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Theory of low-threshold optical switching in
nonlinear phase-shifted periodic structures
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The theory of phase-shifted nonlinear periodic structures operating in the stationary regime is presented. The
transmissive properties of the structure are analyzed by solution of the corresponding set of nonlinear coupled-
mode equations exactly. Extremely low switching intensities are found for the special case of ly4-shifted
structures. An all-optical low-intensity switching configuration that uses a wavelength-tunable source and
a ly4-shifted nonlinear structure is proposed. Advantages of the phase-shifted distributed-feedback design
in all-optical switching applications are discussed.
1. INTRODUCTION

Surprising discoveries concerning optical propagation
in nonlinear periodic media1–5 have renewed interest
in nonlinear distributed-feedback (DFB) structures and
their use as all-optical switching devices. In recent years
these structures and, particularly, their multilayered ver-
sions have attracted attention as optical compressors,6

tunable filters,7 and bistable devices.8–10

Transmission through linear periodic media is charac-
terized by a photonic band structure with stopgaps cen-
tered at multiples of the corresponding Bragg frequency.
In the presence of material nonlinearity an increase in
the field intensity changes the local refractive index, shift-
ing the entire photonics band and making the structure
transparent at previously forbidden wavelengths. Even
though this picture might be considered a simplified one,
it basically explains the mechanism responsible for an all-
optical switching process.

It is possible to analyze the operation of a nonlin-
ear uniform DFB device in the stationary (cw) regime
and, consequently, to describe its complicated bistable
behavior by solving the corresponding set of nonlinear
coupled-mode equations exactly.10 A time-dependent
propagation analysis1,5,11 of the nonlinear periodic struc-
ture reveals a rich dynamics that, in special cases, leads
to an energy transport in the form of slowly traveling
solitary waves, sometimes referred to as the Bragg soli-
tons. Unfortunately, the required switching intensities
reported in previous studies are extremely high, vary-
ing in the range10,12 ,0.1–1 GWycm2. Thus, not only
are high-power sources needed but thermal problems
connected with material absorption at such high inten-
sities introduce additional complications. Coupled with
the relatively weak nonlinearities of most optical mate-
rials, the above considerations render currently proposed
uses of nonlinear DFB structures as a switching de-
vice impractical. In recognition of this problem,9,12–14

much recent effort has focused on optimizing the design
of the nonlinear DFB structures by introduction of ta-
pered or segmented periodic structures. Phase-shifted
structures can be considered a special case of segmented
0740-3224/95/040671-10$06.00 
DFB design. First proposed by Haus and Shank15 in the
form of a ly4-shifted structure, phase-shifted gratings are
now widely used16–18 for fabrication of stable single-mode
semiconductor laser sources. They can also be used for
demultiplexing applications in the case of fiber gratings.19

A feature of the linear zero-gain ly4-shifted configuration
is a narrow transmission peak centered in the middle of
the Bragg stop band.18 As the central transmission peak
has to be shifted by only a small amount approximately
equal to its width, one intuitively expects that switching
may occur at input intensities significantly smaller than
those necessary for closing the stop band of the uniform
DFB structure.

In this paper we present the theory of nonlinear phase-
shifted DFB structures operating in the cw regime by solv-
ing the corresponding nonlinear coupled-mode equations
exactly. As a result, we describe the full input–output
characteristics of these devices throughout the entire
frequency-tuning region and demonstrate their superi-
ority for low intensity all-optical switching applications.
We show that the notion of the central transmissive peak
shift is not accurate in the general case and has to be
replaced by a more complicated, bistable description that
extends in both the intensity- and frequency-tuning do-
mains. Even though we devote most of the our analysis
to a ly4-shifted device, the theory is valid for arbitrary
amounts of the phase shift and can be easily generalized
to include multiple phase shifts as well.

The considerable progress made in both use and fab-
rication of nonlinear, organic materials20,21 is one of the
primary motivations for the present analysis. Kerr-type
nonlinearities that are 5 orders of magnitude stronger
than those of fused silica have been reported recently.20

It is not difficult to envisage the first practical ultrafast
all-optical switching device built by use of these types of
material in combination with optimal low-intensity phase-
shifted DFB design. Finally, advances in photosensitive
fiber fabrication21–24 make the writing of periodic pat-
terns directly in the fiber core a feasible and practical
procedure, opening yet another possibility for nonlinear
DFB fabrication. However, the strength of the silica-
fiber nonlinearity is relatively small25 (,10–16 cm2yW),
1995 Optical Society of America
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Fig. 1. a, DFB structure with the phase shift DV at the center
located at z ­ 0. The sinusoidal curve represents the effective
linear index nLszd. Normalized intensities I0, J0, and T are
described in text. b, Method of introducing the phase shift
by combining two identical periodic regions. The regions are
connected by the uniform phase-retarding section that introduces
shift of DV. c, Phase shift introduced by interrupting the
periodicity of a uniform periodic structure. Two segments are
regarded as uniform periodic structures differing in phases by
DV.

a problem that one might address either by extending
the length of the periodic structure or by increasing the
nonlinearity through fibers made of materials other than
silica.

