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Optical-Feedback-Induced Chaos and its
Control in Multimode Semiconductor Lasers

Andrew T. Ryan, Govind P. Agrawal, Senior Member, IEEE, George R. Gray, Member, IEEE, and Edward C. Gage

Abstract—The effects of optical feedback in multilongitudinal
mode semiconductor lasers are studied through computer sim-
ulations. Two separate regimes are found based on the length
of the external cavity. For long external cavities (external-cavity
mode spacing larger than the relaxation-oscillation frequency),
the laser follows a quasi-periodic route to chaos as feedback
is increased. For short external cavities, the laser can undergo
both quasi-periodic and period doubling routes to chaos. When
the laser output becomes chaotic, the relative-intensity noise is
greatly increased (by more than 20 dB) from its solitary-laser
value. Considerable attention is paid to the effects of optical
feedback on the longitudinal-mode spectrum. The stabilization
of the mode spectrum and the reduction of the feedback-induced
noise through current modulation are studied and compared with
experimental results. Current modulation eliminates feedback-
induced chaos when the modulation frequency and depth are
suitably optimized. This technique of chaos control has appli-
cations in optical data recording.

I. INTRODUCTION

N MANY applications, such as optical data recording and

fiber-optic communication systems, semiconductor lasers
operate in the presence of external optical feedback (OFB). It
has been observed that even small amounts of OFB can affect
the laser behavior dramatically [1]-[15]. At relatively low OFB
levels (<—40 dB) the effect of OFB can be beneficial since it
can be used for linewidth narrowing. However, when the OFB
level exceeds a critical value ( ~—40 dB), the laser enters
a so-called coherence collapse regime [3] in which the laser
linewidth increases by orders of magnitudes (from <100 MHz
to > 10 GHz). At the same time, the low-frequency relative-
intensity noise (RIN) can be greatly enhanced (by > 20
dB), a feature that drastically degrades system performance.
Considerable work done over the last few years [3]-[15] has
revealed that coherence collapse is associated with a transition
from the continuous-wave (CW) state to a chaotic state,
often following a quasi-periodic route to optical chaos [15].
However, most of the previous work has used a single-mode
rate-equation model, and therefore applies, strictly speaking,
to semiconductor lasers oscillating predominantly in a single-
longitudinal mode (e.g., a distributed feedback laser). Many

Manuscript received Jan. 18, 1993; revised June 7, 1993. This work is
supported by the New York State Center for Advanced Optical Technology
and the U.S. Army Research Office.

A. T. Ryan and G. P. Agrawal are with The Institute of Optics, University
of Rochester, Rochester, NY 14627 USA.

G. R. Gray is with the Electrical Engineering Department, University of
Utah, Salt Lake City, UT 84112 USA.

E. C. Gage is with Eastman Kodak Company, Rochester, NY 14652 USA.

IEEE Log Number 9215349,

practical applications (such as optical data recording and opti-
cal data links) normally use Fabry—Perot-type semiconductor
lasers operating in several longitudinal modes simultaneously.
It is thus of practical importance to investigate the coherence-
collapse region in multimode semiconductor lasers.

The objective of this paper is two-fold. First, we use a
multimode rate-equation model to study the effect of OFB
on the performance of multimode semiconductor lasers and
compare the results with those obtained for a single-mode
laser. We show that the transition to optical chaos at a
critical OFB level can occur following both a period-doubling
route and a quasi-periodic route depending on the feedback
parameters such as the external-cavity length. Second, we in-
vestigate how optical chaos can be controlled by using current
modulation, a technique referred to as high-frequency injection
(HFI) in the optical data recording literature [16]-[22]. It
has been observed experimentally [18]-[20] that modulation
of the driving current suppresses the feedback-induced RIN
enhancement when the modulation frequency and the ampli-
tude are suitably chosen. However, the optimum values of the
modulation frequency and amplitude need to be determined
empirically since a theoretical understanding has been lacking.
Our multimode rate-equation model is capable of explaining
why the RIN is increased and why this increase can be avoided
through high-frequency injection [22]. Computer simulations
are used to find the optimum parameters for controlling
the laser-intensity noise. The results are compared with the
experimental data.

