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The probability density function (PDF) of photoelectron counts is investigated theoretically for
a fundamental soliton corrupted by the spontaneous-emission noise that is generated by optical

amplifiers employed along a fiber-optic transmission line.

An analysis based on the orthogonal

expansion of the light amplitude makes it possible to find the exact PDF that includes the influence
of the soliton width, the hyperbolic-secant pulse shape, and a Lorentzian bandpass optical filter.
The derived PDF is applicable to any cascaded chain of amplifiers and, as a practical example, is
calculated for a receiver equipped with an optical preamplifier. The pulse width significantly affects
photoelectron statistics when the product of the filter bandwidth and the counting interval is small.
By comparing our exact PDF with the commonly used approximate Gaussian and Laguerre PDFs,
we find that such approximations introduce large errors (by several orders of magnitude) in the tail
of the PDF that is relevant for calculation of bit error rates in soliton communication systems.

PACS number(s): 42.50.Ar, 42.50.Rh

I. INTRODUCTION

Soliton communication systems with optical amplifiers
appear to be drawing increasing attention as a key tech-
nology useful for long-distance transmission at high bit
rates [1]. The aim of this paper is to calculate the prob-
ability density function (PDF) for photoelectrons gen-
erated when solitons corrupted by the optical amplifier
noise are detected.

Since spontaneous emission generally accompanies co-
herent amplification, the signal pulses are always accom-
panied by amplified spontaneous emission (ASE) when
optical amplifiers are employed in a transmission line.
Interferential intensity fluctuations induced by this mix-
ture of the coherent and chaotic fields lead to a serious
increase of bit error rates in communication systems. In
particular, receiver performance of soliton communica-
tion systems, where relatively energetic signal pulses are
detected (so that thermal noise is negligible), is signifi-
cantly influenced by the ASE noise. Therefore, it is nec-
essary to adequately discuss fluctuations of the intensity
and the resulting photoelectron statistics in theoretical
analyses of soliton communication systems.

The ASE light amplitude can be generally considered
to have Gaussian statistics. As has been investigated pre-
viously [2, 3], fluctuations of photoelectron counts differ
from the Gaussian random process when a deterministic
signal is superposed with the Gaussian light. However,
the derivation of the exact PDF has been neglected in
studies on on-off keying communication systems (includ-
ing those using soliton pulses) because of its complication
and approximations with the Gaussian or the Laguerre
PDF have been used in previous works [1, 4]. Recently
Tang and Ye [5] have calculated bit error rates of soliton
communication systems by using a noncentral x? PDF,
which is an approximated PDF for the integrated inten-
sity and is related to the Laguerre PDF by the inverse
Poisson transform.

In this paper we present the results of a theoretical in-
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vestigation on the PDF of photoelectron counts when a
signal having a pulse shape similar to a fundamental soli-
ton is detected together with the ASE light. The analy-
sis is conceptually simple. Complications arise only from
the necessity of computing a characteristic function. The
PDF presented herein has the following features: (i) The
use of general theory [2, 3] makes it possible to find the
exact PDF, (ii) the effects of the soliton pulse profile and
its width are taken into account, and (iii) the optical fil-
ter is assumed to have a Lorentzian passband, a realistic
profile for commonly used Fabry-Pérot filters.

After a brief review of the general formalism, the PDF
for the integrated intensity is calculated in Sec. II by
expanding the mixed amplitude in terms of orthogonal
basis functions. From this PDF, we obtain the PDF for
photoelectron counts in Sec. III. Results are applied in
Sec.IV to a receiver equipped with an optical preampli-
fier and differences from the Gaussian PDF are discussed.
In order to show the differences clearly, the skewness and
the kurtosis are utilized as measures. In addition, the ac-
curacy of the Laguerre approximation is also evaluated.
Although this paper discusses an optical preamplifier in
detail, we can readily apply the analysis to any config-
uration of the cascaded chain of optical amplifiers. The
purpose of this paper is to show the influence of the in-
terferential beating upon the PDF and thus other major
effects degrading bit error rates, such as timing jitter (the
Gordon-Haus effect [6]) and the receiver thermal noise,
are left out of the analysis.