2. NONLINEAR COUPLED-MODE
ANALYSIS

A. Formulation of the Problem
Consider the structure shown in Fig. 1a. It has two
equal, uniform, periodic regions separated by a phase shift
at its center z ­ 0. We refer to these regions as Region 1
s2Ly2 # z , 0d and Region 2 s0 # z # Ly2d. The desired
phase shift can be introduced either by insertion of a uni-
form slab between the two regions (Fig. 1b) or simply by
disruption of the periodicity of the uniform structure at
z ­ 0 (Fig. 1c). When the length of the retarder section
in Fig. 1b is small compared with the length of each peri-
odic region (i.e., the phase shift is localized), the effect of
the two shifting methods on the DFB structure operation
is equivalent. Possible realizations in the form of a thin-
film waveguide device, a nonlinear multilayer stack, or a
fiber grating are not essential to this analysis as long as
the standard coupled-mode assumptions can be applied to
each case. It is convenient to describe the periodicity of
the structure by its linear refractive index:

nLszd ­ n0 1 Dn coss2bBz 1 Vd . (1)

The Bragg wave vector bB is given by bB ­ 2pylB , and
the Bragg wavelength lB is related to the grating period
L as L ­ lBy2n0. The constant phase V is defined as

V ­

(
V1 z , 0
V2 z $ 0

. (2)

Consequently the phase shift introduced between
Region 1 and Region 2 is given by DV ­ V2 2 V1. The
material is assumed to have an instantaneous, isotropic,
Kerr-type response described by the nonlinear part of its
refractive index, nNL , 1/2n2jEj2, where E is the corre-
sponding local electric field. Each uniform region can be
modeled by a set of stationary, nonlinear coupled-mode
equations,10,26,27 provided that the standard assumptions
of slowly varying envelope and small coupling strength
sDn ,, n0d are valid. Following this approach, the
electric field throughout the structure is written as the
sum of forward- and backward-traveling waves:

Eszd ­ E1szdexpsibzd 1 E2szdexps2ibzd , (3)

and the coupled-mode equations that correspond to each
region are given by

dE1

dz
­ ikE2 expf2is2Dbz 2 Vdg 1 igsjE1j2 1 2jE2j2dE1 ,

(4a)
dE2

dz
­ 2ikE1 expfis2Dbz 2 Vdg 2 igs2jE1j2 1 jE2j2dE2 .

(4b)

The parameter k ­ pDnylB defines the coupling strength,
g ­ pn2ylB is the nonlinear parameter governing self-
and cross-phase modulation, and Db ­ b 2 bB is the de-
tuning of b ­ 2pyl from the Bragg wave vector bB . We
first apply Eqs. (4) to each region independently, without
specifying any boundary conditions at the phase-shift po-
sition. Region 2 is analyzed first, providing us with field
intensity distribution in the region 0 # z # Ly2 and, con-
sequently, with the intensity in the center of the structure
sz ­ 0d. In the second step we impose the proper bound-
ary condition at the interface z ­ 0, connecting the field
distributions in Region 1 and 2. We then shift the cal-
culation to Region 1 s2Ly2 # z , 0d in order to express
the input intensity in terms of the output intensity, which
ultimately provides us with the full input–output device
characteristics.

Before proceeding to the nonlinear case we briefly dis-
cuss the linear DFB structure by setting g ­ 0 in Eqs. (4).
The resulting linear equations are easily solved for both
uniform and phase-shifted structures.18 Figure 2 com-
pares the transmittivity as a function of Db for the uni-
form and ly4-shifted device by choice of kL ­ 4. The
most noteworthy feature is the appearance of the narrow
transmission peak for the ly4–DFB structure in the cen-
ter of the Bragg stop band.

B. Uniform Nonlinear DFB Structure
To find the conserved quantities in each region, as given
in Appendix A, we separate the magnitude and the phase
of the counterpropagating fields as

E6szd ­ jE6szdjexpfif6szdg ­ A6szdexpfif6szdg , (5)

allowing us to calculate the conserved quantities AT and
Gi:

AT
2 ­ A1

2 2 A2
2 , (6)

Gi ­ A1szdA2szdcos ciszd 1 f2Db 1 3gA2
2szdg

3 A1
2szdys2kd , i ­ 1, 2 . (7)

The quantity AT
2 can be interpreted as the transmitted

flux in each of the regions. It will be shown shortly that
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Fig. 2. Transmittivity of linear zero-gain ly4-shifted (solid
curve) and uniform (dashed curve) DFB structures calculated
by the F-matrix method. Both structures are characterized by
kL ­ 4.

this quantity remains conserved not only in each region
but throughout the entire structure s2Ly2 # z # Ly2d as
well. The phase ci that appears in Eq. (7) is given by

ciszd ­ 2Dbz 1 f1szd 2 f2szd 2 Vi . (8)

