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The spatiotemporal self-focusing of chirped optical pulses propagating in a nonlinear dispersive medi-
um has been studied analytically and numerically. The analytic theory shows that the critical power for
self-focusing occurring in a dispersive media changes quadratically with the chirp parameter in both two
and three dimensions. It is found that the critical wave action depends on the sign of the total chirp pa-
rameter. Analytic results show that the effect of chirp is similar to that of beam ellipticity except that el-
lipticity always increases the critical wave action. Numerical simulations are used to study the effect of
chirp and group-velocity dispersion on self-focusing. It is shown numerically and analytically that the
self-focusing process can be controlled by changing the chirp parameter.

PACS number(s): 42.65.Jx

I. INTRODUCTION

Since 1970 it has been known that optical pulses can
self-focus in both space and time while propagating in a
nonlinear medium [1]. Interest in spatiotemporal self-
focusing of an optical pulse in a nonlinear dispersive
medium has been rekindled recently [2-6]. For self-
focusing of subpicosecond and femtosecond pulses in a
medium with fast (electronic) nonlinearity, group-velocity
dispersion (GVD) becomes important because different
temporal slices no longer focus independently in contrast
with the quasi-cw moving-foci model [7]. Temporal
reshaping effects due to dispersion then become
significant. Different qualitative behavior can occur de-
pending on the sign of GVD, that is, depending on
whether the medium has normal or anomalous disper-
sion. Silberberg [2] suggested the possible existence of a
stable light bullet when a medium has anomalous disper-
sion. In their numerical simulations, Chernev and Petrov
[3,4] and Rothenberg [5] found that the presence of nor-
mal GVD causes splitting of the original input pulse into
two temporally separated pulses. The original pulse
center does not self-focus, as the moving-foci model
would predict. Rather dramatic pulse-compression
effects associated with self-focusing occur in the tem-
porally split pulses away from the pulse center [5]. It is
well known that self-focusing in space can result in tem-
poral compression of an optical pulse [8,9].

The previous work on spatiotemporal self-focusing
[1-5] has assumed an unchirped optical pulse whose
width is transform limited. In practice, the pulses emit-
ted by mode-locked lasers are often chirped. Frequency
chirp can also be imposed externally and is expected to
influence the self-focusing process significantly. This pa-
per is devoted to the study of spatiotemporal self-focusing
of chirped optical pulses in a dispersive Kerr medium.
The moment method [10] has been used to derive a virial
theorem for the evolution of the center of mass of the
pulse in a medium with anomalous GVD. It is found
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that the critical power for self-focusing increases quadrat-
ically with increasing chirp parameter no matter whether
the pulses are down-chirped or up-chirped. Since analyt-
ic results for the case of normal GVD are difficult to ob-
tain, we study spatiotemporal self-focusing of a chirped
pulse by solving numerically the nonlinear Schrodinger
equation (NSE).

II. THEORY

The spatiotemporal evolution of an optical pulse prop-
agating in a dispersive medium with cubic nonlinearity is
governed by a multidimensional NSE of the form [2]
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where A is the slowly varying envelope of the electric
field associated with the optical pulse. The wave number
Bo=noko=ny(wy/c),B,=3*B/3w’ is the GVD parame-
ter, ng is the linear part of the refractive index at the car-
rier frequency w, n, is the nonlinear-index parameter re-
sponsible for self-focusing, and a retarded time frame
traveling at the group velocity v, is assumed. Absorption
and higher-order effects such as third-order dispersion
and self-steepening have been neglected. Equation (1) can
be normalized to become [2]
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where transverse coordinates x and y are normalized to
the beam radius w,, and the retarded time ¢ is normalized
such that 7=1/v"wyB,B, Since no analytic results
could be obtained with sgn(B,)=1, we limit our analysis
to the specific case of sgn(f8,)= —1; that is, we only con-
sider anomalous dispersion here. The difficulty in the
case of sgn(fB,)=1 is due to the fact that the diagonal ele-
ments in the dispersion tensor [11] have a different sign,
and no functional analysis could be used to estimate the
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integrals in the final of the virial theorem. In a later sec-
tion, we numerically study spatiotemporal self-focusing
in a medium with positive GVD.