In the next section we present the multimode rate-equation
model. Section III focuses on the single-mode case in order to
establish a relation to previous work. However, in contrast with
most of the previous work, we also consider the case of short
external cavities, for which the external-cavity mode spacing
is considerably above the relaxation-oscillation frequency of
the laser. Our numerical simulations show the existence of
both period-doubling and quasi-periodic routes to chaos for
such short external cavities. In the opposite case in which the
external cavity is so long that the external-cavity mode spacing
is considerably below the relaxation-oscillation frequency,
optical chaos occurs through the quasi-periodic route, as also
observed experimentally [15]. In Section IV we consider
chaos in a multimode semiconductor laser and compare it
with the single-mode case. An important result is related to
the possibility of mode switching in multimode lasers. Even
though almost all of the power is carried by a single dominant
mode in the chaotic state, the dominant mode is not always the
same. Section V discusses the feedback-induced mode hopping
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by including the effects of spontaneous emission on the chaotic
dynamics of multimode lasers. The control of chaos through
current modulation is considered in Section VI where we
also discuss the applications of this technique in optical data
recording. Section VII compares the numerical results with
the experimental data obtained by using a 780-nm GaAlAs
laser. The main results of the paper are summarized in the
concluding section.

. MULTIMODE RATE-EQUATION MODEL

The dynamic and noise characteristics (such as the RIN, the
frequency noise, and the spectral linewidth) can be studied
by using a rate-equation model that includes the effect of
spontaneous-emission noise and shot noise through a random
term added to each rate equation [1], [2]. The effects of
optical feedback and current modulation can also be included
in this model in a straightforward manner by generalizing the
model of Lang and Kobayashi [23]. In the general case of a
multimode semiconductor laser, these rate equations can be
written as [22]

dEm ; inf
7 % (1 -4a)(Gm ~ 1m)Em + Gt
+ Fin(t) + 6mEm(t — 1) exp (iwmt) (1)
dN I N X
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In (1) E,(t) is the complex amplitude of the mth mode
oscillating at the frequency wp,, G, is the mode gain, v,
is the mode-dependent cavity loss, (i accounts for inter-
action among laser modes through various processes such
as self-saturation, cross saturation, and four-wave mixing,
T = 2Lext/c is the round-trip time in the external cavity
of length L., and F,,(t) accounts for the random noise
generated through spontaneous emission. The complex electric
field is written in terms of amplitude and phase as E,, =
VP €7*, where Py, and ¢ are the photon number and phase,
respectively, of the mth mode. In (2) N is the electron number
inside the active region of the semiconductor laser, / is the
injection current, ¢ is the magnitude of the electron’s change,
Te is the carrier lifetime, and Fi(t) is a random noise term to
account for carrier generation and recombination (shot noise).
In (3) and (4), A is the gain parameter related to the rate
at which the peak gain increases with increasing N, Ny is the
transparency value of N, §G,, is the gain margin related to the
offset of the mode from the gain peak, 3,, is the self-saturation
parameter, O, is the cross-saturation parameter, and K,k
is the four-wave-mixing parameter. The numerical values of
BrmyOmk, and K, depend on the mechanism responsible
for the mode interaction. Their expressions are well known
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for the case in which the mode interaction occurs due to
intraband nonlinearities related to spectral hole-burning [24].
Other mechanisms such as carrier heating and mode beating
can be easily included. Although four-wave-mixing coupling
is included in (1), we neglect such coupling for this paper,
since its effect is expected to be small. The self-saturation
parameter 3y, is related to the commonly used nonlinear-gain
parameter € as B, = €Y, /Vin, where V,,, is the mode volume.
We assume [, to be the same for all modes.

The effect of optical feedback is included through the last
term in (1). The feedback parameter ., is given by [23]

Ko = (1 - Rf) Nem Rexe )
TLm Rf

where Ry is the fraction of output power that is reflected back
toward the laser facet of reflectivity R facing the external
cavity, Tz, is the round-trip time of the mth mode in the laser
cavity, and 7y, is the coupling efficiency of the returned light
into the active region. Both 71,,,, and 7., are nearly the same
for all modes, and can be assumed to be mode-independent to
a good approximation. In contrast, the phase shift w,,7 in the
external cavity is not the same for all modes because of their
different frequencies w,y,. It is useful to write w,, as

6)

where w, is the angular frequency of the central mode located
at m = mo, and Awg /27 is the longitudinal-mode spacing
(~100 GHz). For the purpose of numerical simulations, we
define Foxy as Fext = 7eRext and assume it to be mode
independent since the coupling efficiency 7. (typically ~1-
5%) is nearly the same for all longitudinal modes of the laser.
Physically, F.x; represents the fraction of output power that
reenters the laser cavify.