We emphasize that Eqs. (6)–(8) describe the quantities
AT and Gi, which are conserved in each region indepen-
dently. Only after we specify the boundary conditions for
each interface, and especially those at z ­ 0, can we relate
constants in the two regions to each other. In practice,
the analysis proceeds from right to left, eventually find-
ing the input intensity I0 at z ­ 2Ly2 for a prescribed
output T at z ­ Ly2. The output intensity plays the role
of the initial parameter that is used to express all other
field values within the structure. It is therefore natu-
ral to impose a boundary condition at the right-hand end
sz ­ Ly2d of the device first. We assume a nonreflective
boundary condition at this interface:

A2sLy2d ­ 0 , (9)

which immediately defines the forward flux in Region 2 as

AT
2 ­ A1

2sLy2d 2 A2
2sLy2d ­ A1

2sLy2d . (10)

It is of equal importance to recognize that the nonreflect-
ing condition in Eq. (9), together with Eqs. (7) and (10),
defines the phase information as well:

G2 ­ A1szdA2szdcos c2szd 1 f2Db 1 3gA2szdgA1
2szdys2kd

­ DbAT
2yk . (11)

Equation (11), together with Eqs. (A2) and (A3) below,
allows us to construct the equation for the forward flux
in Region 2:

4k2A1
2

241 2

√
1

kA2

dA1

dz

!2
35 ­ A2

2s2Db 1 3gA1
2d2 .

(12)

In order to normalize intensities, an auxiliary param-
eter, interpreted as the critical intensity, is introduced
as Ac

2 ­ 8ln0y3pn2L. We perform the normalization by
defining the forward flux as Jszd ­ fA1szdyAcg2, the total
transmitted flux as T ­ sATyAcd2, and the center forward
flux as J0 ­ Js0d. We eliminate the backward flux A2

2

by replacing it with A1
2 2 AT

2. Equation (12) is then
reduced to the form√

L
2

dJ
dz

!2

­ sJ 2 T dfskLd2J 2 sJ 2 T dsDbL 1 4Jd2g

­ QsJd . (13)

The nonreflective boundary condition at z ­ Ly2 that
led to construction of Eq. (13) can be replaced by the
reflective one in a straightforward manner. We define
the reflectance in the form

r ­
E2sLy2d
E1sLy2d

­
A2sLy2d
A1sLy2d

expfjsf2 2 f1dg

­
p

R exps2juR d . (14)

From Eq. (8), the phase information at the output is given
by

c2szd ­ DbL 1 uR 2 V2 . (15)

The transmitted and the forward fluxes at the device
output are related as

J

√
L
2

!
­

T
1 2 R

. (16)

Equations (15) and (16) could now be used to replace
Eq. (9) as a starting point of the calculation. However,
we proceed by using Eq. (9) because it results in simpler
and elegant expressions and discuss the effects of the end
reflection in Section 3.B.

The integration of Eq. (13) is the standard ellipti-
cal problem whose solution depends on the parameters
kL, bL, and T. The polynomial at the right-hand side of
Eq. (13) has four zeros that are functions of the above pa-
rameters: Ji ­ JisT , DbL, kLd; i ­ 1, 2, 3, 4. In gen-
eral, Ji are the complex values that need to be calculated
before the integration of Eq. (13) is attempted. In ad-
dition, one has to know the relation between limits to
be applied in integration of Eq. (13) and the zeros of the
polynomial QsJd as well. For the given transmission
intensity T and coupling strength kL, it is possible to
distinguish three separate detuning domains in which
zeros Ji are either all real or separated into pairs of real
and complex conjugate values. To illustrate this, the
loci of zeros are plotted in Fig. 3 for fixed values of T
sT ­ 0.5d and kL skL ­ 4d. The integration of Eq. (13)
is performed within the limits of the center forward flux
J0 and the transmitted flux T:Z T

J0

dJp
QsJd

­
2
L

Z L /2

0
dz . (17)

Three detuning domains, defined by the relation between
the integration limits and zeros Ji (see Fig. 3), need to be
considered separately.

1. Detuning Domain I in Which
J1 $ J0 . J2 ­ T . J3 . J4

Whereas Fig. 3 clearly shows the relation among the zeros
J1 . J2 . J3 . J4, the relation J1 $ J0 . J2 is less ob-
vious. Perhaps the best explanation is given in Ref. 28,
in which Eq. (13) is regarded as an energy equation of
a classical particle moving in the quartic potential well,
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Fig. 3. Loci of the real zeros of the polynomial QsJd appearing
in Eq. (13) for T ­ 0.5 and kL ­ 4. Three detuning domains
corresponding to different integration procedures of Eq. (13) are
bounded by dashed lines.

