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Optical switching in A/4-shifted nonlinear periodic structures
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We show that A/4-shifted distributed-feedback nonlinear devices can be used as an all-optical switch at relatively
low input intensities. The A/4 shift opens a narrow transmission window whose peak position within the stop
band depends on the input intensity, a feature that can be used for low-power optical switching. The nonlinear
coupled-mode approach is used to analyze the stationary operating regime of such a device and determine the
transmittivity as a function of the input intensity. A closed-form solution, rather than a numerical one, is found
for what we believe is the first time.

Optical properties of periodic nonlinear structures
have been studied extensively, both theoretically'-'
and experimentally,7' 8 in areas such as opti-
cal switching,4 optical bistability,l and pulse
compression.5 In view of the ever-increasing
importance of integrated photonics devices, the use
of these structures in all-optical switching applica-
tions deserves particular attention. In this Letter
we analyze the switching properties of a A/4-shifted
distributed-feedback (DFB) nonlinear device oper-
ating in the stationary (cw) regime. For the first
time, to our knowledge, the closed-form expression
for the structure transmittivity is given, as opposed
to the different numerical methods used to analyze
nonuniform nonlinear structures. Although we
emphasize the analysis of the A/4-shifted device,
the method herein is readily extended to arbitrary
phase shifts. Of some interest is the generalization
to include multiple phase shifts as well.

Propagation in a linear periodic medium is char-
acterized by the stopgaps within the corresponding
photonic band structure in which no traveling-wave
solutions are permitted. In the presence of material
nonlinearity the band structure changes, shifting the
position of stop bands and consequently permitting
transmission at previously forbidden frequencies. In
the cw regime and for small coupling strengths this
type of switching can be analyzed exactly by solution
of the corresponding set of nonlinear coupled-mode
equations' that describe its complicated bistable be-
havior. The time-dependent case was also studied
both numerically4 9 and analytically,3 revealing a rich
underlying dynamics that, in special cases, can lead
to slowly moving soliton-type solutions referred to as
Bragg solitons.

To switch from the nontransmitting to the
transmitting state, one usually tunes close to the
edge of the stop band to minimize the required
switching intensity. However, the switching in-
tensity remains relatively high and is the single
most important obstacle in the way of practical
applications of these devices. Considerable ef-
fort has been devoted recently to optimize the
design of the grating by taperingl' and reflec-
tance matching."

The A/4-shifted DFB device, first proposed by Haus
and Shank,'2 has been used13 extensively to design
and fabricate stable single-mode semiconductor laser
sources. In the absence of gain and nonlinearity the
photonics band structure of this device is readily
calculated'4 and is found to have a narrow transmis-
sion peak in the middle of the stop band. It is ex-
pected that introduction of the Kerr-type nonlinearity
will lead to a frequency shift of this transmission peak
as the input intensity is increased. A tunable filter
that uses this feature along with an intense control
beam was proposed.'5 To produce optical switching,
one needs only to shift the transmission peak by a
small amount equal to its own width, which we show
is possible even for low input intensities.

Consider the phase-shifted structure shown in
Fig. 1, having the uniform periodic regions (-L '
z < 0 and 0 • z • L) with the linear refractive index

nL(z) = no + An cos(2/3BZ + Mn,

z < O
z 0 ' (1)

where POB is the Bragg wave number and f12 - nl is
the phase shift at z = 0. The material nonlinearity
is modeled by an instantaneous isotropic Kerr-type
response such that the refractive index increases
by an amount nNL = n2IE12. To solve the propa-
gation problem in the cw regime, we proceed by

0

Fig. 1. DFB structure with the phase shift MI at the
center located at z = 0. The sinusoidal curve represents
the periodic linear refractive index nL(z). Normalized
intensities I, M, and T are defined in the text.
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using the standard coupled-mode approach.'6 We
emphasize that the present analysis is not limited
to a particular device realization (thin-film wave-
guide, nonlinear multilayer stack, or fiber grating
device) and can be applied whenever the standard
coupled-mode assumption is valid. The electric field
is represented as the sum of the forward- and
backward-traveling waves:

E(z) = E+(z)exp(if3z) + E_.(z)exp(-ifLz). (2)

Taking the usual coupled-mode assumptions of small
coupling strengths An << no and a slowly varying
field envelope, 6 one can easily derive the following
set of equations:

dE+
- = iKE exp[-i(2AjBz - l)]

+iy(IE+ 12 + 21E 1
2)E+,

dE~ = - iKE+exp[i(2A,/z - l)]

- iy(21E+ 12 + IE_12 )E-,

(3a)

region (-L < z < 0). From Eqs. (4)-(6) it can be
shown that

COS T 2(0) = - (M- T) (2M + APL). (7)

In the case of a A/4-shifted grating the phase shift at
z = 0 is set to vr, which together with Eqs. (4) and (6)
leads to an expression for F, in the following form:

IF = Ij4M(M - T) + (AOL) (2M - T)]/KL. (8)

Finally, Eqs. (4) and (8) permit us to construct the
expression for forward flux in the first region (-L <
z < 0):

(L dI) 2 = (KL)21(I - T)

- [4M(M - T) + (A,3L) (2M - T)

- I(A,/L) - 2I(I - T)]2. (9)
(3b)

where AP = 8 - PB is the detuning from the Bragg
wavelength, K = 7rAn/AB is the linear coupling coef-
ficient, and y = vrn2/AB is the nonlinear parameter
governing the self- and cross-phase modulation.

