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Effect of frequency chirp on soliton spectral sidebands
in fiber lasers
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Fiber lasers emit soliton pulses that exhibit discrete spectral sidebands generated through dispersive-wave
resonances. The position of these soliton sidebands is shown to be affected by the amount of chirp acquired by
the pulse, and the degree of chirp is determined by total cavity losses and gain dispersion. Our results show
that the soliton chirp shifts the sideband frequencies and that sidebands can be generated even in the case of
normal dispersion. The long- and short-cavity cases are discussed separately so that our results are applicable
to all laser configurations.
The spectrum of soliton pulses emitted by mode-locked
fiber lasers exhibits sidebands whose origin is well
understood.1 – 6 The sidebands result from a construc-
tive interference between the soliton and dispersive
waves and occur at frequencies for which their rela-
tive phase difference is a multiple of 2p. In previous
studies1 – 6 the sideband frequencies were determined
under the assumption of a chirp-free soliton, similar to
that formed in passive (undoped) fibers. In the case
of active fibers the gain dispersion imposes a frequency
chirp such that the mode-locked pulses emitted by a
fiber laser correspond to chirped solitons.7,8 This Let-
ter shows that such a frequency chirp modif ies the
interference condition and shifts the frequencies of
the side modes generated through the dispersive-wave
resonances.

The evolution of mode-locked pulses in fiber lasers
is governed by a master equation that incorporates
the effects of fiber dispersion and nonlinearity, gain
and gain dispersion, and effective saturable absorption
leading to passive mode locking.7 This equation is
a generalized nonlinear Schrödinger equation (or a
Ginzburg–Landau equation) and in its normalized
form can be written as8
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where A is the normalized slowly varying amplitude,
j ­ zyLD , t ­ tyTc, and the parameters s, d, and m are
defined as

s ­ sgnsb2d , d ­ g0LD , m ­ sg0 2 a0dLD , (2)

and d ­ a0ly4pn2Is is a measure of the saturable
absorption in the system, which is of the order of
0.1 for a passively mode-locked erbium-doped fiber
laser. Here n2 is the nonlinear index coefficient, LD ­
Tc

2yjb2j is the dispersion length, b2 is the dispersion
parameter, g0 is the small-signal gain coefficient, and
we include saturable absorption by writing the net
peak gain as gp ­ g0 2 a0s1 2 IyIsd, where a0 is
the small-signal absorption coefficient, I is the pulse
intensity, and Is is the saturation intensity. If the
laser cavity contains both doped and undoped fibers,
the parameters b2, g0, and a0 are averaged over the
0146-9592/95/111286-03$6.00/0
cavity length. Typically a0 ,, g0, so the normalized
gain of the laser is simply taken to be m ­ g0LD . In
deriving Eq. (1) the gain spectrum is approximated
by a parabola as gsvd ­ g0f1 2 Tc

2sv 2 v0d2g. We
obtain reasonable results by setting Tc ­ 1 ps. The
parameter Tc is related to the curvature of the gain
spectrum at the lasing wavelength and is typically
,1 ps. Note that Eq. (1) is general enough to describe
any fiber laser configuration (linear, ring, or figure-
eight), as long as the parameter d is determined
appropriately for the process of additive-pulse mode
locking.7

The solitary-wave solution of Eq. (1) is well known
and is given by7 – 10

Asj, td ­ N fsechsptdgs11iqdexpsiGjd , (3)

where the soliton amplitude N, the width parameter p,
and the propagation constant G are determined from

N2 ­
p2

2
fssq2 2 2d 1 3qdg , (4)

p2 ­ 2mfds1 2 q2d 1 2sqg21 , (5)

G ­
p2

2
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and q is the chirp parameter, whose value is deter-
mined by the quadratic equation

sd 1 sddq2 2 3ss 2 dddq 2 2sd 1 sdd ­ 0 . (7)

Clearly, if q fi 0, the soliton described by Eq. (3) is
chirped. Since q is generally not zero, the pulses
formed inside a fiber laser are chirped solitons. As
seen in Eq. (7), the amount of chirp on the pulse is
determined by the gain dispersion d, the saturable
absorption parameter d, and the sign of the dispersion
parameter.