V ­ 2QsJd. The zeros J1 and J2 then represent the
boundaries of the region in which particle sJ0 $ 0d is con-
fined, justifying the relation J1 $ J0 . J2. The integral
on the left-hand side of Eq. (17) can be written as29

Z T

J0

dJp
QsJd

­ 2sn21ssin f, kdyu , (18)

where snssin f, kd is a Jacobian elliptic function, sine
modulus, defined by the argument sin f and the modulus
k, which are related to the zeros Ji si ­ 1–4):

sin f ­

"
sJ1 2 J3dsJ0 2 J2d
sJ1 2 J2dsJ0 2 J3d

#1/2

, (19)

u ­ 2fsJ1 2 J3dsJ2 2 J4dg1/2 , (20)

k ­ 2fsJ1 2 J2dsJ3 2 J4dg1/2yu . (21)

Inversion of Eq. (18) gives the center forward flux J0 in
terms of the output flux T:

J0 ­ J3 2
J3 2 J2

1 2
J1 2 J2

J1 2 J3
sn2su, kd

. (22)

The dependence J0 ­ J0sT d is here implied through Ji ­
JisT d. In the case of zero detuning sDbL ­ 0d, the zeros
of the polynomial QsJd take a particularly simple form,10

allowing us to simplify Eq. (21) by means of Landen’s
transform29:

J0 ­ T f1 1 ndskLx, 1yxdgy2 . (23)

The parameter x used in inverse amplitude function nd is
given by x ­ fs2TykLd2 1 1g1/2. In further calculations,
when the expression for zero-detuning flux J0 is needed,
we use the compact form of Eq. (23) rather than Eq. (22).

2. Detuning Domain II in Which
J1 $ J0 . J2 ­ T , J4 ­ J3

p

The left-hand integral in Eq. (18) is now solved as29

Z T

J0

dJp
QsJd

­ 2cn21scos f, kdyu , (24)
where cn is a Jacobian elliptic function, cosine modulus,
defined by its argument and modulus:

cos f ­
sJ1 2 J0dB 2 sJ0 2 J2dA
sJ1 2 J0dB 1 sJ0 2 J2dA

, (25)

u ­ 4
p

AB , (26)

k2 ­ fsJ1 2 J2d2 2 sA 2 Bd2gys4ABd . (27)

The parameters A and B are defined as A ­ jJ1 2 J3j

and B ­ jJ2 2 J3j, respectively. Inversion of Eq. (24),
together with Eq. (17), enables us to calculate the center
forward flux J0 in this detuning region in the following
form:

J0 ­ J2 1
J1 2 J2

1 1
jJ1 2 J3j

jJ2 2 J3j

1 1 cnsu, kd
1 2 cnsu, kd

. (28)

3. Detuning Domain III in Which
J1 . J2 . J3 $ J0 . J4 ­ T
In detuning domain III Eq. (19) takes the form29

sin f ­

"
sJ1 2 J3dsJ0 2 J4d
sJ3 2 J4dsJ1 2 J0d

#1/2

. (29)

The modulus k and the argument u are unchanged and
are given by Eqs. (17) and (18). In this detuning domain
the center forward flux is found to be

J0 ­ J1 2
J1 2 J4

1 2
J3 2 J4

J3 2 J1
sn2su, kd

. (30)

We can now use Eqs. (19)–(30) to illustrate the change
in the transmissive behavior of the uniform DFB struc-
ture with the increasing field intensity. The switching
process can be understood as one that closes the Bragg
stop band as the field intensity is increased. This is
clearly evident in Fig. 4, where the transmission of a uni-
form DFB structure is plotted for increasing values of out-
put field intensities T.

Fig. 4. Transmittivity of the nonlinear, uniform DFB structure
for three values of the normalized output T and kL ­ 4. The
solid curve corresponds to the case T ­ 2.5 3 1025, the dotted
curve represents T ­ 0.05, and the dashed curve represents
T ­ 0.138.
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C. Phase-Shifted Nonlinear DFB Structure
The knowledge of the center forward flux J0, together with
the phase information given by Eq. (11), defines the elec-
tric field at the interface z ­ 0. In order to proceed with
the analysis, we have to relate J0 and phase information
from Region 2 to the field intensity and phase in Region 1.
The role of the structure’s central region is to introduce
a phase shift DV between the counterpropagating waves
as they cross from one region to another. In case of the
phase-shifting method shown in Fig. 3b the forward- and
backward-traveling field components acquire the desired
phase shift of DV by passing the distance P1P2. Each
region is assumed to have an equal number of grating pe-
riods and a constant grating phase Vi. The phases of the
adjacent regions are related by V2 ­ V1 1 2pm, where m
is an integer. For the phase-shifting method shown in
Fig. 3c, however, grating phases V1 and V2 differ by DV,
while the counterpropagating fields remain continuous at
z ­ 0. Even though the end effect of both methods on the
transmission characteristics is the same, we find it more
convenient to proceed by using the latter method (Fig. 3c)
and the continuity condition associated with it:

E6s02d ­ E6s01d . (31)

A shorthand notation lime!0 E6s0 6 ed ­ E6s06d has
been used in Eq. (31).