The rate equations (1) and (2) can be used to obtain the
RIN of the diode laser in the presence of optical feedback by
calculating the spectrum of intensity fluctuations. If P,,(t) is
the mth mode photon number, and P,, is its average value,
the RIN spectrum is defined as the Fourier transform of the
autocorrelation function according to the relation

Wm = we + (m — mg)Awy,

Som(w) = ﬁi"’ /_ (BPA(8Pa(t+ 1)) exp (it dt' (1)

m

where 6P, (t) = Pn(t) — Py, is the fluctuation at time ¢.
Equation (7) provides RIN for a specific laser mode. The RIN
for the total photon number is obtained by replacing P, by
Pr in (7), where Pr(t) = ZM_, P,.(¢). The photon number
can be converted to the optical power by using the well-known
relation given, for example, in [1] and [2).

In the remaining sections we present the results obtained
by integrating the rate equations (1) and (2) numerically
using a fourth-order Runge—Kutta algorithm. The parameter
values used correspond to a typical index-guided GaAlAs
semiconductor laser likely to be used in optical recording
systems. These values are listed in Table I, and result in a
threshold current of 61 mA and a slope efficiency of about 0.5
mW/mA. The external mirror (optical disk in the case of data
recording systems) is facing the low-reflectivity mirror. Most
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TABLE 1
TYPICAL PARAMETER VALUES OF LASER USED IN NUMERICAL
SIMULATIONS FOR A 780-nm GaAlAs SEMICONDUCTOR LASER

Parameter Symbol Value
Laser cavity length L 350 pm
Solitary-laser round-trip time TL 9.3 ps
Linewidth enhancement factor o 4
Laser facet reflectivities R1, Ry 0.9, 0.12
Mode loss rate (using internal loss of vm 7.26 - 1011 1
65 cm™!)
External-cavity length Lext 10 cm
External-cavity round-trip time T 0.67 ns
Carrier recombination time Te 2ns
Gain coefficient A 1.19-10% 5!
Transparency carrier number Ng 1.64 - 108
Spontaneous emission factor Nsp 18
Nonlinear-gain parameter € 4.10-18 ¢cm3
Self-saturation coefficient Bm 4.7-103 s~}
Cross-saturation coefficient Bk 4.4-10% s~!
Bias current I 65 mA
Average output power Pout 1.6 mW
Coupling efficiency e 2%

of the simulations are presented for a constant laser power of
1.6 mW, which is a typical value used for reading data from
an optical disk in optical data recording systems. We include
five longitudinal modes in our numerical simulations. The RIN
spectra are calculated from time series of lengths 30-500 ns,
depending on the resolution desired, after the transients have
died out. The spectra are averaged over several trajectories to
improve numerical accuracy.

IIL. CHAOS IN SINGLE-MODE SEMICONDUCTOR LASERS

As mentioned in the Introduction, we first present results
describing the chaotic dynamics of single-mode semiconductor
lasers in the presence of OFB. For chaos occurring in single-
mode lasers with, in particular, long external cavities, the use
of bifurcation diagrams and Poincaré sections to describe the
behavior is well established [15]. We begin by showing a series
of bifurcation diagrams to point out the differences between
long and short external cavities. Figure 1 presents bifurcation
diagrams for a single-mode laser (as with all of the following
results, except where specified, the laser is described by the
parameters in Table I) for external cavity lengths Lexs in the
range 10-100 cm. These bifurcation diagrams were obtained
by generating a time series for each OFB level, and then
noting the carrier number N when the laser intensity crossed
the solitary-laser value. The random noise terms have been
neglected in making these diagrams, so that we may separate
the deterministic effects from stochastic effects. The parameter
F.. is varied over a wide range (40 dB) covering 1078 to
10~2. The feedback phase woT is set to zero and was kept fixed
at this value in all simulations. The feedback phase is known
to play an important role and can affect the laser linewidth
considerably [6]-[9]. However, in optical recording systems
this phase cannot be chosen to minimize the laser linewidth
since its exact value is somewhat arbitrary. Even though this
phase is expected to stay constant during a single bit, its value
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is likely to change from bit to bit because of disk-surface
imperfections. The results presented here and the conclusions
drawn are nearly insensitive to the value of feedback phase
used in numerical simulations.

Figure 1(a) corresponds to a relatively long cavity (Lext =
100 cm). It shows a quasi-periodic route to chaos, in agreement
with previous work [15]. However, for Lexy = 30 cm [Fig.
1(b)] the laser output becomes chaotic by following a period-
doubling route. Two period-doubling bifurcations occurring at
approximately Feye = 3.5 10~6 and 6 - 10~° are clearly
evident, followed by full-blown chaos after Fex; = 1.5- 1075,
While the two cases demonstrate two different routes to chaos,
they share the common feature that chaotic behavior persists
over a wide range of Fox without stable windows of CW or
periodic operation. This is the defining feature of the long-
cavity regime in which the external-cavity mode spacing Vext
exceeds the relaxation-oscillation frequency vg (about 700
MHz at 1.6-mW output power). Such a low value of the
relaxation frequency is common in optical recording systems
during the reading operation since the laser output power is
kept low.