The spatiotemporal evolution of the wave amplitude
can be described by the Lagrangian density [11,12]
2
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where A* is the complex conjugate of A. The Euler-
Lagrange equation is as follows:
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where x, =x, x, =y, and x; =r.

The application of the Euler-Lagrange Eq. (4) to the
Lagrangian density Eq. (3) generates the NSE given by
Eq. (2). The symmetries and conservation laws of the
NSE associated with Eq. (2) have been studied by many
authors [13-15]. In this paper only three conservation
laws are needed. They are gauge invariance, space
translation, and time translation, corresponding to the
conservations of wave action N [related to optical power
in two dimensions (2D)], momentum P, and energy H, re-
spectively. These conservation laws can be obtained ei-
ther from Noether’s theorem or directly from Eq. (2)
[13-15]. The result is

N=[|4l%d®r, (5)
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where r’=3P_x? and D is the dimension. In 3D,

r’=x2+y?+7%. In the moment approach [110], the
average value of a physical quantity F(r) is defined by
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The quantity of particular interest from the standpoint of
self-focusing is the effective beam size (in both space and
time dimensions) determined from

(8r2)=(r*)—(r)*. )

It is easy to show that
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By using a standard procedure [11], we obtain
2
5—;(&2)=4[H+R/2—P2/(2N)]/N , (11)
z
where R is given by
R=[(1—D/2)|4|*d®r , (12)

and D is the dimensionality of beam propagation (D =3
when x, y, and 7 are all included). If the right-hand side
of Eq. (11) is negative, then the pulse width (both spatial
and temporal) will decrease to zero in a finite distance,
leading to beam collapse through catastrophic self-
focusing. Since the wave action is a constant, the wave
amplitude will become infinite when (8r2)=0. There-
fore, a sufficient condition for self-focusing is that the
right-hand side of Eq. (11) be negative. Since self-
focusing depends strongly on the dimensionality, we con-
sider two- (2D) and three-dimensional (3D) cases sepa-
rately.

III. THE 2D SELF-FOCUSING
OF A CHIRPED PULSE

If the input profile is assumed to be Gaussian in time
and space, and the pulse is assumed to be chirped both
spatially and temporally,

2
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where A is the peak amplitude of the input pulse; p; and
p, are the initial spatial and temporal widths, respective-
ly; and C; and C, are the spatial and temporal chirp pa-
rameters. It is easy to see that the effect of chirp is the
introduction of a phase curvature, which corresponds to
the lens effect. There is some analogy between the spatial
and temporal chirps since the roles of transverse and tem-
poral coordinates are symmetrical to each other. In
space, a positive chirp (C, >0) corresponds to a positive
lens; however, the temporal lens effect depends on the
dispersion of the nonlinear medium. A positive chirp (or
up-chirp) in the time domain introduces a positive (nega-
tive) temporal lens effect when the medium is of anoma-
lous (normal) dispersion. Since we are considering anom-
alous dispersion in this section, the roles of x and ¢ are ex-
actly the same; hence, the results can also be applied to
the 2D self-focusing in space. Equation (13) describes a
beam profile with both astigmatism (C,#C,) and ellipti-
city (p;7p,). As far as the intensity distribution is con-
cerned, there is some relationship between astigmatism
and ellipticity; however, the effects of astigmatism and el-
lipticity on self-focusing are quite different. This
difference turns out to be important in understanding the
self-focusing of a light beam with the initial convergence
or divergence. We will return to this point later in this
paper.