Continuity condition (31) together with Eq. (6) leads to
a simple expression for the transmitted flux throughout
the entire structure s2Ly2 # z # Ly2d:

AT1
2 ­ A1

2s02d 2 A2
2s02d ­ AT2

2 ­ A1
2s01d 2 A2

2s01d

­ AT
2 . (32)

Equation (32) shows that the transmitted flux remains
a conserved quantity throughout the entire nonuniform
structure. This can be regarded as the special case of
the Poynting law applied to our phase-shifted device. We
obtain the phase information in Region 1 by applying
Eq. (7) to Region 1:

G1 ­ A1s0dA2s0dcos c1s0d 1 f2Db 1 3gA2s0dgA1
2s0dys2kd .

(33)

The counterpropagating magnitudes A6s0d are to be
expressed through the center forward and transmitted
fluxes, J0 and T. Also, we have to relate the phase c1s0d
to known or calculated parameters in Region 2 in order
to construct an equation for the forward flux in Region 1
similar to Eq. (12). Once this equation is written, the
field intensity in this region s2Ly2 # z , 0d, and the in-
put intensity I0 at z ­ 2Ly2, can be calculated in terms
of T. From Eqs. (8) and (31) it follows that

c1s0d ­ c2s0d 2 DV . (34)

Equation (34) effectively closes the problem: for a given
phase shift DV and cos c2s0d calculated in Region 2 it
is always possible to find G1 and, therefore, to construct
the equation for forward flux in Region 1. In this special
case when DV ­ p (ly4-shifted device), Eqs. (33) and (34)
can be combined to give the following expression for G1:
G1 ­ 2Ac
2J0

p
J0 2 T cos c2s0d

1 f2Db 1 3gAc
2sJ0 2 T dgAc

2J0ys2kd . (35)

We eliminate the field magnitudes A1 and A2 in Eq. (35)
by replacing them with Ac

p
J0 and Ac

p
J0 2 T , respec-

tively. To eliminate cos c2s0d from the last relation we
apply Eq. (11) for the case of z ­ 0:

A1s0dA2s0dcos c2s0d 1 f2Db 1 3gA2
2s0dgA1

2s0dys2kd

­ DbAT
2yk .

Elimination of A6 gives the final form for cos c2s0d:

cos c2s0d ­ 2
1

kL

√
J0 2 T

J0

!1/2

s4J0 1 DbLd . (36)

Use of Eq. (36) in Eq. (35) defines the conserved quantity
G1 in Region 1:

G1 ­ f8J0sJ0 2 T d 1 sDbLds2J0 2 T dgAc
2yskLd . (37)

The procedure that led to the forward flux equation in
Region 2 can now be replicated in Region 1. For any
point in Region 1, combination of Eqs. (7) and A(2) and
A(3) below leads to

4k2A2
2A1

2

241 2

√
1

kA2

dA1

dz

!2
35

­ f2kG1 2 s2Db 1 3gA2
2d2A1

2g2 . (38)

Again, we normalize Eq. (38) by introducing the intensi-
ties: I ­ A1

2szdyAc
2 and I0 ­ I s0d. Elimination of G1

from Eq. (38) gives the final equation for the forward flux
in Region 1:√

L
2

dI
dz

!2

­ skLd2I sI 2 T d 2 f8J0sJ0 2 T d 2 4I sI 2 T dg2

­ P sI d . (39)

It is interesting to compare the forms of Eqs. (13) and (39).
They correspond to an identical class of elliptic problems,
differing only in position of the zeros of the correspond-
ing right-hand polynomials. As an illustration, the loci of
real zeros of the polynomial P sI d from Eq. (39) are plotted
in Fig. 5 for a fixed value of the transmitted flux T ­ 0.1
and a coupling strength of kL ­ 4. We plot the center
forward flux J0 as a dashed curve in order to show its
relation to zeros Ii of P sI d throughout the detuning re-
gion. Once again, three detuning domains are clearly
resolved. As the intradevice intensity increases, the do-
main positions are shifted toward lower frequencies, while
the allowed regions are widened at the same time. Find-
ing the zeros Ii of the polynomial on the right-hand side
of Eq. (39) requires solving the general quartic equation
P sI d ­ 0. Because the analytic solution of this equation
in the general case proves to be quite an involved proce-
dure, the zeros Ii are usually found numerically. In the
special case of zero detuning sDbL ­ 0d, these zeros can
be written in a relatively simple form:
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Fig. 5. Loci of the real zeros of the polynomial P sI d that ap-
pears in Eq. (39) for T ­ 0.1 and kL ­ 4. The dashed curve
represents the center-forward flux J0 and its relation to the zeros
of the P sI d. Three detuning domains indicate regions in which
different solutions of Eq. (39) are valid.