The qualitative behavior changes considerably in the short-
cavity limit defined by the condition vexy > Vg. For our
laser this condition is satisfied for Lexs < 21 cm. Figure 1(c)
shows the bifurcation diagram for the same laser, but with an
external cavity length of 15 cm. The most important qualitative
difference is that chaos is interrupted by multiple windows of
stability as Fex: increases. The stable windows become wider
when L.y, decreases further. This is evident in Fig. 1(d), which
shows the bifurcation diagram for Lexe = 10 cm. The laser
enters the first chaotic window through a period-doubling route
at approximately Fext = 2 - 1073, but chaos gives way to a
CW steady state when Fey; exceeds 6- 1075, It enters a second
chaotic region for Fey, > 1.5-10~%. This scenario is repeated
many times. However, the route to chaos is the quasi-periodic
type for higher OFB levels. Thus, the same laser can exhibit
a period-doubling or a quasi-periodic route depending on the
OFB level. We note that different chaotic windows in Figs. 1(c)
and 1(d) are of roughly the same size when F, is plotted on
a linear scale. Further reduction in the external cavity length
makes the laser less and less chaotic. Eventually the chaos
disappears for cavity lengths shorter than 0.5 cm, a feature in
agreement with the experiments and previous theoretical work
[6].

The location and width of the chaotic and stable windows in
Fig. 1 depend on many laser parameters. Extensive numerical
simulations indicate that the two most important parameters
from the chaos standpoint are the linewidth enhancement
factor o and the nonlinear gain parameter €. The sensitivity
on ¢ is not surprising since the damping rate of relaxation
oscillations in semiconductor lasers is mostly governed by the
nonlinear gain. Optical chaos sets in when the OFB reduces the
damping rate to the extent that relaxation oscillations become
undamped. Since an increase in € makes the steady state more
stable by increasing the damping rate of relaxation oscillations,
one would expect chaos to occur at higher OFB levels for
larger values of e. Numerical results confirm this behavior.
Figure 2 shows a bifurcation diagram for L = 10 cm under
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Fig. 1. Bifurcation diagrams showing the carrier number N (normalized
to the solitary-laser value N,) as a function of Fext for a single-mode
semiconductor laser for Ley, in the range 10-100 cm. The other parameter
values are given in Table I.
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the same conditions of Fig. 1(d) expect that € = 1.10~17 cm~3,
A comparison of Figs. 1(d) and 2 reveals that for larger values
of € not only does the chaos set in at higher OFB levels, but
also the location and width of chaotic windows differ greatly.
The white region in Fig. 2 for Fiy < 2 - 10-5 corresponds
to the steady-state operation of the laser, in which the laser
operates at a constant power different from that of the solitary
laser. This region is much wider for a larger value of ¢ since
the relaxation oscillations are more difficult to destabilize in
that case.

The dependence of chaotic dynamics on the linewidth
enhancement factor « is also quite dramatic. In general, chaos
is helped by larger values of a. Indeed, the laser remains stable
and does not exhibit chaos when « is below a critical value
that depends on many other parameters (typically aery < 1).
By contrast, chaos becomes much more dominant for large
values of a. Figure 3 shows the bifurcation diagram under
conditions identical to those of Fig. 1(d) except that a has
been increased from 4 to 6. A comparison of Figs. 1(d) and
3 shows that the stable windows have almost disappeared for
a = 6. At the same time, there is evidence of a second chaotic
attractor [15]. The dependence of the chaotic behavior on o
can be understood by noting that the parameter a governs the
amplitude-phase coupling in semiconductor lasers. Since light
fed back into the laser cavity is delayed in the external cavity,
the OFB makes the laser much more sensitive to changes in
the optical phase (OFB acts as a memory device because of
its delayed nature). Any phase changes are then transformed
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Fig. 2. Bifurcation diagram for Lext = 10 cm when the nonlinear gain is
increased to € = 2 - 10~17 ¢m—3,
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Fig. 3. Bifurcation diagram for L., = 10 cm when the linewidth enhance-
ment factor is increased to a = 6.

to gain changes with proportionality constant . In the next
section we study how changing the number of modes impacts
the chaotic dynamics.

