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Mode locking in semiconductor lasers
by phase-conjugate optical feedback
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We show theoretically through computer simulations that phase-conjugate optical feedback that is realized through
four-wave mixing can produce mode locking in multilongitudinal-mode semiconductor lasers. Phase-conjugate
feedback, in contrast to ordinary optical feedback, directly couples pairs of longitudinal modes. For certain
strengths of phase-conjugate reflectivities, the phases and beat frequencies of various longitudinal modes become
locked in such a way that the laser produces ultrashort mode-locked pulses, even though the laser is pumped
continuously.
Mode locking of lasers and, in particular, of semicon-
ductor lasers continues to generate intense interest
owing to such potential uses as the source of ultrashort
optical pulses in a soliton communication system.1
Semiconductor lasers have been mode locked actively,2
passively,3 and through hybrid schemes.4 In active
mode locking, for instance, the gain or loss of the laser
is modulated at the round-trip frequency of the laser.5
The active modulator induces beat-frequency locking
and phase locking, even overcoming the effects of noise,
and thereby creates short pulses.

We show theoretically in this Letter that it is possi-
ble to achieve both frequency locking and phase lock-
ing in a multilongitudinal-mode laser through the use
of phase-conjugate feedback (PCF), provided that four-
wave mixing (FWM) is used to generate PCF. We
are considering only the case in which the feedback
represents a small perturbation to the laser; i.e., the
output facet of the solitary laser is not antireflection
coated (the weak-feedback regime). We also point out
that conventional optical feedback, which occurs usu-
ally through unwanted reflections from optical fibers,
optical disks, or other system components, will in gen-
eral not lead to phase and frequency locking among
the modes. The primary reason is that the differ-
ent modes, although coupled intrinsically through the
laser medium, are only self-coupled by an ordinary re-
flection; that is, on reflection, each mode couples back
only onto itself and not directly to any other mode.
Some of the effects of conventional optical feedback on
multilongitudinal-mode lasers were recently reported.6

The schematic for PCF is shown in Fig. 1. The
material used for the phase-conjugate mirror (PCM)
is assumed to be a broadband (with respect to the
longitudinal-mode spacing) and highly nonlinear
medium with an essentially instantaneous response.
The PCM is pumped by a narrow-linewidth laser op-
erating at frequency vp. The phase-conjugate signal
is created by a nondegenerate FWM process so that,
when a frequency vj is incident upon the PCM, the
conjugate signal is shifted to vc  2vp 2 vj . The
0146-9592/95/111295-03$6.00/0
conjugate signal will return directly to the laser as a
result of the self-aligning nature of the PCF. How-
ever, in order for the returned signal to couple into
the laser, the frequency must nearly coincide with one
of the longitudinal-mode frequencies. This can only
occur only if (i) vp nearly coincides with one one of the
longitudinal modes or if (ii) vp lies nearly in the middle
of the two neighboring modes. In either case the rate
equation for the complex slowly varying amplitude of
the mode oscillating at vj can be written as
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where a is the linewidth enhancement factor (a  3),
GL is the gain that depends linearly on the carrier
density, tp is the photon lifetime (tp  1.4 ps), and
Fj is a Langevin noise term to account for random
spontaneous emission. zj contains all the gain non-
linearities and other intrinsic mode coupling terms,
including intramodal FWM. These terms arise from
spatial and spectral hole burning and carrier heating.
The explicit form of zj can be found in Ref. 6. The last
term in Eq. (1) accounts for PCF. Note that Ej now

Fig. 1. Schematic arrangement of PCF. Nondegenerate
FWM causes the phase-conjugate wave to be frequency
shifted from the probe wave.
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depends explicitly on the field of one other longitudi-
nal mode, namely, the mode at 2vp 2 vj . This field
component is delayed by the external cavity round-
trip time t st  0.67 ns), and it appears as the com-
plex conjugate owing to the action of the PCM. The
strength of the feedback is denoted by the feedback
rate kj . The exponential term accounts for any addi-
tional phase delay caused by a small detuning d of the
pump laser frequency from the optimum frequency.7
Since each field rate equation now depends on one
other mode, the action of the PCM might be called a
type of single-sideband modulator, in contrast to ordi-
nary active modulators.

