107°. Each plot agrees remarkably well with the linear DFB
calculation, exhibiting deviations of less than 1% from the
well-known analytic results for the chosen value of N = 10.

Linearly Tapered NLDFB: Linear taper of the form

K(2) = ko[l + Ax(z — L/2)/L] (28)
is introduced into strictly periodic, uniform NLDFB, maintain-
ing the average coupling parameter ko = 2.5. The influence
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(a) Transmission characteristics of A/4-shifted NLDFB with K L = 4 for three detuning parameters: A3L = —0.66, —0.48, and —0.3. (b) Transmission

characteristic of the edge-tuned, uniform NLDFB device with kL = 4 for threc detuning parameters: AL = 3.7, 3.9, and 4.1.

of different taper forms on the device operation has been
studied in detail before [23], so we limit the discussion to
a GTM analysis of the linear taper only. Transmittivity of the
NLDFB in the low-intensity level is shown in Fig. 2(a) for
the parameters Ax = 0, 1, and 2, exhibiting characteristic
sidelobe disappearance [17], [18] with the increasing Ax. The
solution converges very quickly, with only 10 DFB segments
used to approximate continuously varying taper function (z).
The zero-detuning transmission characteristics are shown in
Fig. 3(a) for parameters Ax = -2, —1, 0, 1, confirming
the disappearance of the hysteresis for the positive detuning,
as reported earlier [23]. The properties of the device tuned
near an edge of the Bragg stop-band are of particular interest,
because of the lower switching intensities expected in this
region. Fig. 3(b) shows the influence of the linear taper when
the edge-tuning at ABL = 2.5 is chosen. In the absence of a
taper (Ax = 0), almost nonexisting hysteresis still allows up-
switching at I; ~0.18, as compared to the zero-detuning value
of I; ~1.3. Negative taper considerably increases I; while
decreasing the total throughput efficiency at the same time.
Positive taper further deteriorates the NLDFB performance by
leveling the up-switching slope. )
Linearly Chirped NLDFB: The periodicity of the uniform
NLDFB is changed by introducing the linear chirp
AB =B, +8S(z—L/2)/L. (29)
Fig. 2(b) shows the well-known effects of the chirp in the
low-intensity limit (7 = 5 x 10~°), when the device can be
approximated by LDFB. Smoothing of the sidelobes and the

transmission increase near the AGL = 0 are in agreement with
the previous linear calculation [19], [20]. The transmission
characteristics of the device tuned at the center of the stop-
band are plotted in Fig. 4(a) for the parameters S = —1, 0, 1,
and 2. As reported earlier [24], negative values of the chirp
parameter S increase the up-switching intensity and decrease
the overall efficiency of the device. A positive chirp in addition
decreases the width of the transmission hysteresis. The zero-
detuning performance of the NLDFB is compared to that of the
edge-tuned device in Fig. 4(b). It is evident that both positive
and negative values of the chirp severely affect operation of
the device in both tuning regimes by lowering transmission
efficiency and decreasing the hysteresis width.

Phase-Shifted NLDFB: Since their first introduction,
phase-shifted LDFB structures have been extensively used
[27]-{30], most notably for design of single-mode semicon-
ductor sources. A/4-shifted devices, the best known class of
these structures, feature a narrow transmission peak in the
middle of the Bragg stopband, offering the possibility of a
narrow-band filter design.

In comparison with the phase-shifted LDFB, similar nonlin-
ear structures have received relatively little attention in spite
of their exceptional transmission characteristics. The extremely
low switching intensities for the \/4-shifted NLDFB structure
have been reported recently [17]. Fig. 2(c) and (d) shows the
transmission of a single and multiple phase-shifted NLDFB in
low-intensity limit. The grating is segmented at the phase-shift
locations, making the GTM method exact in this case. Fig. 5(a)
shows the transmittivity of a A/4-shifted NLDFB for different
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Fig. 7. (a) Ion-Ig characteristics showing the hysteresis width for a phase-shifted device in cases when A =170° (long-dashed line), 180° (solid
line), and —170° (short-dashed line). Lower horizontal portion of each characteristic represents downswitching intensities (Iog), while upper, curved
portion represents upswitching intensities (Zon). (b) The fon—Iog characteristic corresponding to the otherwise identical, uniform NLDFB plotted separately

because a different intensity scale.

values of the input intensity: I, = 107%, 0.1, and 1. A very
large frequency shift is exhibited by the central transmission
peak, while edges of the stop-band (ASL ~ =5) remain
almost fixed. Transmission characteristics of the structure are
plotted in Fig. 6(a) for detunings of AGL = —0.3, —0.48, and
—0.66, showing the signs of the hysteresis at input intensities
as low as I; ~0.015. This should be contrasted with the
uniform (AQ = 0), edge-tuned device which starts exhibiting
hysteresis at about I; ~0.12. Fig. 7 emphasizes this point by
plotting the hysteresis position and width for phase-shifted
(Fig. 7(a)) and uniform (Fig. 7(b)) structures. By varying
phase-shift values AS2, the position, and the width of the
hysteresis can be dramatically changed: a decrease of only 10°
will translate hysteresis into the negative direction for AGL =
0.5, lowering the switching intensities at the same time.