II. INTEGRATED INTENSITY

A. Orthogonal expansion

In this subsection the technique of expanding the in-
tegrated intensity in terms of an orthogonal basis is re-
viewed for a deterministic signal mixed with chaotic light
[2, 3]. The integrated intensity is defined as
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T
w= [ vor, (1)

where T is the counting interval and V'(t) is the com-
plex amplitude of the detected optical field normalized
such that the instantaneous intensity |V (¢)|? has the unit
of photon arrival rate (photon/second). We consider
the superposition of a deterministic signal of the optical
frequency vy and linearly polarized chaotic light whose
power spectrum is centered at 9. The complex ampli-
tude of this mixed field can be written as

V(t) = V(1) + Va(?) , ()

where the subscripts s and t indicate the signal and
the chaotic light, respectively. V;(t) is assumed to be a
stationary complex Gaussian random process with zero
mean.

The Karhunen-Loéve theorem allows V;(t) to be ex-
panded into an orthogonal basis with coefficients uncor-
related over the interval (0,T) 3, 7-9]. The mixed am-
plitude V (t) can also be formally expanded in terms of
this basis as [2, 3]

V()= i VT(ak +am)du(t) (0<t<T), (3)
k=0
T
Gois = % / V. (&)pn(t)dt (4)

1 [T .
aw == / V(g5 (t)dt , (5)

where the subscript k indicates the kth mode component.
The coeflicients of the chaotic part a;; are statistically
uncorrelated complex Gaussian variables and the basis
¢k (t) is orthogonal over the interval 0 <t < T, i.e.,

T
A 65 (8) 1 ()t = 8. (6)

Upon substituting (3) into (1), we can rewrite W as
the sum of contributions of all modes

W=ZTla,k + aw|? =2Wk ) (7)
k=0 k=0
where
Wi = W, + Wi, + 2TRe[asraty], (8)

Wer = |ask|?T, and Wy, = |awk|?T. The last term of
(8) represents fluctuations due to interference of the kth
mode components. The basis ¢, (t) and variance of as
can be determined by solving the integral equation [2, 3,
7-14]

T
/0 R(t — 7)u(r)dr = o2 Tu(t) , B)

where R( ) is the autocorrelation function of V;(t) and
0%, = (Jaw|?) is the variance of ai. If we assume that
|[Ve(t)| has the variance o? [= R(0)] with a Lorentzian
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power spectrum of bandwidth® By, R(7) takes the form

R(7) = o2e~Bol™l, (10)

Here the variance o2 is related to the average integrated

intensity of the chaotic light by (W;) = ¢2T. In sev-
eral papers [2, 3, 7-11] the integral equation (9) has been
solved for this R(7) with the result

26
Bt Ty’ ()

where 8 = BoT, (W) = >, Wik, and wy, is a positive
root of either of the following two equations:?

(Wiek) = (W)

outhanﬂgZ =0, (12)
c«r.)chotﬂl;I =—-0. (13)

The basis corresponding to w7 given by (12) is

O = \/Tu n <W2tk>/<wt>> [“’kT (% - %> ] '
(14)

Replacing cos( ) in (14) by sin( ) yields immediately the
expression of ¢, related to (13).

B. Probability density function

Since the sum of a complex constant and a complex
Gaussian variable is generally a complex Gaussian vari-
able, asr + a¢ in (7) is a complex Gaussian variable,
whose real and imaginary parts have equal variances.
The PDF for Wy (= T|ask + atk|?) is thus the Bessel
PDF, with the result that its characteristic function is
2,3

Sk (u) = (™W*)
_ ___1__ ex uWep
71— iu(W) P (1 - iu(Wtk)) . (%)

If the deterministic signal is assumed to have a pulse
shape similar to a fundamental soliton centered at the
time ¢, V,(t) is expressed as [16]

(16)

where P, is the peak power on a detector, T} is a pulse full
width at 1/e power point, and h is Planck’s constant. By
substituting (14) and (16) into (4) and using the defini-

!The linewidth By is defined as the linewidth that have been
introduced by Mandel and Wolf [15]. For the Lorentzian
power spectrum, we can find the relation By = wBjr, where
By, is the full width at half maximum point (FWHM).