IV. CHAOS IN MULTIMODE SEMICONDUCTOR LASERS

The chaotic dynamics of multimode semiconductor lasers
was studied by considering five longitudinal modes. The cross-
saturation parameter was chosen such that all five modes
were above threshold for the solitary laser when sponta-
neous emission was included. In the absence of spontaneous
emission, even a multimode laser can have almost all of its
power in a single longitudinal mode when the steady state is
reached. One may think naively that the differences between
the single- and multimode cases would be negligible in that
case. However, the results of this section show that this is not
the case. The reason is that when the steady state becomes
unstable, the laser has the possibility of sharing its power with
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Fig. 4. Bifurcation diagram for Lex: = 10 and 100 cm for a multimode
semiconductor laser (with 5 modes). The other parameter values are identical
to the single-mode case (see Table I).

other longitudinal modes, a possibility that does not exist in
single-mode simulations. Similar to the single-mode case, a
distinction can be made between the short- and long-cavity
regimes. Figure 4 shows the bifurcation diagrams (made when
the total power Pr crosses its solitary value) for Loy = 10
and 100 cm. As in the single-mode case, chaos persists over a
wide range of F for long external cavities, but is interrupted
by windows of stable regions in the case of short Leyi. A
comparison of Figs. 1(a) and 4(a) shows that the differences
between the single-mode and multimode cases are relatively
minor in the case of long cavities (Vext > vg). In the following
discussion we concentrate on the short-cavity case.

A comparison of Figs. 1(d) and 4(b) reveals the effect on
the chaotic dynamics of having multiple longitudinal modes.
The qualitative differences in the single-mode and multimode
cases are quite evident. In the multimode case the onset of
full-blown chaos is delayed by a factor of 10 relative to the
single-mode case. It appears that multimode lasers are less
sensitive to OFB than their single-mode counterparts for a
given set of device parameters. This result can be understood
qualitatively by noting that all modes contribute to the damp-
ing of relaxation oscillations. Thus, even though individual
modes may become unstable in isolation, simultaneous lasing
of all modes preserves the steady state over a larger range
of Feyi. Figure 4(b) shows that the CW state first becomes
unstable and the total output power becomes periodic (at the
relaxation-oscillation oscillation frequency vg) at a small OFB
level of about 1.5-10~¢, However, the periodic state does not
evolve toward chaos; rather it reverts back to a constant power
state after exhibiting quasi-periodicity over a narrow range. It
appears that the chaos is avoided because of the multimode
nature of the laser. The laser enters the chaotic state at much
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Fig. 5. Temporal variation of mode powers for two neighboring modes at
four levels of feedback, showing the onset of chaos and then the transition to
a periodic state through mode switching.

higher feedback levels (~1-107%). In general, chaotic regions
are much thinner compared to the single-mode case.

A question one may ask for the multimode case is how
individual mode powers behave when the total power in
all modes is chaotic. Specifically, the question is whether
all modes follow chaotic oscillations in synchronization, or
different modes oscillate independently. Synchronized chaos
has been observed in the case of semiconductor laser arrays
[25]. To answer this question, we look at the chaotic time
series of individual modes in the chaotic window occurring
near Fooe = 1:10% in Fig. 4(b). Figure 5 shows how the
mode power evolved as F,y¢ was varied to follow the transition
from periodic state to chaos, and then back to a periodic state.
Unfortunately the possibility of synchronized chaos does not
exist when spontaneous emission is turned off since almost
all of the power is carried by one of the five modes (with
extremely low-power side modes). In Figure 5(a) the CW
state has just become unstable and the main-mode power is
periodic at the relaxation-oscillation frequency. With a slight
increase in Fy, chaos sets in although all power is still in
the main mode [Fig. 5(b)]. In Fig. 5(c), there is still chaos,
but a miniscule amount of power has now gone into a side
mode (it is too small to be seen on the scale used). With a
slight increase in Fy¢ [Fig. 5(d)], the main and side modes
have switched. The original main mode is now effectively
off. Interestingly enough, the side mode emerges in a periodic
state even though the main mode was in a chaotic state just
before switching. This pattern of the transition from chaos
to periodicity, corresponding to a switching of laser modes,
repeats itself as feedback is increased. It will be seen in the
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Fig. 6. Phase diagrams (Pr~ N trajectories) at four feedback levels, showing
the onset of chaos through a period-doubling route and then transition back
to a periodic state through mode switching.

next section that the laser exhibits random mode hopping in
the chaotic region, and as a result is likely to end up in a
different mode when it enters the stable nonchaotic regime.