The reason behind the low switching intensities required
for the \/4-shifted NLDFB is apparent from the intradevice
intensity distribution, shown in Fig. 8(a). In the low-intensity
limit (I; < 0.02), the intensity at the device center z = L /2 1s
almost an order of magnitude higher than the input intensity I;.

Such a high center intensity modifies the local refractive index
at the phase-shifting location, effectively increasing the initial
phase retardation of 180°. The net effect is that a A/4-shifted
NLDFB structure looses its transparency at ASL = 0 even
for moderate input levels. The edge-tuned device (Fig. 3(b))
initially shows a similar type of behavior (as the input intensity
is increased from the low linear limit, the mid-device intensity
builds up) but never reaches the levels comparable to those of
the \/4-shifted device. In addition, the peak-intensity position
does not remain localized in the center, but slowly shifts
toward the end of the structure.

Fig. 5(b) and (c) show the importance of the chosen phase
shift AQ for the device operation. A phase shift of AQ =
—120° opens the transmission peak at AGL ~ 2 (Fig. 5(b)).
For a moderate input intensity of I; = 0.1, this peak is shifted
to ABL ~ —0.75, a distance of almost three detuning units. If
a phase shift with the opposite sign is chosen (AQ = 120°),
the transmission peak at AL ~ —2 is opened (Fig. 5(c)),
and for the same input intensity level, is shifted only for 1.5
detuning units (ABL ~ —3.6),—one half of the previous
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Fig. 8. (a) Axial distribution of the intradevice intensity I(z) for the case of A/4-shifted NLDFB with <L = 4. The structure is tuned to the center of the
stop-band (ABL = 0). (b) The axial distribution of the intradevice intensity for the case of edge-tuned, uniform NLDFB with xL = 4.

value. If the objective is to design a wide hysteresis device
operating at low intensity and tuned by varying the input
wavelength, a choice of AQ = —120° is clearly the superior
one. However, if switching efficiency is more important, the
choice of the AQ2 = 120° device may be a better one.

The case of multiple phase shifts is shown in Fig. 5(d).
The structure has two identical \/4 phase shifts located at
z = 035L and z = 0.65 L. As the Input intensity is
increased to I; = 0.1, both transmission peaks are shifted
by approximately one detuning unit. However, the widths of
the transmission peaks have considerably changed, introducing
differences between their up-switching efficiencies.

NLDFB with Axially Varying Kerr Index: Until now, we
have assumed that effective Kerr index remains constant by
setting nyy = n{2/n® = 1. The GTM method permits
this parameter to be varied along the z-axis, allowing the
analysis of nonuniformly doped devices with the z-dependent
effective Kerr index. To make a meaningful comparison with
the uniform NLDFB structure, we choose the following form
for the parameter n(¢ = z/L)

n(§) =2 — {1 —exp[~(26 - 1)*/D*)}/

[1 - Dy/merf (D~1)/2]. (30)

The Gaussian in (30) has the 1/e-width of D and is centered at
& = 1/2. Appearance of the error function in this expression is
the result of the requirement that average parameter 7 remains
unity as in the case of uniform NLDFB. The maximum of the
7(§) is reached for £ = 1/2 and is equal 2; i.e., the maximum
value of the local Kerr index never exceeds twice the value
of the Kerr index considered in previous examples. We set the
width of the Gaussian to be D = L/2 in all cases.

Fig. 9(a) shows the transmittivity of a uniform NLDFB
width kI = 2 and input intensity of I; = 1. The structure
becomes fully transparent for this input level at ASL =
0. The transmittivity of an identical NLDFB except for a
Gaussian Kerr index is plotted in Fig. 9(b) for the same
input intensity. The stronger local Kerr index allows for a
bigger stop-band shift in case of the NLDFB, thus, moving
the 100% transmission peak further into negative detuning
region.