2We assume that the wy are arranged so that wo < w1 <
wg < -e
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tion Wy, = la,klzT, we can calculate Wy, which is sim-
plified when the soliton lies at the center of T (to = T'/2)
and has a sufficiently narrow width (Tp < T') such that
most of the energy is contained within the interval T'.
For w;T related to (12), the result is

w2 W, /(T /To) o mwT
War = 33 Gy (s
(17)
where W, (= P,To/hvo = 3, Wsk) is the integrated in-

tensity of the soliton. For w,T determined from (13),
W, = 0 since sin( ) in ¢%(t) is an odd function with
respect to the center of T'.

Since uncorrelated Gaussian variables are, in general,
also statistically independent [17], as and the resulting
W), are independent variables. The characteristic func-
tion of W is therefore given by the infinite products of
(15):

— 1 > uWip,
DPw(u) = ———eX e
w () kl;Io 1— (W) 0 <k=o 1- zu(Wtk))
(18)
By taking the Fourier transform, we obtain the result
fw(W)

= —1— ~ cosh + i sinh -
= o . yw 2 \ow B Yyw

[e <} . ‘4/s
X exp [—z‘uW +8+Y #@} du, (19)
k=0

where y%, = 32 —2(iu)3(W;) and we made use of a closed
form of @w(u) given for the case when only the chaotic
light is present (W, = 0) (3,9, 11, 14]. In the case of
a signal alone without chaotic light (Wi, = 0), the &
function §(W — W) is obtained.

By using their definition [18] the cumulants associated
with (18) can be obtained as

(k)W = i [(m — 1) Wek) + m!Wi] (Wi)™ 1.
k=0
(20)

For m = 1 and 2, Eq. (20) directly yields the average
and variance of W, respectively,

(W) =W, + (W), (21)
2 _ (2 2W,(Wr)
ow =(ow)t + —p— TT, // ech( To/2 )
xsech (%:/——;2) e~ Bolti—tzlgy qg, (22)
where
oo 2(—28 _
(0B = S (W2 = WL DA 1)

- 2
k=0 2'3

is the variance in the absence of the signal (W, = 0) [3,
9,11], and we used the relation
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Rty — t2) = 3 (Werhbu(t2) (2.

k=0

(24)

The first and second terms in (22) arise from beating
the chaotic light against itself and against the soliton,
respectively.

III. PHOTOELECTRON COUNTS

We consider photoelectric detection with a small area
detector having the quantum efficiency 5. Photoelectron
statistics can be completely described by the statistical
properties of the integrated intensity. The PDF's for the
photoelectron count n and for the integrated intensity W
are related by the well-known Poisson transformation [3,
19]. In the corresponding characteristic functions, it is
necessary only to replace iu by n(e®* —1). Thus, we have

1 [ 1 ) -1
o /_oo [coshyn + 3 (yﬁn + %) smhyn]

X exp l:—z'un + 3

fn(n)=

(e ]

+Zl

where y2 = 2 — 2nB(W,;)(e™ — 1). A closed form of
fn(n) is difficult to obtain, but the integral in (25) is
easy to perform numerically. In the absence of the chaotic
light, fn(n) in (25) becomes the Poisson PDF having the
average nW,.