Before obtaining the exact solution of Eq. (11), we first
discuss self-focusing by using a simple phenomenological
model discussed in Ref. [16]. The basic idea of this model
is that self-focusing occurs when the nonlinear refraction
can balance the beam divergence caused by linear
diffraction. The nonlinear refraction is estimated using
the concept of total internal reflection. It should be men-
tioned that this model is valid for spatial self-focusing of
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an optical beam with a symmetric cross section. In this
paper, the method is generalized to the spatiotemporal
self-focusing of an optical pulse, or spatial self-focusing of
an optical beam with an asymmetric cross section. Al-
though the concept of total internal reflection is no
longer valid in time domain, the method is still applicable

|
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It is easy to show that the far-field divergence is given by
0 =(1+C2)6,,, (m=1,2), (15)

where 6, is the far-field divergence in space or time
domain, 0, is the far-field divergence without chirp, and
65, =1/p,,»m =1,2. Note that the beam divergence is
independent of the sign of the chirp; both positive and
negative chirps give the same beam divergence in the far
field. Since the refractive index is higher where the inten-
sity is higher, some optical rays could be trapped due to
the total internal reflection for a Gaussian intensity
profile. If the intensity is high enough that all rays
bounded by the divergent angle given by Eq. (15) can be
trapped, then self-focusing will occur. If the angle under
which the light ray experiences total internal reflection
for a given intensity distribution denoted by Oy, then the
threshold conditions are [16]
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where N= f |A|%dx dr is the wave action, and

No=A%,/64m°n, is the critical wave action when
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due to the symmetry between the transverse space and
time included in Eq. (2), when sgn(B,)<0. In other
words, the time coordinate can be treated as another
transverse coordinate. The linear evolution of a spatially
and temporally chirped pulse can be obtained by the
method of the Fourier transform [17]. The result is

-1/2
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Note that the threshold depends on both ellipticity and
astigmatism. We will come back to this point after we
obtain the exact analytic solutions for the threshold wave
action.

We now consider the self-focusing phenomena by using
the virial theorem [Eq. (11)]. In general, Eq. (11) cannot
be solved analytically since R cannot be determined;
however, R =0 in the 2D case [see Eq. (12)]. In this case
the right-hand size of Eq. (11) is a constant since H, N,
and P are constants of motion. As the occurrence of the
self-focusing, or collapse, is defined by (&r2)=0, the
self-focusing distance can be obtained from Eq. (11). The
constants N, P, and H are calculated using Eq. (13) in
Egs. (5)-(7). The results are as follows:

N=mpip,| 4,1*, (18)
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where N,=2m 1is the critical wave action when
P1=p,, C; ,=0. Integration of Eq. (11) gives

2H
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P1=p2,C, ,=0. The addition of Eq. (16) for m =1 and 2
gives the critical wave action where (8r?)|, characterizes the initial beam width,
N, P p and B is the initial beam  divergence
ALY [1+c%}—+ [1+c§]—l (17)  d(&r?)/dz|,o=—(C,+C,). The condition (5r2)=0
0 P1 gives the self-focusing distances. The result is as follows:
|
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where p=1/V2(p}+p3)!/%; C=(C,+C,)/2 is called the average chirp, while C,+C, is called the total chirp. The
threshold wave action can be obtained by requiring that z be a positive real number. It is found that the critical wave
action depends on the sign of C and is given by
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In order to gain more physical insight, consider 2D spa-
tial self-focusing as an example. The discussion also ap-
plies to the 2D spatiotemporal self-focusing since x and ¢
are symmetric mathematically. In 2D spatial self-
focusing, N is just the critical power for self-focusing,
p17p, means the elliptic beam profile, and C,7C, means
the astigmatism. Compared with Eq. (17), Eq. (23) shows
that the critical power could be smaller when C >0. The
physical meaning of C >0 is that the beam area contracts
initially, so Eq. (23) means that a beam with initial con-
vergence needs less power to have self-focusing compared
to a divergent beam. Note that Eq. (24) agrees exactly
with Eq. (17), which justifies our simple model in obtain-
ing Eq. (17). In fact, we consider only the far-field diver-
gence in obtaining Eq. (17), which means that only C >0
is included in the phenomenologic model. It is useful to
consider several simple examples to understand the
effects of astigmatism and ellipticity