The equation for the carrier number remains un-
changed by PCF and is given, as usual, by
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where N is the carrier number, I is the injection
current, q is the electronic charge, te is the carrier
lifetime (te  2 ns), and Pj is the photon number in
the jth mode. Pj is related to the complex field by
Ej 

p
Pj exps2ifjd, where fj is the instantaneous

phase of mode j .
The presence of mode locking can be studied in the

usual way by consideration of the so-called reduced
phases, defined by8

Cj  s2vj 2 vj21 2 vj11dt 1 s2fj 2 fj21 2 fj11d .
(3)

Mode locking corresponds to Cj going to a constant
for all j . We note for completeness that the total
laser output power of any multimode laser contains
evidence of the longitudinal-mode beating, even if a
detector is not fast enough to respond to these oscil-
lations. All multimode lasers are not mode locked, of
course, because the vj are not equally spaced and the
phases are fluctuating randomly. The high-frequency
oscillations tend to wash out in this case, so that
the total power contains only slowly varying oscilla-
tions. When the Cj as defined above are forced to be-
come constant, the laser is both phase and frequency
locked and is said to be mode locked. Generally, when
the Cj go to a multiple of 2p, then the laser is AM
mode locked; when the Cj go to an odd multiple of p,
the laser emits an FM wave.

The delayed-feedback term in Eq. (1) and the fact
that several longitudinal modes are being considered
make any analytic progress difficult. Therefore we
numerically integrate Eqs. (1) and (2), using a fourth-
order Runge–Kutta algorithm. The strength of the
PCF or, equivalently, the reflectivity of the PCM is
conveniently characterized in terms of a dimensionless
feedback parameter kt. For simplicity we assume the
reflectivity to be frequency independent, so that kt
is the same for all the modes. The weak-feedback
regime is explored for kt values between zero and 5.
The laser behavior in the presence of PCF is gener-
ally quite complicated, and the permitted parameter
space is rather large. To facilitate the discovery of
regimes in which mode locking occurs, we employ bi-
furcation diagrams, which permit immediate identifi-
cation of a stable, periodic, or chaotic regime.9 The
bifurcation diagrams are constructed with the noise
sources turned off, so that only deterministic rather
than stochastic dynamics are involved.

We have investigated the effect of PCF on lasers
with three, four, and five modes. In all cases, stable
regimes of mode locking are found. For simplicity,
when the number of modes is odd, we assume the PCM
pump frequency to be near the central mode; when the
number of modes is even, we take the PCM pump to
lie between the two central modes. In the three-mode
case, C2 is constant and equal to zero for 0.6 , kt ,
2.0, indicating AM mode locking. The locking is stable
even in the presence of spontaneous emission noise.

A representative bifurcation diagram for the slowly
varying total power versus kt is shown in Fig. 2 for
the four-mode case. Also shown on the bifurcation di-
agram is the total standard deviation (square root of
the sum of the two variances) of the C (C2 and C3 for
four modes) with and without the presence of noise.
The PCM pump laser frequency is tuned exactly be-
tween the two central modes (modes 2 and 3). This
explicitly couples modes 2 and 3 together and modes
1 and 4 together. The relative injection current is
IyIth  1.4. The nonlinear gain terms are adjusted so
that the modes are weakly coupled; i.e., with no feed-
back, all modes oscillate simultaneously with a certain
power distribution rather than in the bistable fashion
that is characteristic of strong coupling.10 In these
simulations the intrinsic FWM terms are neglected.

The bifurcation diagram indicates that the laser
in the presence of PCF exhibits complex dynamical
behavior. For different values of kt the laser ex-
hibits quasi-periodicity, period-doubling bifurcations,
and chaos. Of particular interest is the region cor-
responding to kt values between ,1.6 and 2.4. In
this region the average power output is relatively well
behaved, exhibiting small-amplitude quasi-periodic
behavior. However, over this entire region the total
standard deviation of the two C values is practically
zero without noise and , py10 even with noise; that
is, the C’s are constant in this range, and the laser is