Low-order cumulants of f,(n) can be readily related
to those of fw (W) by [3,19]

nWsk 1)
Wtk) (e”‘ - 1)

du , (25)

(K1)n —n(m)w )

(k2)n =71 (K2)w +n(K1)w

(K3)n =1°(K3)w + 30 (k2)w + n(K1)w , (26)

(ka)n =n*(Ka)w + 60 (k3)w + T (k2)w + (K1) w-
The average and the variance are then given by

(n) =n(W, +(Wy)) , (27)

on = (n) +n’ofy. (28)

The first term of the variance originates from the shot
noise of the soliton and the chaotic light, whereas the
second term is the contribution of intensity fluctuations
due to the beating of the soliton and the chaotic light.

IV. STATISTICS OF AMPLIFIED PULSES
A. Exact PDF and the Gaussian approximation

The partition coefficient of the average integrated in-
tensity for chaotic light (Wy)/(W,), which measures the
fraction of mode energy and is obtained from (11) with
(12) or (13), is plotted in Fig. 1 as a function of the mode
index k. Figure2 shows the same quantity for a signal
W, /W, obtained from (17) using the data plotted in



51 PHOTOELECTRON STATISTICS OF SOLITONS CORRUPTED . .. 1665

Fig.1. We note that W,,/W, = 0 when k is odd and
that the sum over all k is unity. As can be readily under-
stood from the fact that the Karhunen-Loéve expansion
is a kind of extended Fourier series, the energy of the
chaotic light is distributed over a wide range of k, while
that of the signal is centered on low modes because of its
deterministic nature. By calculating the PDF (25) based
on these plots, we can take into account contributions of
the spectral profile of the chaotic light as well as of the
signal pulse profile. Since W, and (W;:) appearing in
(25) are calculated from W, and (W,) for given 8 and
T /Ty, our analysis can be applied to any type of the cas-
caded chain of amplifiers if we use proper values of W,
and (W) (see the appendix).

As an example of practical application, we consider a
configuration in which a launched fundamental soliton is
detected after experiencing loss along the fiber link and
being amplified by an optical preamplifier equipped with
a Lorentzian bandpass (optical) filter. The amplitude
of the filtered ASE field may be regarded as a complex
Gaussian random variable with zero mean.

In this case, the integrated intensity of the signal at
the detector is given by

Ws = GP,oTo/hV 5 (29)

where P,¢ is the optical peak power of the signal at the
amplifier input and G is the power gain. At the optical
filter input, the average integrated intensity of the ASE
light on each mode is nearly constant and is given by [1,
20|

(Wa) = (G —1)p, (30)

where p is the spontaneous-emission factor of the ampli-
fier. Equating (30) and the relation

(W) = (2/B)(Wy), (31)

which is obtained from (11) for w,T < B (corresponding
to low frequencies in the Fourier series), we obtain the

1
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FIG. 1. Partition coefficient of the average integrated in-

tensity for chaotic light plotted as a function of the mode
index k.
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FIG. 2. Partition coefficient of the integrated intensity for

a signal associated with a soliton plotted as a function of the
mode index k.

total amount of the ASE reaching the detector as

(W) = (G —1)p(B/2). (32)

The quantity 3/2 expresses the product of T' and the
(equivalent) noise bandwidth [17] of the Lorentzian opti-
cal filter Bo/2. The mean and the variance of n are then
given by

my=n (G + B8 (3)
o= (m) + (72 + (0o (50

(92)e = 3 Inp(G ~ ) (e +26 - 1) ,

(0,2) — TIZPIGG(G - 1)P30
nje—t hVQT

T
tl—to tz“to
X h{ =—— h
/X) see (T0/2 )Sec (TO/Z)

Xe_Boltl_t2 Idtldtz.

The signal-to-noise power ratio® of n is computed from
S/N = (nW,)%/02 as a function of B and is plotted in
Fig.3. Typical parameter values for the optical pream-
plifier and receiver were used for the computation. The
received peak power before amplification was chosen such
that the optical power averaged over T' was —40dBm. It
is obvious from Fig.3 that S/N degrades, or decreases,
with increasing # and is influenced considerably by the
pulse width T, when S is small.