Ii ­
T
2

(
1 6

k
k0

fh 6
p

h 1 k2g1/2

)
, i ­ 1, 2, 3, 4 . (40)

The parameter h is defined here as h ­ k0 2f2snd2su, kd 2

1d 1 k2gyk2. Function ndsu, kd is given by Eq. (23), and
k0 ­

p
1 2 k2 is the complement of the modulus k.

The integration of Eq. (39) is performed within the lim-
its I0 and J0 such thatZ J0

I0

dIp
P sI d

­
2
L

Z 0

2L /2
dz . (41)

The integral on the left-hand side of Eq. (41) can be sepa-
rated in the formZ J0

I0

dIp
P sI d

­
Z I2

I0

dIp
P sI d

1
Z J0

I2

dIp
P sI d

­
Z I2

I0

dIp
P sI d

1 F sf, kdyu . (42)

The second integral on the right-hand side of Eq. (42)
is easily evaluated as the incomplete elliptic integral of
the first kind, provided that the center forward flux J0

is known. Arguments f and u and modulus k will be
defined for each detuning domain in which the integration
of Eq. (41) is performed. Combining Eqs. (41) and (42),
we can write the integral equation for the input intensity
I0: Z I0

I2

dIp
P sI d

­ F hffJ0sTdg, ksT djyusT d 2 1 . (43)

By indicating dependencies u ­ usT d, f ­ ffJ0sT dg, and
k ­ ksT d we emphasize the relation I0 ­ I0sT d between the
input and output fluxes. As in the case of Eq. (17), which
has been used to calculate center forward flux J0, it is
necessary to invert Eq. (41) and calculate input intensity
I0 in terms of the output intensity T. Using the formulas
given in Eqs. (19)–(30), one can easily calculate I0 for
each detuning domain.
1. Domain I in Which I1 $ I0 . I2 . I3 . I4

and I1 $ J0 . I2 . I3 . I4

It is not necessary to know the relation between I0 and T
in order to calculate I0. Input intensity in this domain
is given by Eq. (22) with the substitution Ji ! Ii:

I0 ­ I3 2
I3 2 I2

1 2
I1 2 I2

I1 2 I3
sn2sv, kd

. (44)

Argument v is given by v ­ F sf, kd 2 u, and f, u, and k
are given by Eqs. (19)–(21) and the substitution Ji ! Ii,
i ­ 1, 2, 3, 4.

2. Domain II in Which I1 $ I0 . I2 and
I1 $ J0 . I2, I3 and I4 ­ I3

p

Input intensity is calculated by Eq. (28) and the substi-
tution Ji ! Ii:

I0 ­ I2 1
I1 2 I2

1 1
jI1 2 I3j

jI2 2 I3j

1 1 cnsv, kd
1 2 cnsv, kd

. (45)

Argument v is given by v ­ F sf, kd 2 u, and f, u, and k
are given by Eqs. (25)–(27) and the substitution Ji ! Ii;
i ­ 1, 2, 3, 4.

3. Domain III in Which I1 . I2 . I3 $ I0 . I4

and I1 . I2 . I3 $ J0 . I4

In domain III the limit I2 in the right-hand integrals of
Eq. (42) has to be replaced by I4. The input intensity I0

is given by Eq. (30) and the substitution Ji ! Ii:

I0 ­ I1 2
I1 2 I4

1 2
I3 2 I4

I3 2 I1
sn2sv, kd

. (46)

Argument v is given by v ­ F sf, kd 2 u, and f, u, and k
are given by Eqs. (20), (21), and (29) and the substitution
Ji ! Ii; i ­ 1, 2, 3, 4.

The inversion of the elliptic function sn by means of
F sf, kd requires the knowledge of phase f, even though
sin f or cos f is known [Eqs. (19), (25), and (29)]. The
functions sin21 f and cos21 f are multivalued, raising
the possibility of choosing the improper solution branch.
We verify the consistency of the solutions in two regions
by checking the continuity of the flux axial derivative
at z ­ 0 for the case of DV ­ 0 (uniform device). Only
one solution branch will satisfy the continuity of the field
derivative at the center of the device, thus uniquely defin-
ing the solution in the first region.

3. DISCUSSION AND
NUMERICAL RESULTS

A. Zero-Detuning Transmission
To illustrate the salient features of the preceding analy-
sis, we consider the zero-detuning case first sDbL ­ 0d
by applying Eqs. (40) and (44). As a consequence of the
central transmission peak shift (see Fig. 2), the efficiency
of the structure is expected to fall off rapidly as the input
intensity is increased. Figure 6 shows the transmittiv-
ity as a function of the normalized input intensity I0 for
coupling strengths varied from kL ­ 3 to kL ­ 6. For a
moderate coupling strength skL ­ 6d, it is necessary only
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Fig. 6. Transmittivity of a nonlinear ly4-shifted DFB structure
in the case of zero detuning sDbL ­ 0d for different values of
the coupling strength kL. Even small variations in the input
intensity sDI0 , 0.2%d produce rapid changes in transmittivity
(,90%) for moderate coupling strengths skL ­ 6d.

to increase the input intensity to 0.2% of the critical inten-
sity to decrease the device transparency from 100% to 10%
and reach the off transmission state. Required switch-
ing intensity is directly related to the width of the cen-
tral transmission peak. A structure with a stronger DFB
coupling possesses a narrower peak and, consequently, al-
lows a lower input to produce the above switching effect.
One would naı̈vely suspect that for certain negative de-
tuning values a reverse process of transmission increase
(off-to-on switching) is also possible. This is true only in
part, for a much more complicated behavior is observed
in the case of finite detuning values.