Fig. 2. Bifurcation diagram of the slowly varying total
power versus kt. Also shown are the total standard de-
viations of the reduced phases without (dashed curves) and
with (solid curves) noise.
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Fig. 3. (a) Representative mode-locked pulse train for
kt  1.8. (b) Zoomed-in version, revealing the spacing
between pulses as well as the secondary pulse structure.

mode locked. Interestingly, the C values are nearly
constant even in the feedback range 0.8 , kt , 1.6,
although the modes exhibit a somewhat complicated
(period 4) quasi-periodic behavior. The best mode
locking, however, occurs in the range 1.6 , kt , 2.4.
We make the following points regarding the mode
locking: (1) Usually, mode-locked solutions are re-
stricted such that the mode amplitudes as well as the
reduced phases are constant. In the presence of PCF
the mode amplitudes are rarely constant, even in the
single-mode case,11 yet this only weakly affects the
purity of the mode-locked pulses, as shown below. (2)
Not only are the mode amplitudes not constant but
their behavior can be rather complex, as indicated by
the bifurcation diagram in the kt range from 1 to 2.4.
Although the bifurcation diagram shows only total
power, the individual mode powers behave in a similar
fashion. For kt  1.3, for example, the slowly varying
laser output is quasi-periodic with a period-4 behavior,
yet the phases are locked to a very good degree, the
total standard deviation being , 0.2p. (3) As Eq. (3)
shows, the fact that both C2 and C3 are constant im-
plies that all three beat frequencies are the same.
The particular values of Cj dictate the quality of the
mode-locked pulses. For example, it can be shown an-
alytically that, although Cj  0 for all j yields the best
pulses, good pulses are obtained as long as Cj remain
near zero, for example, jCj j , py4. In our four-mode
case the constants C2 and C3 are nearly equal and op-
posite, both with and without noise, through the entire
locking range. The particular value of Cj depends on
the feedback strength.

Finally, the mode-locked pulses themselves, with the
noise sources turned on, are shown in Fig. 3. The
quasi-periodic behavior of the mode amplitudes men-
tioned above is responsible for the slow variation of the
pulse heights. This variation occurs at a frequency of
,3 GHz and is close to the relaxation-oscillation fre-
quency of the solitary laser. The spontaneous emis-
sion noise has a minimal effect. Also shown in Fig. 3
is a zoomed-in version of the mode-locked pulses. The
pulses are spaced, as usual, by the laser round-trip
time, or the reciprocal of the longitudinal-mode spac-
ing [9.3 ps  (107 GHz)–1]. A simulation time step of
0.1 ps permits the well-known secondary maxima to
be clearly discernible.
Why does PCF lead to mode locking? A possible
interpretation is that PCF provides a frequency shift
that can counteract the mode pulling and pushing (fre-
quency shifts induced by nonlinear gain) that ordinari-
ly render the various beat frequencies unequal. For
very weak feedback the PCF-induced frequency shift
is too small to accomplish the locking. Beyond a cer-
tain feedback strength, however, locking occurs over a
wide region. At large values of feedback, mode lock-
ing is lost because of the onset of chaos. We note that
some nonlinear gain is actually beneficial since it helps
damp the relaxation oscillations and therefore delay
the onset of chaos.

We comment briefly on the assumption of an ex-
tremely fast-responding PCM. In reality, of course,
any material has a finite response time, leading
to a frequency-dependent response. However, our
assumption is reasonably valid as long as the PCM
bandwidth is much larger than the longitudinal-mode
spacing. In our simulations we assumed a mode spac-
ing of ,100 GHz, which is a typical value for solitary
semiconductor lasers. For this case a semiconductor
laser amplifier could provide frequency-independent
PCF since its bandwidth has been measured to be
greater than 1 THz. More generally, a PCM based
on a Kerr-type nonlinearity would have an adequately
wide bandwidth. Alternatively, to use a PCM with
a smaller bandwidth one could construct an exter-
nal cavity laser, with any desired longitudinal-mode
spacing and number of modes.

In summary, we have shown theoretically that
it is possible to produce mode locking by using
phase-conjugate feedback. Although PCF can pro-
duce chaotic output as well, stable mode-locked regions
have been found for three, four, and five modes, even
in the presence of spontaneous emission noise.
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