These dynamical features can also be seen through the use
of phase diagrams in which total output power is plotted as
a function of carrier density for an entire trajectory. Figure 6
shows the laser in transition through periodic state to chaos and
back. In Fig. 6(a) the double-loop indicates period doubling for
Fext = 1.8-107%. A slight increase in Fey; leads in Fig. 6(b)
to period-four oscillation. Figure 6(c) shows chaos occurring
when Fey: is increased to 2.8 - 10~. However, as seen in
Fig. 6(d), chaos ends, and the laser returns to single-period
oscillation, when Fo; = 2.9 - 10~%. Note that the single loop
in Fig. 6(d) is centered on a different point in P— N space
than the double-loop of Fig. 6(a), indicating that the operating
conditions have changed because of mode switching. The
next section discusses the mode-partition phenomenon with
spontaneous emission included.

V. EFFECT OF SPONTANEOUS EMISSION
ON CHAOS AND MODE SPECTRA

In the discussion of OFB-induced chaos, we have so far
neglected the role of spontaneous emission in order not to mix
the effects of deterministic chaos with the stochastic noise.
In practice, however, stochastic noise is always present in
semiconductor lasers because of spontaneous emission and
shot noise (resulting from generation and recombination of
charge carriers). These noise sources are easily included in
our multimode rate-equation model through the Langevin-
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Fig. 7. Temporal variation of mode powers for (a) the solitary laser and
(b) the same laser with feedback-induced chaos. Mode powers are averaged
over a 10-ns window to remove fast oscillations associated with stochastic
spontaneous emission noise.

noise terms Fo,,(¢) and Fn(t) in (1) and (2). It turns out
that Fix(t) can be neglected since spontaneous emission dom-
inates noise in semiconductor lasers. In this section we study
OFB-induced chaotic dynamics by including the spontaneous-
emission-induced noise with emphasis on mode partitioning.
The noise level is determined by the rate of spontaneous
emission rate Ry, through

(F;(t)Fn(tl)) = Rsp‘smn‘s(t - tl)

where the noise is assumed to be Markoffian (delta-correlated)
and independent for each mode. The spontaneous emission rate
depends on the cavity decay rate Yy, as Ry, = Nisp¥m, Where
the spontaneous emission factor ny, was chosen to be 1.8.

In the presence of spontaneous emission and appropriate
OFB, the time series for mode powers exhibit stochastic
fluctuations together with chaotic fluctuations. Since the power
spectrum of stochastic fluctuations peaks at the relaxation-
oscillation frequency, it is beneficial to the analysis to remove
such high-frequency fluctuation of mode powers by perform-
ing a running average over a 10-ns window. The resulting
time series is a measure of low-frequency mode-partition
noise and reflects how a typical time-resolved spectrum of
the laser would appear experimentally. Figure 7 shows the
temporal variation of average mode powers for a solitary
laser and for the same laser with OFB ( Fl. = 5-10~4
and Leyy = 10 cm). The solitary laser [Fig. 7(a)] exhibits
mode-partition fluctuations, but remains multimoded most of
the time. In contrast, Fig. 7(b) shows that the laser is essentially
single-moded all the time, but the laser exhibits mode hopping
at random times. The total power of a solitary laser is
nearly constant [Fig. 7(a)], while it exhibits large fluctuations
in the presence of OFB [Fig. 7(b)]. These low-frequency
fluctuations are indicative of OFB-induced chaos. From a
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Fig. 8. Time-resolved mode spectra at three different times for a multimode
laser with feedback in the chaotic region (left column) and in the nonchaotic
region (right column). The dominant mode switches wavelength among
various modes in the chaotic region (wavelength fluctuations), but stays at
the same wavelength in the nonchaotic region.

practical standpoint, the low-frequency laser RIN appears to
be enhanced by a large amount (> 20 dB) because of OFB.
From a fundamental standpoint, this RIN enhancement is due
to the appearance of chaos that induces random mode hops in
a multimode laser. In fact, it should not even be called RIN
enhancement because the increase in low-frequency noise is
deterministic in nature whereas RIN normally refers to the
stochastic intensity noise. Mode hopping occurs only when the
OFB level corresponds to a chaotic window in the bifurcation
diagram [Fig. 4(b)]. For a nonchaotic feedback level, the
multimode laser remains in a single longitudinal mode over
long periods of time since mode hopping does not occur.
Figure 8 shows mode spectra in the chaotic (left column) and
nonchaotic (right column) regions. In the chaotic case, the laser
jumps from one mode to another mode randomly. By contrast,
the laser stays in the same mode in the nonchaotic case. To
explain why this happens, we return to the bifurcation diagram.