Figure 1 shows the chirp parameter q and the full
width at half-maximum (FWHM), TFWHM ­ 1.76Tcyp, of
the chirped solitons as a function of the amplifier gain
(in decibels) G ­ expsg0Ld for the anomalous dispersion
(solid curves) and normal dispersion (dashed curves)
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Fig. 1. (a) Chirp parameter q and (b) the FWHM of the
chirped soliton pulse as a function of the amplifier gain for
the anomalous (solid curves) and normal (dashed curves)
dispersion regimes.

regions by the choice of Tc ­ 1 ps and d ­ 0.1. The
chirp is given by 2dfydt, where f is the phase of
the soliton and is of the form qp tanhsptd. From
Fig. 1(a) we note that the soliton acquires a positive
chirp for both normal and anomalous dispersion. For
relatively small values of gain there are no real values
of chirp and pulse width that permit the chirped
soliton to be a solution to Eq. (1). In this limit in
which the gain approaches zero the model that includes
saturation absorption becomes invalid. In practice,
the saturated gain must equal the cavity loss, and the
amplifier gain G is expected to be fairly large s.10 dBd
for compensation of cavity losses. Interestingly, the
amount of chirp acquired by a soliton in the laser
cavity is dependent on the amount of round-trip cavity
losses. Figure 1(b) shows that the mode-locked pulses
are broader in the case of normal dispersion sb2 . 0d,
but the difference becomes small for large gain since
gain dispersion dominates the index-dispersion effects
of the host fiber. The predicted pulse width of ,1 ps
depends on the choice of Tc, which can be used as a
fitting parameter. For relatively small values of gain
the chirp and the pulse width in the normal dispersion
regime become quite large. This is not surprising
since solitons are not supported in this regime in
undoped fibers.

What are the consequences of the frequency chirp
that is invariably imposed on the pulses circulating in-
side a fiber laser? It turns out that the spectral side-
bands generated through dispersive-wave resonances
are shifted from the frequencies expected in the ab-
sence of frequency chirp. We can easily understand
the reason by noting that the soliton propagation con-
stant G in Eq. (3) depends on the chirp parameter
q. Since the interference condition depends on the
soliton phase shift acquired during one round trip
(and the phase shift depends on G), the sideband fre-
quencies also become a function of the chirp parame-
ter q. Mathematically the relative phase difference
jbssv0d 2 bsv0 1 dvdjL between the soliton at the fre-
quency v0 and the dispersive wave at the frequency
v0 1 dv must be an integer multiple of 2p for construc-
tive interference to occur,5 where bssv0d ­ bsv0d 1 GyLD

is the soliton wave number at the carrier frequency
v0. By expanding bsv 1 dvd in a Taylor series and
retaining up to the quadratic term (the linear term cor-
responds to a change in the group velocity) we obtain
the angular frequency of the mth sideband:
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where s ­ 11 or 21, depending on the sign of b2, and
m is an integer. It is useful to introduce the soliton
width as Ts ­ Tcyp and define the soliton period as
z0 ­ pTs

2ys2jb2jd. Using LD ­ Tc
2yjb2j in Eq. (8) and

introducing dnm ­ dvmy2p as the frequency of the mth
sideband, we obtain
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where TFWHM ­ 1.76Ts is the FWHM of the soliton.
Equation (9) is the main result of this study. It

reduces to the previously obtained result1 – 5 if we
neglect the soliton chirp by setting q ­ 0 and assume
the dispersion to be anomalous ss ­ 21d. Our Eq. (9)
not only predicts that the soliton chirp shifts the
sideband frequencies but also shows that sidebands can
be generated even in the case of normal dispersion.