B. Input–Output Characteristics
When Eqs. (44)–(47) are combined, it is possible to obtain
complete input–output characteristics of a ly4-shifted
device for arbitrary values of the detuning parameter.
Figure 7 shows these characteristics for a device with
kL ­ 4, for several detunings DbL in the range 20.6
to 0.6. It is evident from Fig. 7 that a true bistable be-
havior can be expected for negative detuning values as
low as DbL , 20.3 and for the extremely low input in-
tensities I0 , 0.005. This should be contrasted with the
corresponding values for uniform DFB structures shown
in Figs. 4 and 8. The plots in these figures are genera-
ted by use of Eqs. (23), (28), (30) and a coupling strength
of kL ­ 4. Achieving total transparency for the uniform
structure tuned at a center of the stop band requires
a normalized input intensity of approximately10 I0 , 1.
This requirement can be lowered if one tunes near the
stop-band edge, as shown in Fig. 8. Even in this case,
intensities required for reaching the bistable operating
region sI0 , 0.05d are still an order of magnitude higher
than those of ly4-shifted structure for otherwise identical
devices.

The effects of the reflection at the output of the device
sz ­ Ly2d are important if the cascading or the integra-
tion of the device is considered and are shown in Fig. 9a
for the fixed reflectance phase suR ­ pd and DbL ­ 20.5.
As the end reflectivity is increased, more of the backprop-
agating light is coupled into the structure, resulting in a
lowering of the upswitching threshold: the threshold of
,0.017 for the nonreflective case is lowered to ,0.011 if
30% reflectivity is introduced. Figure 9b shows the ef-
fects of the reflection phase on the input–output charac-
teristics of the device for the case of 2% end reflectivity.
Whereas a phase shift of p helps to lower the switching
threshold, the py2 shift has an opposite effect. It is of in-
terest to mention that Fabry–Perot reflective conditions
have been studied before in connection with the uniform
nonlinear DFB structures.30 However, such a device can
be regarded as a hybrid Fabry–PerotyDFB rather than
the DFB structure considered here.

C. Central Transmissive Peak Behavior
The switching behavior seen in Fig. 6 can be attributed
intuitively to the notion that the central transmissive
peak shifts as the intradevice field intensity is increased.
Figure 7 implies that such a picture is valid only if the
output intensity T is held fixed throughout the detuning
region DbL. Indeed, our method is actually designed by
following this concept: we have prescribed the output in-
tensity T first and then moved to find the correspond-
ing output intensity I0 for each value DbL within the

Fig. 7. Input–output characteristics of a nonlinear ly4-shifted
DFB device for kL ­ 4. The detuning parameter DbL is varied
between 20.6 and 0.6.

Fig. 8. Input–output characteristics of the uniform DFB device
for kL ­ 4 when the detuning parameter DbL is chosen close to
the stop-band edge (inset).
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Fig. 9. Effects of the end reflection on the device performance.
a, Input–output characteristics for fixed reflectance phase
suR ­ pd and varying reflectivity R. b, Input–output character-
istics for fixed reflectivity R ­ 2% and varying reflectance phase.
The detuning parameter in both cases is set to DbL ­ 20.5.

Fig. 10. Shifting behavior of the central transmissive peak for a
ly4-shifted DFB structure with kL ­ 4. The normalized output
intensity T is kept as the fixed parameter across the entire
detuning range. The solid curve corresponds to the normal-
ized output intensity of T ­ 2.5 3 1025, the dashed curve cor-
responds to T ­ 0.033, and the dotted curve corresponds to
T ­ 0.1.

tuning range. Figure 10 shows the transmittivity of the
ly4-shifted structure with kL ­ 4, for three values of
the output intensity: T ­ 2.5 3 1025, 0.033, 0.1. The
shifting of the center transmission peak can be recog-
nized as an almost perfect tunable-filter behavior, justi-
fying our initial expectations. Nevertheless, the plot in
Fig. 10 can be considered both informative and mislead-
ing at the same time. In most cases of practical inter-
est, one continuously changes the input I0, not the output
T, maintaining it as a fixed parameter throughout the
frequency-tuning region. Consequently, the use of the
transmittivity label in Fig. 10, where the output T is a
fixed parameter while the input I0 varies accordingly,
can be questioned. For fixed input intensities, as im-
plied by Fig. 7, the true transmittivity plots are quite
different from those shown in Fig. 10. Figure 11 shows
the change induced in the central transmission peak of
the ly4-shifted structure (characterized by kL ­ 4) when
the input intensity I0 is the fixed parameter. The trans-
mission efficiency is plotted for four values, I0 ­ 5 3 1025,
3.5 3 1023, 0.01, 0.015. It is clear from Fig. 11 that the
reversal of the switching process described in Fig. 6 can
be performed only if the bistable operation region, start-
ing at DbL , 20.3, is carefully avoided. Otherwise, a
bistable switching will occur, for a given case of kL ­ 4,
at normalized input intensities as low as I0 , 0.01.