With the spontaneous emission included in the model, the
bifurcations are more difficult to discern since stochastic noise
appears as a thick band even without OFB when the laser
is operating continuously. The lower plot in Fig. 9 shows
the bifurcation diagram for the laser with five modes and
Lexy = 10 cm (with spontaneous emission included). The
regions of chaos are still quite distinguishable since the chaos
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Fig. 9. (a) Low-frequency RIN versus Fey for a multimode laser. (b) The
corresponding bifurcation diagram. The RIN is enhanced by as much as 20
dB within each chaotic window.

introduces much larger deviations in the total power Pr and
the carrier number NV than those introduced by spontaneous
emission. Figures 8(a)—~(c) show the mode powers in such a
chaotic region, while Figs. 8(d)(f) are taken from a region
where there is no chaos, only stochastic spontaneous emission
noise.

The upper curve in Fig. 9 shows the variation of low-
frequency RIN (averaged over the 0-100-MHz range) as a
function of Fe:. There is one-to-one correspondence between
the regions of chaos and the regions of high RIN. This clearly
demonstrates that deterministic chaos is the cause of the high
RIN levels observed in semiconductor lasers in the presence
of optical feedback. Since the location and the width of
chaotic windows depend on many laser parameters, such as
the linewidth enhancement factor @ and the nonlinear gain
parameter ¢, the variation of low-frequency RIN with the
OFB level also depend strongly on these parameters. Figure
10 shows the low-frequency RIN as a function of the OFB
level Ry, for several values of the linewidth enhancement
factor « in the range 0-6 by assuming 2% coupling efficiency
(nc—2%). The RIN is nearly independent of « for o < 2 since
chaos does not occur for such low values of .. However, it
is significantly enhanced for a = 4 and 6 for OFB levels that
correspond to the chaotic windows in the bifurcation diagram.
Figure 11 shows the dependence of RIN on the nonlinear
gain parameter e. As discussed in Section III for the single-
mode case, chaos almost disappears for large values of €. As a
result, the RIN becomes almost independent of Fe, for large
values of e. The next section considers a means of controlling
the chaos and hence reducing the feedback-induced noise in
semiconductor lasers.

VI. CONTROL OF FEEDBACK-INDUCED CHAOS

As mentioned in the Introduction, the HFI technique in-
volving sinusoidal modulation of the drive current has been
used with some success in reducing the RIN of semiconductor
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lasers in optical recording systems [16]-[22]. Since the RIN
enhancement is in fact due to the onset of deterministic
chaos, it follows that the RIN can be reduced only if current
modulation eliminates optical chaos. This section considers the
effect of OFB in directly modulated multimode semiconductor
lasers. For this purpose, the multimode rate equations (1) and
(2) are integrated numerically by replacing the drive current
I in (2) by

I(t) = I + Iy sin (21 fnt) ®)

where I; is the bias current, I,,, is the modulation current, and
fm is the frequency of sinusocidal modulation,

Figure 12(a) shows the variation of low-frequency RIN with
the OFB level for modulation frequencies of 275 and 500
MHz. The unmodulated case (fm = 0 MHz) is included for
reference in Fig. 12(a). Although RIN is reduced for Jm =275
MHz, the choice of 500 MHz is much better since the RIN is
close to the solitary-laser value over a large range of OFB. As
observed also experimentally [20], the ability to suppress the
RIN enhancement is sensitive to the choice of the modulation
frequency. One may ask what modulation frequency is the best
for control of chaos. This answer depends critically on the
length of the external cavity. In the long external cavity limit
(Vext < vg) modulation at a frequency near vy, /2 appears
to work well, since the laser is essentially turned off at the
time the OFB returns to the laser [16]. For short external
cavities, however, this simple formula does not work as well.
Instead, to determine the optimum modulation frequency, the
low-frequency RIN is plotted in Fig. 12(b) as a function
of modulation frequency for three different feedback levels,
chosen such that they cover both chaotic windows and the
nonchaotic region between them. For this particular laser the
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RIN versus OFB for three modulation frequencies (b) RIN versus modulation
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(peak-to-peak).
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Fig. 13. RIN versus OFB for three values of the modulation currents
(peak-to-peak) at a modulation frequency of 500 MHz. The unmodulated
case is also shown for comparison.