A. Pure astigmatism (p, =p,,C,7#C,).

Equations (23) and (24) become

N |[1+kc, -6y, c>o0 25

c

N, |1+ici+cd), c<o. (26)

Therefore, the critical power for both C >0 and C <0 is
always higher than that of an aberrationless input beam.
It should be pointed out that Egs. (23) and (25) corre-
spond to the situation when H >0, which means that the
right-hand side of Eq. (11) is positive. Physically, a col-
lapse for H >0 would correspond to a situation in which
the contraction rate due to the positive total chirp
(C >0) is sufficient to produce the collapse before the in-
hibiting effect of positive energy H can reverse the con-
traction. Equation (26) shows that a divergent beam re-
quires more power to self-focus than a convergent beam
by an amount quadratically proportional to the average
chirp.

It has long been believed that there is a critical power
at which self-focusing occurs, below which it cannot
occur no matter how tightly the beam is focused at the
entrance of the nonlinear medium [8]. This conclusion is
based on following reasoning: At the focal plane, the
transverse area decreases by a factor of f2 when the beam
is focused to reduce its width by a factor of f. As a re-
sult, the beam intensity increases by a factor of f? times
for a given amount of beam power. However, the
diffraction also increases f? times, which cancels the
enhanced nonlinear refraction. Therefore, simply in-
creasing the intensity cannot make the self-focusing hap-
pen. This can be seen from Eq. (25) by assuming C, =C,,

[

which corresponds to a symmetric focal lens. The critical
power equals that of an aberrationless beam; hence a fo-
cal lens has no effect on the critical power at all. When
C,#C,, astigmatism is introduced; the critical power is
also increased. As long as the beam has astigmatism, the
critical power will be higher than that of an aberration-
less beam. For example, a cylindrical lens will increase
the critical power by an amount of C2 /4. In spatiotem-
poral self-focusing, a frequency chirp will also increase
the critical power by an amount of C3 /4.

In practice, it is more important to know the minimum
power required for a beam to collapse in a distance that
equals the extension of the nonlinear medium. Although
the critical power is independent of the initial conver-
gence as in the case of C, =C, >0, the propagation pro-
cess does depend on C. If we define the threshold power
as the power that is sufficient for a beam to collapse in a
finite distance 1, then this threshold power depends
strongly on the initial convergence of the beam. For the
sake of simplicity, we continue to study the special case
of p,=p,,C,=C,>0. To determine the threshold
power, let z, =L in Eq. (22); the result is as follows:

Nwo _ 1+L2
Ny  L*+(LC—1)*"

27

where N, is the threshold power required for a parallel
beam (C;=C,=0), Ny, is the threshold power for a con-
vergent beam, and L is the normalized length of the non-
linear medium. When LC=1, N,,/Ny, is usually a very
large number, which means that the self-focusing occurs
more easily if the beam has initial convergence. Typical-
ly, for a beam of width wy=1 mm, a medium of length
/=10 mm, and beam wavelength of 1 um, the value of
Nuyo/Ngu=4X10% Thus, the threshold power necessary
for a convergent beam to collapse in a finite distance is
410’ times smaller than that of a parallel beam. Note
that when LC =1/f, f is the focal length of the lens used
to generate the spatial chirp C;,=C,=C. LC =1 means
that the focal length equals the length of the medium. It
is easy to see from Eq. (27) that the condition LC =1 is
optimal for the enhancement of self-focusing. For a
weakly focused beam (LC <<1), Ny,o/N, approaches 1,
which is obvious; while for a highly focused beam
(LC>>1), Ngyo/Ny, approaches zero monotonically.
This can be explained by the fact that the self-phase
modulation (SPM), which is responsible for the nonlinear
self-focusing, remains relatively small at the geometric fo-
cal point since SPM requires a longer distance to accu-
mulate strong phase modulation. In other words, the
propagation is dominated by linear propagation if the
beam is highly focused. After the geometric point, the
beam becomes divergent, and the self-focusing is
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depressed, rather than enhanced, by the initial focusing.