Each uniform region of the grating can be treated
separately, following the approach of Ref. 1, provided
that the proper boundary conditions are enforced
at z = 0. By separating the magnitude and the
phase of the field in Eqs. (3) in the form E+(z) =

IE±(z)Iexp[i0k(z)] one can find the conserved quan-
tities for each region:

IL = IE+IDIE-Icos Tj + (21\3 + 3y1E 12)IE+ 12 /(2K),
(4)

IEiT12
= IE+12 - IE 12 , (5)

where i = 1,2 and Pj(z) = 2A,/z + 0+(z) - 0_(z) -
fi. It is important to mention that no boundary con-
ditions were introduced in the derivation of Eqs. (4)
and (5). By imposing the nonreflective boundary
condition at the right-hand end of the structure in
Fig. 1 [E (L) = 0] the transmitted flux in the sec-
ond region (0 z - L) is given by IE2T12 = IE+(L)12 .
Continuity of the electric field at z = 0 implies that
the transmitted flux remains constant throughout the
structure, i.e.,

The integration of Eq. (9) is the standard elliptic
problem that can be solved if the integration interval
and zeros of the polynomial on the right-hand side are
known. These zeros, which depend on the parame-
ters KL, A/3L, and T, are generally complex values.
For the sake of brevity we will discuss the general
solution of Eq. (9) elsewhere, reporting only the most
important results here.

In the case of the zero detuning (APL = 0), M is
found to be related to T as

M = T[1 + nd(u, k)]/2, (10)

where nd(u, k) is the elliptic function with argument
u = vT 2 + (KL)2 and modulus k2 = [1 + (T/KL) 2}'.
Zeros of the polynomial in Eq. (9) can be explicitly
calculated in this case as

Ii= T [1+ ± ± X+k 2)v2

i = 1,2,3,4,
I 

(11)

where x = k'2{2[nd2 (u,k) - 1] + k2 }/k2 and k' =
vJi iP is the complement of k. It is seen that all
zeros are real (, > Ih > I3 > I4). The input flux
Io = I(-L) can now be calculated and is given by

IEIT12
= 1E2T12 = lETI2 = IE+(L)12 .

At this point we introduce an auxiliary intensity
parameter I, = 4noA/37rn2L and normalize all inten-
sities to I,. Specifically, we define T = JET1

2/II as
the transmitted flux at z = L, M = IE+(0)12/II as the
forward flux in the center of the structure at z = 0,
and I(z) = E+ (Z)12/I, as the forward flux in the first

I I + (I~~2 - I3) (I1 - 13) 
IO 3+(I, - 13) - (II - I2)Sn2[F(~oo, ko) - 4/go, ko] 

(12)

where sn and F( po, ko) are the elliptic functions,"
go = 2/[(Ij - I3) (I2 - I4)]', ko = go[(Ii - I2) (13 -

(6)
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Fig. 2. Transmittivity (T/10) versus 1o for the structure
of Fig. 1 when Afl = v and A,8 = 0. Each curve cor-
responds to a different coupling parameter KL, varied
between 1.5 and 3.
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Fig. 3. (a) Variation of T/IO with the Bragg detuning
AJL for three values of the normalized output flux T
and for KL = 2. (b) Variation of T/IO with A,3L for four
values of the normalized input Io and KL = 2.

I4)]1/2, and sin 'oo = [(I, - 13)(M - I2)/(I1 - I2)
(M - I3)]V2.

To estimate the value of the required switching
intensity, we plot in Fig. 2 the device transmittiv-
ity T/IO versus input intensity Io at zero detuning
(A,3L = 0). As expected, at very low intensities
(Io << 1) the grating is completely transparent, and
transmission T/IO 1 1. Transmittivity decreases
with increasing input intensity because the nonlinear
index shifts the transmission peak toward lower fre-
quencies, which eventually makes the device opaque
at AB. One can reverse this process by detuning the
laser from the Bragg wavelength such that A,/3L < 0
at low intensities and then increasing Io to achieve
the transmitting state. However, the detuning
parameter AJ3L has to be chosen carefully, in ac-
cordance with the knowledge of the bistable region
position. To appreciate the low intensities necessary
for this type of switching, we consider the case of
KL = 3 in Fig. 2. To change the transmission state
from 100% to below 20% (or vice versa), we need only
to change Io by an amount -0.001. If one considers
a 1-cm-long GaAs device (n2 = 1.6 x 10-1' esu) with
KL = 3 and AO = 1 Am, it is clear that such a change

corresponds to -0.1 MW/cm2 . This value should be
contrasted with the -0.2 GW/cm2 value necessary
to switch the equivalent uniform DFB device' at
A/3L = 0.

We can obtain transmission behavior as a function
of the detuning AJ3L by using Eq. (9) and by fol-
lowing a similar procedure. Figure 3(a) shows the
variation of T/10 with A,3L for three fixed values of
the output intensity T. For small values of T (solid
curve) the nonlinear effects are negligible, and the de-
vice exhibits a narrow central transmission window
located exactly in the center of the stop band. For
larger values of T the intradevice intensity is large
enough for the nonlinear index to shift the transmis-
sion peak from the center of the stop band. The con-
ventional transmittivity spectrum in which the input
intensity Io (rather than the output intensity T) is
a fixed parameter is quite different and is shown in
Fig. 3(b). It exhibits bistability for certain values of
Io (Io > 0.004) and Aj3L < 0, permitting the all-optical
switching to be controlled by frequency tuning rather
than intensity tuning. Another interesting aspect of
this switch is to study its dynamics with the appro-
priate numerical methods.4 "18

In conclusion, we have shown that a A/4 DFB
nonlinear structure operated close to the Bragg fre-
quency can be used for optical switching at low
intensities, thus greatly relaxing the requirement
for high-power sources.
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