The A/4-shifted structure with the Gaussian nonlinear index
given by (30) and Iy = 1 is considered in Fig. 10. The
transmission peak corresponding to nonuniform NLDFB is
shifted further than that of the uniform Kerr index device.
The stronger Kerr index at 2 = L/2 requires much lower
intensities to alter the 180° phase-retardation of the NLDFB,
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Fig. 9. (a) Transmission of the uniform NLDFB with xL = 2 and input
intensity I; = 1.0 corresponding to a full transparency at the center of the
stop-band (ASL = 0). (b) Transmission of the NLDFB with kL = 2 and
Gaussian variation of the effective Kerr index, as described in text. The input
intensity is kept at the same level: I} = 1.0.
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Fig. 10. Transmission of the A/4-shifted NLDFB with kL = 4 and uniform
Kerr index, for the input intensity of I; = 10~° (thin solid curve) and
Iy = 0.1 (dashed curve). Transmission of the otherwise identical A/4-shifted
structure having a nonuniform Kerr index is indicated by heavy solid line for
the same input intensity I; = 0.1.

effectively making the nonuniform device more “sensitive” to
input changes.

IV. CONCLUSION

We have presented novel generalized transfer matrix method
for analysis of nonuniform, almost-periodic NLDFB struc-
tures. The new approach takes advantage of the exact solutions
corresponding to a strictly-periodic, uniform NLDFB and the
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grating segmentation technique known from the linear DFB
structure analysis. The GTM method is demonstrated for
the commonly used tapered and chirped nonuniform NLDFB
devices, showing complete agreement with the previously
reported results. Particular attention is devoted to phase-shifted
NLDFB structures, treated exactly by the GTM technique. In
addition, calculations for the NLDFB with an axially-varying
effective Kerr index are presented. The results show that
switching device can be made more sensitive by this technique.

It is difficult to overemphasize the importance of the nonuni-
form NLDFB structure design, particularly in integrated and
waveguide optics applications. We feel that proposed tech-
nique offers the means for a quick and straightforward char-
acterization of these structures, regardless of their complexity
or operating regime.

APPENDIX A
CONSTANTS OF MOTION IN UNIFORM,
STRICTLY-PERIODIC NONLINEAR DFB STRUCTURE

In order to find the conserved quantities within the uniform .
NLDFB, the counterpropagating field components are written

in a form that separates their magnitude and phase
Ei(z) = |[Ex(2)]e+® = Ag(2)e*=). (AD

After substitution of (Al) into (5a), (5b) and separation of
imaginary and real parts, we obtain

dAJ =KA_ sin ¥ (A2)
dz
dA_ .
W = KA+ sin ¥ (A3)
Ay % =kA_ cos U +y(|A4> +2/A-|P) AL (Ad)
A_ %: =kA; cos U+ y(|A_|2+ 2|44 12)A- (AS)

where ¥ is defined by (10). Elimination of ¥ from (A2) and
(A3) results in a first constant of motion, transmitted flux

A% = A%(2) - A(z). (A6)

By taking the z-derivative of (A7) and using (A2)—(AS), one
can easily prove that dG/dz = 0, showing that

G = kL\/II—=T) cos ¥+ [ABL +2n(I - T)|I (A7)

represents the second constant of motion for the uniform
NLDFB. For more detailed proof that does not assume previ-
ous knowledge of the form of (A7), see [31].

APPENDIX B
DIRECT INTEGRATION OF THE FORWARD FLUX EQUATION

The forward flux equation (15), can be regarded as the
energy equation of a classical particle [31], [32] moving in
the quartic potential V = — P(I). The zeros of the polynomial
P(I) then represent boundaries of the confinement region for
the classical particle defined by nonnegative value I. Three
different cases are generally encountered.

1) All four zeros of the polynomial P(I) are real and

I}O) > Ina, I(2) > Iéo) > Iéo) > I§°). This is the
case discussed in text by relations (19)—(24).
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(2]
(3]

4
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[51

[6]

7

[8]

[9

—

(101
(11]

[12]

[13]

Zeros form a real and complex conjugate pair, and
Il(o) > Ingyr, I(2) > Iéo), I:,(,O) = LEO)*. In this case,
using the (18), one can show that forward flux has the
following form [33], [34]:

Il(O) _ 1250)
IO IO 1+ en(z)
=10 T=en)

I(z) = I9 +

(BD)

The symbolic meaning of cn(z) is similar to that of (25).
All four zeros are real, and 1” > I1{¥ > ¥ >

Ingyr, I(2) > 1 io)' The forward flux expression in this
case can be found [33], [34] to have a form similar to
a expression in case 1):

11(0) _ IiO)
_ I§°) _ LEO)
I§°) _ 11(0)

I(z) =19 4+

(B2)

sn2(z)
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