Figure 2 shows the product dnmTFWHM as a function
of the gain in the anomalous dispersion region for the
first three sidebands by use of b2 ­ 25 ps2ykm. For
dnmTFWHM & 1 the sidebands fall within the spectrum of
the soliton, whereas for dnmTFWHM . 1 the sidebands
occur in the wings of the soliton spectrum. Fig-
ures 2(a) and 2(b) are drawn under identical operating
conditions, except that L ­ 100 and 10 m, respectively.
For both cavities the positions of the sidebands de-
pend on the amplifier gain, which itself depends on the
amount of cavity loss. Interestingly enough, the posi-
tion of the first-order sideband peaks at a value close
to 5 dB of gain but then moves inward as the gain in-
creases and disappears altogether for an amplif ier gain
.13 dB. After that, the m ­ 2 curve essentially be-
comes the first sideband. Similar behavior occurs for
the second- and higher-order sidebands. Many side-
bands are likely to be observed for 100-m-or-longer

Fig. 2. Positions of the first three sidebands plotted as the
product dnmTFWHM for the chirped soliton in the anomalous
dispersion region as a function of the amplifier gain for
cavity lengths of (a) 100 m and (b) 10 m.
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Fig. 3. Positions of the first two sidebands plotted as the
product dnmTFWHM for a chirped soliton in the normal
dispersion region as a function of the amplifier gain for
cavity lengths of 100 and 10 m.

cavities, but only two or three sidebands may fall
within the soliton spectrum.

For the shorter 10-m cavity the same qualita-
tive curves for the side-mode positions are seen
(Fig. 2b). The main difference is that the positions
of the sidebands are much farther away from the
center frequency of the soliton, as is also observed
experimentally. These sidebands are expected to be
weaker in amplitude since they are farther away from
the peak of the gain curve.

Equation (9) also predicts sidebands in the normal
dispersion regime, unlike in the case for the unchirped
soliton. We show in Fig. 3 the product dnmTFWHM

for the case of normal dispersion ss ­ 11d for the
first two sidebands, using the same parameters as in
Fig. 2. The sidebands for the 100- and 10-m cavities
are indicated by the solid and the dashed curves,
respectively. The main difference from the anomalous
dispersion case is that only a few sidebands exist for
normal dispersion for a given amplif ier gain. Also, as
the gain is increased, the next sideband that appears
is actually closer to the center frequency of the soliton.
Since sidebands have been seen in the spectra of pulses
produced in neodymium-doped fibers11 it is clear that
soliton chirp plays an important role and must be
included whenever sideband frequencies are compared
experimentally and theoretically.

It should be noted that Eq. (9) applies to fiber
lasers with cavities composed of fiber components that
have similar dispersion characteristics. If there are
large changes in dispersion in the cavity, as in the
case of stretched-pulse mode-locked fiber lasers, the
chirp of the pulse undergoes rapid changes in different
fiber segments. In that case, since the propagation
constant G of the chirped soliton changes with position
in the cavity, the resonant coupling between the soliton
and dispersive waves is likely to be suppressed.

In conclusion, we have shown that cavity losses are
important in determining the positions of the soliton
spectral sidebands. The imposed chirp on the soliton
is directly affected by the amplif ier gain, which de-
pends on the cavity losses and shifts the positions of
the sidebands as indicated by Eq. (9). At the same
time, the sideband positions also depend on the net
dispersion parameter b2L. Thus it seems possible to
determine the chirps of the solitons produced by a fiber
laser by measurement of the displacement of the side-
bands from the soliton central frequency if the net
dispersion parameter b2L for the cavity is known ac-
curately. By the same token, without consideration
of the soliton chirp, measurements of sideband posi-
tions would be inadequate for determination of the
dispersion of the laser cavity. To our knowledge, the
effect of chirping in pulses emitted from fiber lasers
on the soliton sideband spectra has not been studied
experimentally.
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