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Pulse compression and spatial phase modulation in
normally dispersive nonlinear Kerr media
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Numerical simulations show that, because of the spatiotemporal coupling implied by the multidimensional
nonlinear Schrödinger equation, self-focusing of ultrashort optical pulses can lead to pulse compression even in
the normal-dispersion regime of a nonlinear Kerr medium. We show how this coupling can be further exploited
to control the compression by use of spatial phase modulation. Both the compression factor and the position at
which the minimum pulse width is realized change with the amplitude of the phase modulation.
It has been well established for many years that, to
lowest order, pulse propagation in nonlinear disper-
sive media is described accurately by the nonlinear
Schrödinger equation1 (NSE). In the past, the NSE
has helped to provide an understanding of a wide va-
riety of effects such as beam steering,2 soliton for-
mation and propagation,3,4 self-focusing,5–14 and pulse
compression.1 Attempts to understand self-focusing
began more than 25 years ago and have evolved from
analytic approximations for cw beams5–7 to the mov-
ing focus model for the self-focusing of nondispersive
pulses.8,9 However, it is only recently that the full
multidimensional NSE has been employed for the in-
vestigation of self-focusing of ultrashort pulses in nor-
mally dispersive media.10–13 In our work we model
pulse propagation in waveguides with a self-focusing
nonlinearity and, although they may be more ac-
curately described as the spatial analog of soliton-
effect pulse compression, we refer to the effects of the
nonlinearity as self-focusing for economy of notation.
The impact of the nonlinearity on both the spatial
and the temporal behavior can be investigated with
the multidimensional NSE. Moreover, because the
nonlinearity makes the NSE inseparable, it is only in
its multidimensional form that the coupling between
these two behaviors can be investigated. In this Let-
ter we present the results of numerical simulations
that show how self-focusing and pulse compression
are related through this spatiotemporal coupling.

The NSE is derived from Maxwell’s equations
for the case of an intensity-dependent (Kerr-type)
index of refraction of the form n ­ n0 1 n2I .1,14

We model pulse propagation with the NSE in
the one-dimensional or waveguide approxima-
tion by using the well-known split-step Fourier
method.1 The waveguide approximation consists
of assuming that diffraction occurs in only one
transverse direction, the field behavior in the other
direction being determined by the structure of the
waveguide. To simplify the model and broaden the
applicability of the results, we normalize all the vari-
ables including the field that is normalized so that
its peak input value is unity. The coordinates are
normalized as follows: transverse spatial coordinate
0146-9592/95/030306-03$6.00/0
j is normalized to the input beam width s, temporal
coordinate t is normalized to the incident pulse
width T0, and propagation distance is measured in
units of the diffraction length Ld ­ s2pylds2, where
l is the optical wavelength. The normalized NSE
then takes the form
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Here the parameter N ­ s2psyld
p

n0n2I0 represents
the strength of the Kerr nonlinearity. The quan-
tity n2I0 represents the maximum nonlinear index
change for an input pulse of peak intensity I0. The
parameter s ­ s2pylds2b2yT2

0 represents the relative
strengths of dispersion and diffraction. Here b2 is
the group-velocity dispersion parameter, defined as
in Ref. 1.

For N ­ 0 we have the linear case for which Eq. (1)
is separable, and the spatial and temporal behav-
iors evolve independently of each other. But when
N fi 0 the NSE is not separable, and some spatiotem-
poral coupling must occur. Sometimes the coupling
is weak compared with other effects. This is the
case, for example, when a pulse propagates in a fiber
in which the transverse spatial behavior is deter-
mined by the fiber parameters.1 In such a situa-
tion the derivative with respect to j is eliminated
from the NSE, and diffraction plays no role in the
pulse evolution. In the anomalous dispersion regime
(b2 , 0) nonlinearity-induced self-phase modulation
and group-velocity dispersion can cooperate in such
a way that an intense pulse undergoes compression.1
By contrast, in the normal-dispersion regime (b2 . 0)
the combination of self-phase modulation and group-
velocity dispersion invariably broadens the pulse as
it propagates. As an example, Fig. 1(a) shows pulse
broadening for an N ­ 3 Gaussain pulse launched
into a nonlinear medium in which diffractive effects
are ignored.

One may ask whether spatiotemporal coupling
occurring when both diffraction and dispersion oc-
cur simultaneously in a nonlinear medium can
lead to pulse compression even for normal group-
velocity dispersion. The answer turns out to be yes.
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Fig. 1. Input Gaussian pulse evolution in a normally
dispersive nonlinear medium for N ­ 3 nonlinearity and
the pulse traveling in (a) a fiber and (b) a waveguide such
that s ­ 0.5 [see Eq. (1)].

Figure 1(b) shows pulse evolution under conditions
identical to those of Fig. 1(a), except that diffraction
has been included and s ­ 0.5. Clearly, self-focusing
can lead to a modest amount of pulse compression,
as indicated in Fig. 1(b). This compression must be
due to the spatiotemporal coupling implied by the in-
separability of the NSE because it occurs only when
the diffractive term is included in the simulation.
Although the diffractive term is necessary, the dis-
persive term is not, because it is the self-focusing that
leads to the pulse compression.8 What we will see
is that under some conditions the coupling is strong
enough to override the pulse-spreading influence of
the normal dispersion.