D. Bistable Switching by Frequency Tuning
Figure 11 suggests the possibility for the use of the
ly4-shifted DFB structure as a new class of device in
which bistable switching is controlled by frequency tuning
while input intensity is maintained at a fixed, relatively
low level. Figure 12 describes the operation of such a de-
vice in the case of a constant normalized input I0 ­ 0.01
and a coupling parameter kL ­ 4. By increasing the fre-
quency of a tunable source one can make the device jump
into high-transmission state 10 after it passes point 1 at
DbL , 20.4. Similarly, the low-transmission state 20 is
achieved after the device passes point 2 at DbL , 20.6
when moving in the opposite direction. This concept,

Fig. 11. Transmittivity of a ly4-shifted DFB structure as a
function of DbL when the normalized input intensity I0 is
kept fixed and the output T varies accordingly. The coupling
strength of the structure is kL ­ 4.

Fig. 12. Transmittivity of a ly4-shifted DFB device as a func-
tion of DbL for kL ­ 4 and normalized input intensity I0 ­ 0.01.
Wavelength tuning of the source with the fixed intensity I0 leads
to bistable switching, as shown by dashed lines.
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recently proposed in connection with the Fabry–Perot
semiconductor multilayered structure,9 makes possible
all-optical switching with a tunable, low-intensity optical
source.

4. CONCLUSION
We have described the cw operating characteristics of non-
linear DFB phase-shifted structures by solving analyti-
cally the corresponding set of coupled-mode equations.
The transmissive properties of a phase-shifted structure,
commonly exploited in semiconductor laser design, have
not been fully utilized in nonlinear switching applica-
tions. The advantages of the phase-shifted configuration
presented in this paper include extremely low switch-
ing intensities (as much as 3 orders of magnitude lower
compared with those for the uniform DFB structure) and
the possibility of frequency-controlled all-optical switch-
ing at fixed, low input intensities. The model presented
in this paper is applicable to a variety of guided-wave
applications that satisfy the coupled-mode assumptions.
A generalization to multiple phase-shifted DFB struc-
tures, similar to those used for reduction of spatial hole
burning,16 is straightforward from this model and is
not limited specifically to the ly4 phase shifts analyzed
in this paper. We believe, however, that ly4-shifted
devices offer a simple and elegant approach to low-
intensity, all-optical switching applications. Time-
dependent analysis13,31 applied to these types of structure
is the next logical step in evaluating their use not only in
cw but also in ultrafast applications.

APPENDIX A: CONSERVED QUANTITIES
IN UNIFORM DFB STRUCTURES
Following the procedure outlined in Ref. 32, the magni-
tude and the phase of the counterpropagating field com-
ponents are separated in the form

E6szd ­ jE6szdjexpfif6szdg ­ A6szdexpfif6szdg . (A1)

Substituting Eq. (A1) into Eqs. (4), one can separate their
real and imaginary parts to obtain the following four
equations:

dA1

dz
­ kA2 sin c , (A2)

dA2

dz
­ kA1 sin c , (A3)

A1

df1

dz
­ kA2 cos c 1 gsjA1j2 1 2jA2j2dA1 , (A4)

A2

df2

dz
­ kA1 cos c 1 gsjA2j2 1 2jA1j2dA2 . (A5)

c is given by Eq. (8). Equations (A2) and (A3) lead di-
rectly to

1
A2

dA1

dz
­

1
A1

dA2

dz
,

which after the integration becomes the law of flux con-
servation:
A1
2szd 2 A2

2szd ­ const. ­ AT
2 . (A6)

The straightforward way to prove that quantity Gi given
by Eq. (7) is conserved within each region is to calculate
its derivative ≠Giy≠z and, using Eqs. (A2)–(A5), show that
≠Giy≠z ­ 0. A more elaborate proof, which assumes no
prior knowledge of the form of Gi, is suggested in Ref. 27.
This proof calls for the derivative of Eq. (8), which in
combination with Eqs. (A2)–(A6) enables us to construct
the relation

s2cot cd
≠flnsA1A2dcos cg

≠z
­ 2Db 1 3gsA1

2 1 A2
2d .

(A7)

Finally, the integration of Eq. (A7) yields the conserved
quantity Gi in the form

Gi ­ A1szdA2szdcos ciszd 1 f2Db 1 3gA2
2szdgA1

2szdys2kd .
(A8)
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