Although the above result also applies to spatiotem-
poral self-focusing, it is practically difficult to apply the
same chirp on both space and time domains. On the oth-
er hand, C,7C, is more realistic in applications. A re-
sult similar to Eq. (27) can be obtained using the same
calculation. Due to the presence of astigmatism, large
enhancement, as in the case of C,=C,, is no longer pos-
sible. A typical case is C,=0,C,>0 or C,>0,C,=0.
The threshold wave action or power is given by

Numo _ 1+L? <
Ny  L*+1+QLC-1?/2

2, (28)

where C is the average chirp. Therefore, the largest
reduction in the threshold is only a factor of 2 for a
chirped pulse compared to an unchirped one. (The same
is also true for the situation in which a cylindrical lens is
used to generate a spatial chirp.)

In conclusion, both spatial and temporal chirps have
great effect on self-focusing. The critical wave action or
power depends on both the sign of the average chirp and
the individual values of different chirps. A very special
case is when both chirps are positive and equal to each
other. It is found that the critical power is not dependent
on the value of the chirp, while the threshold power,
defined as the power necessary for a beam to collapse in a
given distance, depends strongly on the chirp. The
threshold power for a convergent beam could be 103
times smaller than that of a parallel beam. There is an
optimal value of chirp for the largest enhancement of
self-focusing.

B. Effect of ellipticity (p,p,,C; =C,=0)
on self-focusing

If there is no phase curvature in both space and time
coordinates, then Egs. (23) and (24) reduce to a simple
equation

N, 1

N, 2

PP
P1 P2

z1. (29)

Hence, ellipticity always increases the critical wave ac-
tion (or critical power in 2D spatial self-focusing). In
practice, a widely used method to avoid spatial self-
focusing is to use a cylindrical lens to make the beam el-
liptic and thus increase the threshold power; hence, the
effect of astigmatism is similar to that of ellipticity. In
fact, a beam with astigmatism will become elliptic during
propagation. Finally, it should be pointed out that astig-
matism is different from ellipticity in that ellipticity al-

3 (1+CP)
e e
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ways increases the critical power, while astigmatism can
either enhance or suppress self-focusing depending on the
sign of the total chirp parameter.

IV. THE 3D SELF-FOCUSING
IN MEDIUM WITH ANOMALOUS DISPERSION

The input profile can be obtained by generalizing Eq.
(13) and is given by

2
Alx,y,7,2=0)= Agexp | — 2= (1+iC,)
2pi
2
X exp —-L2(1+iC2)
2p;
7 .
Xexp | ———(1+iC3) |, (30)
2p3

where x and y are the transverse coordinates; 7 is the lo-
cal time coordinate; C,, C,, and C; are the chirp param-
eters; p; and p, are the transverse beam width; and p; is
the pulse width. Following the same method described
previously, we can obtain a simple estimate for the criti-
cal wave action in the 3D case. Since the algebra is the
same as that of the 2D case, we show only the results
here. The critical wave action is given by

‘ 3 1+C?
N, =3mVmpipps 3 —

i=1 i

) (31

where N, is the critical wave action for a spatially and
temporally chirped pulse. In the 3D case, the wave ac-
tion is the pulse energy. In three dimensions, R is not a
constant; however, R can be evaluated in the same way as
Cao and McKinstrie did in obtaining the threshold value
for stable solitons in optical birefringent fibers [18]. The
assumption for the validity of the method is that the
pulse is localized in both space and time. Under this con-
dition, we can use Cauchy inequality to obtain an upper
bound on R, i.e.,

R <—N2/(2v), (32)

where V is a constant representing the volume in which
most of the pulse energy is located. Then the sufficient
condition for collapse can be obtained by substituting Eq.
(32) to the right-hand side of Eq. (11). If a Gaussian
profile such as Eq. (30) is assumed, then the self-focusing
distance and the critical wave action can be determined
similarly. The self-focusing distance is given by

P N N 3 (1+CP)

+_—__.___
Vo 2V2mppps S0 p}

) (33)

where C=(C,+C,+C;)/2, and p*=L(p3+p3+p3). In 3D spatiotemporal self-focusing, the total chirp is defined as