Figures 4 and 5 show the exact PDF's calculated for n
with 8 and T'/T, as parameters, respectively. The curves
were obtained by using (25) together with the data plot-
ted in Figs.1 and 2 and the fast-Fourier-transform tech-

3The signal and the noise power represent the power of the
random process n. Therefore, S is defined as the square of
the signal part in (33) and N is given by (34).
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FIG. 3. Signal-to-noise power ratio of photoelectron
counts n.
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FIG. 4. Probability density function for photoelectron

counts plotted for T/To = 5. (a) Plots in the neighborhood
of the mean. (b) Logarithm scale.

nique. The parameters used for the computation are the
same as in Fig. 3. For a specific value T=100 ps corre-
sponding to a bit rate of 10 Gbit/s, 8 =30, 100, and 300
correspond to the bandwidths (FWHM) B, =95.5, 318,
and 955 GHz, respectively. Also shown are the Gaussian
PDFs, each of which has the same variance as the corre-
sponding exact one. Although not shown, the normalized
PDF of W would be nearly the same as that of n because
contributions from shot noise, or the first term in (28),
are negligible when such a strong signal is incident on
the detector. Peaks on the exact curves are indicated in
the figures. Clearly the exact PDF's are not symmetric
around the mean n/(n) = 1 and their peaks deviate to-
ward the left side of the mean. The exact PDFs thus
form a short tail on the left side of the mean and a long
tail on the other side. In addition, the peaks are some-
what taller than those of the Gaussian PDFs. A com-
parison of the exact and Gaussian PDFs shows clearly
that, although the variances are equal, the left tail of the
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FIG. 5. Probability density function for photoelectron

counts plotted for 3 = 30. (a) Plots in the neighborhood
of the mean. (b) Logarithm scale.
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PDF is overestimated if the Gaussian approximation is
used. In Figs.4 and 5 the Gaussian approximation over-
estimates the PDF by many orders of magnitude in the
left tail near (n)f,(n) ~ 10712, a region that is used to
calculate the bit error rates ~ 10~!! in soliton commu-
nication systems. Therefore, the use of a Gaussian PDF
approximation is likely to overestimate the bit error rate
considerably. .

As useful measures to represent differences between
the Gaussian PDF and the exact PDF, we introduce the
skewness v, and the kurtosis (excess) «2, defined by [18]

(""’3)’"' (K/4)n
Y1 = (Tg y Y2 = 0_141 . (35)
Both of these quantities are exactly zero for a Gaussian
PDF. In Fig.6, v; and 3 of the exact PDF's are shown.
As can be readily expected from Figs.4 and 5, y; and v,
take positive values. With increasing 3, the skewness and
kurtosis decrease, i.e., the PDF approaches the Gaussian
PDF according to the central limit theorem because a
large number of modes contribute (see Fig.1) and the
number of terms in (18) increases. Although v; and v,
decrease with T'/Ty, Fig.6 shows that both are hardly

affected by T'/Ty for large (.

B. Laguerre approximation

If the filtered ASE light is assumed to excite a large
number of modes (M > 1) uniformly (corresponding to
a rectangular function in Fig. 1), the PDF for its mixture
with a deterministic signal can be given by the Laguerre
PDF [20]

_ W
Tl = Gy p( )

1+7np
W,
()
(1 +np)np
(n) =n(W, + (W2)),
n=(n) + n*((W)? + 2W,(W1)) /M, (37)
0.3
C ITy=
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- 15
02 |
= f "
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o 5
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01 |- 15
:’ T2
0:Illlllullllllujlilllll|IIII
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B=B,T

FIG. 6. Skewness 1 and kurtosis 2 of the exact proba-
bility density function.

where p = (W;)/M and L7}( ) are the Laguerre polyno-
mials. Through several approaches [4, 21], the Laguerre
PDF has been derived for a signal with a constant am-
plitude over T'. The corresponding PDF for W is the
non-central x? PDF, which has been recently applied to
the bit error rate calculation in soliton communication
systems [5]. The parameter M has been taken to be
B = BoT in previous work* [5].