Because spatiotemporal coupling is due to the non-
linearity, we first investigate the dependence of this
effect on the strength of the nonlinearity for a range
of s parameters. In Fig. 2 we have plotted the nor-
malized FWHM of the pulse as a function of propa-
gation distance for several different N ’s and s ­ 0.5.
The linear case shows a monotonic increase, as we
expected. For nonzero N we see the appearance of
a secondary minimum that gets deeper and closer to
z ­ 0 as N is increased. We expect that, because
in the absence of diffractive (spatial) effects the com-
pression does not occur, the stronger the diffraction
is relative to dispersion, the greater the compression
will be, i.e., the maximum pulse compression should
increase as s decreases. As seen in Fig. 3(a), where
we have plotted the minimum pulse width as a func-
tion of N for s ­ 0.1, 0.5, 1.0, this is in fact the case.
Another interesting feature of this plot is the thresh-
old behavior seen for s ­ 1.0 and 0.5. We see that in
both cases for a large range of N values there is no
compression. What happens in these cases is that
the secondary minima seen in Fig. 2 are larger than
the initial pulse width. If we look at Fig. 3(b), which
plots the position of the minimum pulse width as a
function of N , we can again observe this threshold
behavior. We also see that the position of the min-
imum decreases with N , whereas it is nearly inde-
pendent of s once threshold is reached. This gives
an insight into the mechanism at work here. What
we are observing is a result of the power dependence
of the self-focusing distance for a cw beam. The sec-
ondary minima of Fig. 2 always occur at a distance
equal to the point of maximum focus associated with
the peak of the input pulse. This conclusion is borne
out by the dashed curve in Fig. 3(b), which plots the
position of the minimum beam width of spatial soli-
tons as a function of the strength of the nonlinearity
for the cw case.

Because the observed compression is a spatiotem-
poral effect, it is reasonable to expect that it can be
controlled to some extent through spatial phase mod-
ulation. To determine the impact of spatial phase
modulation, we solve the NSE for the case of a mod-
ulated input field of the form
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For the case of sinusoidal phase modulation, fsjd has
the form

fsjd ­ f0 sins2ppj 1 dd , (3)

Fig. 2. Normalized pulse FWHM at beam center for
fields initially Gaussian in space and time, traveling in
a dispersive nonlinear waveguide such that s ­ 0.5 and
with input nonlinearities as indicated.

Fig. 3. (a) Minimum normalized pulse FWHM and (b)
the position of the minimum as a function of the nonlin-
earity at input for s ­ 1.0 (diamonds), s ­ 0.5 (squares),
and s ­ 0.1 (triangles). The dashed curve in (b) is the
position of the minimum beam width of a (cw) spatial
soliton of order N .
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Fig. 4. Effects of spatial phase modulation on (a) the
minimum normalized pulse FWHM and (b) the position
of the minimum for s ­ 1.0; (c) the minimum FWHM and
(d) the position of the minimum for s ­ 0.1. The phase
is modulated at input according to Eq. (3) with p ­ 0.2,
d ­ py2, and f0 ­ 1.0 (filled triangles), f0 ­ 21.0 (filled
squares), and unmodulated or f0 ­ 0.0 (open triangles).
There are only two curves in (b) because there is no
compression for the case of defocusing phase modulation
and s ­ 1.0.

where f0 is the amplitude of the modulation, p is the
modulation frequency, and d is a constant phase shift.
For typical modulation frequencies in the range p ­
0.1–0.3 and the phase shift d ­ py2, the phase mod-
ulation described by Eq. (2) is nearly quadratic or
lenslike across the width of the input field, such that
positive and negative f0 correspond to convex and
concave lenses, respectively.

Because the unmodulated compression is due to
self-focusing, if we want to enhance (suppress) the
pulse compression we should choose f0 . 0 sf0 , 0d
because it will enhance (suppress) the self-focusing.
In Fig. 4 we see the effects of the modulation. For
s ­ 1.0 [Fig. 4(a)] focusing (f0 . 0) modulation has
the strongest impact. It enhances the maximum
compression over a large range of N ’s, with the effect
becoming more dramatic as the modulation ampli-
tude is increased. For a relatively long pulse [s ­ 0.1
in Fig. 4(c)] the modulation has the opposite effect on
the maximum compression. Conversely, the point of
maximum compression is affected by the phase mod-
ulation in an intuitive manner even for s ­ 0.1. As
Figs. 4(b) and 4(d) clearly indicate, focusing modu-
lation always shortens the distance to the point of
maximum compression and defocusing modulation al-
ways increases this distance. The control of pulse
compression through spatial phase modulation can
be analytically studied by use of the moment method
of Ref. 10.

From the results presented here we may draw
the following conclusions. First, spatiotemporal
coupling can lead to pulse compression even in
normally dispersive, self-focusing Kerr media.
Second, the degree of compression increases and
the distance to the point of maximum compression
decreases as either the pulse width increases or the
strength of the nonlinearity increases. Finally, this
compression phenomenon can be controlled with
spatial phase modulation. Several other points
should also be made. First, in none of the numerical
simulations was a reduction in the FWHM by more
than a factor of 2 achieved, nor was there ever any
reduction in the temporal variance.10 Also, in every
case in which compression was achieved, it was
immediately followed by a splitting of the pulse.10–13

The inclusion of both spatial transverse dimensions
may affect the pulse compression characteristics,
although pulse splitting occurs even in that
case. As others have shown, splitting is critically
dependent on the presence of normal dispersion.13
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