C,+C,+C;. The critical wave actions are
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Again, the critical wave action depends on the sign of C.
The effect of chirps has been explained in detail in the 2D
case; the physics remains the same in 3D. However, it
should be pointed out that the critical wave action in 3D
depends not only on the ellipticity, but also on the indivi-
dual length and time scales set by p,, p,, and p;. The
dependence on the spatial length scale is in agreement
with well-known results [8]. Due to time-scale depen-
dence, 3D self-focusing is more sensitive to the pulse
profile. From Eqgs. (34) and (35), one can see that a pulse
with a steeper gradient in space or time has smaller criti-
cal energy. Hence in spatiotemporal self-focusing there is
no absolute critical power or energy above which beam
collapse will occur. In other words, beam collapse can
occur for any value of pulse energy as long as the length
scale (including time domain) is short enough. Of course,
it should be kept in mind that the length scale must be
large enough such that the slowly varying envelope ap-
proximation remains valid; otherwise, the governing
equations used to obtain Egs (33)-(35) are no longer val-
id. A direct consequence of Egs. (34) and (35) is that even
a long pulse may have 3D self-focusing. In the case of
self-focusing of long pulses, such as the quasi-cw self-
focusing, different temporal slices evolve differently; the
leading and trailing edges have power less than the criti-
cal power, and thus become broadened due to diffraction.
However, the center part of the pulse (assumed to be
above critical power) experiences self-focusing, resulting
in much steeper edges. If the edges are so steep that Egs.
(34) and (35) are satisfied, then the edges will collapse
three dimensionally. Therefore, a long pulse can collapse
three dimensionally if Egs. (34) and (35) are satisfied.
This phenomenon was studied numerically by Cao,
McKinstrie, and Russell [19]. The critical wave action
depends on the chirp in the same way as that of 2D case,
i.e., it is dependent of the sign of the total chirp. Finally,
note that Eq. (35) is almost the same as Eq. (31), except
for a constant that determines the critical pulse energy
when no spatial and temporal modulations are applied.
Like the 2D case, both Egs. (31) and (35) show the same
dependence of critical energy on astigmatism and ellipti-
city. However, 3D spatiotemporal self-focusing is much
more complicated than the 2D case, since both length
scales and time scales are coming into play in 3D self-
focusing.

V. NUMERICAL SIMULATIONS

It is interesting to check the theoretical results by com-
puter simulations. Here we solve the 2D NSE using the
split-step method [20] with a 128X 128 grid. The com-
puter code conserves energy exactly, which makes it use-
ful in finding the critical threshold. As a demonstration,

the following parameters are chosen: p,=p,=1, and
C,=C,=C=0or —1. From Eq. (24), the critical power
(or wave action) N, =2m(1+C?). Figure 1(a) shows the
variation of the on-axis intensity during the propagation
when C =0. The two curves correspond to the input
power 8% above and below the critical value 277. The
simulation results agree very well with the theory. In
fact, the agreement can be improved to within 1% if a
larger numerical grid (256X256) is used. Figure 1(b)
shows the results under conditions identical to those of
Fig. 1(a) except C=—1 and the two curves correspond to
input power 25% above and below the threshold. The
theoretic threshold is 47 for C = —1, while the numerical

Peak intensity

Peak intensity
TN

FIG. 1. On-axis intensity vs propagation distance for the crit-
ical power both above and below threshold for the case of
D=(2+1). (a) C=0. (b) C=—1. Zis in units of the Rayleigh
range kw3j.
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threshold is about 3.24w, the difference between them is
20%. This discrepancy is not surprising in view of the
difference in the definition of the threshold between the
theory and the simulations. The theoretical threshold
corresponds to the situation in which the whole beam
collapses into a single point, while the numerical thresh-
old is measured by the peak intensity. It is well known
that the collapse occurs before all the energy goes to the
singular point. We have found that the agreement is
quite good when C <1. For C > 1, the agreement is only
qualitative. The reason is that the required threshold
power N,=2m(1+C?) increases rapidly as C increases.
Because the process of undoing the initial chirp is not
uniform across the beam, it is possible for the center part
to become chirp free and contain enough power to col-
lapse. Therefore, the comparison between theory and
simulation is expected to be only qualitative for C > 1.