The Laguerre PDF is determined only from (W), W,
and M; hence it is independent of the received pulse
profile. In Figs.3-5, we plot its signal-to-noise ratio
and PDF. A comparison with the exact curves indi-
cates that the Laguerre approximation underestimates
the variance (or the noise power) and that, in the case
of Figs.4 and 5, the left side tail is underestimated by
many orders of magnitude in the tail of the PDF where
(n)fn(n) ~ 10712, This is because our analysis has in-
cluded the effect of a Lorentzian bandpass optical filter
and the soliton pulse profile. We should note that the
Lorentzian PDF corresponds to a rectangular spectrum
in place of a Lorentzian. The errors associated with the
Laguerre PDF are attributed mainly to differences in the
variances, especially the terms representing the beating
of the signal against spontaneous emission, or (02)2_,
in (34) and the last term of o2 in (37). As a result,
if bit error rates of the soliton communication systems
employing Lorentzian filters are calculated by using the
Laguerre PDF, they will be lower than the actual values
for a given decision (threshold) level.

V. CONCLUSIONS

We have investigated the PDF and its approximations
for photoelectron counts of a soliton signal mixed with
filtered ASE light. Based on an expansion of the field am-
plitude in terms of an orthogonal basis, we have obtained
the exact PDF and applied it to a receiver equipped
with a Lorentzian optical bandpass filter. The theoret-
ical analysis includes not only the effects of the band-
pass filter but also of the soliton pulse shape. We have
found that photoelectron statistics is influenced consider-
ably by both the shape associated with a soliton and the
pulse width when the product BoT of the optical band-
width and counting interval is small. However, the effects
of the pulse width become negligible for large values of
BoT. Using the skewness and the kurtosis as judging
criteria, the differences between the exact PDF and its
Gaussian approximation have been quantified. In ad-
dition, we have evaluated the accuracy of the Laguerre
approximation that is widely used for bit error rate cal-
culations. Our results indicate that the use of both the
Gaussian and the Laguerre PDF leads to considerable er-
rors. The bit error rate is overestimated by several orders
of magnitude for the Gaussian PDF, while it is underes-

“When the Laguerre PDF is applied to the Lorentzian ASE
spectrum, it is necessary to compensate for approximation
errors by adjusting M in an appropriate way [22].
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timated by a large amount for the Laguerre PDF. The
results of this paper should prove useful when an accurate
estimate of the bit error rates of soliton communication
systems is required.
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APPENDIX: CASCADED AMPLIFIERS

For a cascaded chain of N amplifiers, the integrated
intensity of a signal at the detector is given by

W, = L.P,To/hv , (A1)

where P, is the soliton peak power at the transmitter out-
put. Lo = L1G;1--- LyGNnLyn41 is the effective net loss
of the fiber link. Here G; is the power gain of the jth am-
plifier and L; is the loss between j —1 and jth amplifiers.
L; and Ly, are the losses between the transmitter and
the first amplifier and between the last amplifier and de-

tector, respectively. The integrated intensity of the ASE
field at the detector is obtained as the sum of contribu-
tions of each amplifier. Because such contributions are
statistically independent, it can be written as

(W) = Kp(B/2) , (A2)
where
Gy—1
K““(mm
Gy —1 Gy —1
2= 4.4 TN=- ) A3
+G1L1G2L2 + + G1L, ---GNLN> (A3)

By using (A1) and (A2) instead of (29) and (32), we
can apply our theory to any configuration of the cascaded
chain of amplifiers. If N = 1, the configuration L. =
L1G1L; corresponds to an in-line amplifier, becomes a
preamplifier for L, = 1, and a postamplifier for L; = 1.

When G1L1 = e = GNLN = 1 and LN+1 = 1,
the configuration corresponds to a loss-compensated fiber
link with amplifiers. Furthermore, it approaches a con-
tinuous distributed amplifier (or active line) for a given
loss between the transmitter and the receiver as N — oo.
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