To study the effect of chirping on 3D spatiotemporal
self-focusing, we solve Eq. (2) numerically again using the
split-step method [20], but the beam is assumed to be cy-
lindrically symmetric so that a fast Hankel transform
[21,22] can be applied to the spatial coordinates, and the
standard fast Fourier transform (FFT) has been used in
time domain. Details about the numerical method can be
found in Ref. [23]. A 128X 128 grid has been used. The
grid points in r (transverse coordinate) are not uniform
(the smaller the radius 7, the denser the grid points), a
consequence of the method used for fast Hankel transfor-
mation [21]. The initial field is given by Eq. (30). First
we consider the case when an optical pulse propagates in
a nonlinear medium with normal GVD. It is known that
in a linear medium with normal GVD, a pulse without in-
itial phase modulations will become up-chirped (C >0)
after propagating through the medium [16]. Therefore,
an initially up-chirped pulse will broaden more rapidly
when propagating in a linear medium, while a down-
chirped pulse will be compressed initially and then
broaden later, which is referred to as temporal focusing.
Since the chirp will change the instantaneous power of a
laser pulse, the character of spatiotemporal self-focusing
will also change. As shown in this paper, both the criti-
cal power and the self-focusing distance are changed. We
first simulate the 3D spatiotemporal self-focusing in a
nonlinear medium with normal dispersion. Figure 2
shows the evolution of the on-axis intensity with initial
parameters 4,=35, p;=p,=p;=1, C;=C,=0, C;=—5,
C;=0, and C;=S5, respectively. For an initially up-
chirped (C;=5) pulse, the temporal focusing is expected
to enhance the self-focusing, while an initially down-
chirped (C;=—35) pulse will have the temporal defocus-
ing effect, which will suppress the self-focusing (see Fig.
2). Figure 2 indicates no catastrophic collapse since only
the on-axis intensities are shown. As pointed out in Refs.
[3-5], the pulse can be split in time domain if the non-
linear medium has a positive GVD; hence the on-axis in-
tensity will not always increase. Figure 3 illustrates the
same self-focusing process but in a nonlinear medium
with anomalous GVD. It is easy to see that a catastroph-
ic self-focusing has occurred in this case. Since all the in-
put parameters are the same as those used in Fig. 2, clear-
ly the dispersion property of the nonlinear medium has a
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FIG. 2. On-axis intensity of light pulse vs propagation dis-
tance for different initial chirp in a medium with normal disper-
sion for the case of D =(3+1).

great effect on self-focusing. In other words, a positive
GVD can suppress the self-focusing effect compared to
the situation of a negative GVD. Also of importance is
the fact that the self-focusing can be enhanced or
suppressed by using chirped pulses for both normal and
anomalous GVD. The self-focusing distance can also be
controlled by changing the chirp parameters associated
with the input pulses. The chirp introduced initially is
expected to undo itself when approaching the self-
focusing point.

In conclusion, self-focusing of a chirped pulse propaga-
ting in a nonlinear dispersive medium has been studied
analytically and numerically. The quasi-cw moving-foci
model is no longer valid when dispersion is important. It
has been found that the critical power or wave action for
the spatiotemporal self-focusing increases quadratically
with increasing chirp in both 2D and 3D. The critical
power or wave action depends on the sign of the total
chirp parameter. It is shown numerically that the self-

Peak intensity

FIG. 3. On-axis intensity of light pulse vs propagation dis-
tance for different initial chirp in a medium with anomalous
dispersion for the case of D =(3+1).
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focusing process can be controlled by changing the chirp
parameter. In other words, we can enhance or suppress
self-focusing by choosing different chirp parameters. Fi-
nally, the chirp introduced initially will be expected to
undo itself after the spatiotemporal self-focusing.
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