optimum modulation frequency appears to be 480 MHz. The
RIN suppression is also sensitive to modulation current. Figure
13 shows the RIN as a function of peak-to-peak modulation
current (21,,) when the modulation frequency is chosen to be
at its optimum value of 480 MHz. The chaotic windows are
eliminated only when the current is modulated such that the
laser is driven below threshold over a part of the modulation
cycle. The lowest values of RIN occur for relatively large
values of I,, chosen such that the laser is driven considerably
below threshold. These results demonstrate that it is possible
to eliminate the feedback-induced RIN enhancement over a
broad range of feedback levels by using the HFI technique.
We can gain an understanding of this phenomenon by
investigating the laser dynamics under optimum modulation
conditions. An important question is how current modulation
affects the mode spectra. Figure 14 shows the mode powers
averaged over 10 ns, analogous to those shown in Figs. 7 and
8, for a multimode laser modulated at 480 MHz with I, =10
mA. Current modulation has the effect of spreading the total
power more or less evenly among the laser modes over a
time scale longer than 10 ns. On a shorter time scale, shown
in Fig. 15, where the individual mode powers together with
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Fig. 14. Temporal variation of mode powers under condition identical to
those of Fig. 7(b) except that the semiconductor laser is modulated at 500
MHz.

the total power are plotted as a function of time, all modes
appear to oscillate at the modulation frequency. Furthermore,
the oscillation amplitude varies randomly from cycle to cycle.
An interesting question is whether the random amplitudes of
the mode powers oscillating at the modulation frequency are
chaotic or stochastic in nature. This question can be answered
by noting that the low-frequency RIN is near the solitary-laser
value for the time series shown in Fig. 15. Since a hallmark
sign of chaos is the appearance of broadband noise, the absence
of such a noise indicates that the random oscillations in Fig.
15 are stochastic in nature. Physically, the mode powers grow
from the seed provided by spontaneous emission when the
laser goes below threshold during each cycle, and all modes
have equal probability of being excited. Thus, even though the
total peak power is nearly constant from cycle to cycle [see
Fig. 15(d)], individual mode powers fluctuate wildly. Such
mode partitioning is certainly stochastic in nature.

It is clear from the above discussion that current modulation
such that the laser goes below threshold during each cycle
helps to eliminate feedback-induced chaos. One may ask over
what range of OFB levels such a suppression of chaos can
occur. This question can be answered through a bifurcation
diagram. Figure 16 shows the bifurcation diagram under
conditions identical to those of Fig. 4(b) except that the laser
is modulated at the optimum frequency of 480 MHz and
spontaneous emission is included through the Langevin terms
in the multimode rate equations. The band-like appearance
is due to stochastic noise and should not be confused with
quasi-periodicity. The important point to note is that the
feedback-induced chaos is suppressed for feedback levels as
large as Feyxe ~ 2 - 103, Compared to the unmodulated case
shown in Fig. 4(b), the onset of chaos is delayed by well over
an order of magnitude when the laser is modulated.

The optimum modulation frequency of 480 MHz found in
numerical simulations is specific to the laser under considera-
tion. One may ask how this frequency will change from laser
to laser. In particular, can one establish guidelines to estimate
this frequency? Such guidelines exist [16] for relatively long
external cavities (L > 30 cm) for which vexs < vg. The
modulation frequency f,,, should be chosen such that the laser
is turned off when the feedback returns to the laser cavity. This
condition can be satisfied by choosing f,, close t0 vy /2.
Unfortunately this simple recipe does not work for short
cavities for which vex; > vg. One of the reasons is that Veys /2
may lie close to v, an undesirable situation since modulation
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near the relaxation-oscillation frequency can destabilize the
laser. Experimental data indicate that the optimum modulation
frequency varies from laser to laser with values generally
lying in the range Vext/2 < fm < Vext. In fact, the primary
objective of this work was to predict f,, numerically so that
such simulations can be used as a computer-aided design tool
for optical recording systems. In the next section we present
the experimental data on the specific laser whose parameters
were used in the numerical simulations. An agreement between
simulations and experiments helps to validate the computer
model.

VII. EXPERIMENTAL RESULTS

To compare the theoretical predictions with experiments,
we have carried out measurements of the low-frequency RIN
of an optical recording diode laser as a function of OFB
using a range of modulation frequencies and depths. As in
the simulations, the external cavity length is 10 cm. The
OFB level is varied in the range of 0.1-10%, while the laser
power is kept constant at 1.6 mW. In the experimental plots,
each data point represents an average of the measurements of
10 identical lasers; the error bars correspond to the standard
deviation of this sample of 10 lasers. By measuring the small-
signal modulation response, we have determined that only
approximately 60% of the modulation current at 500 MHz is
effective in driving the laser. This should be kept in mind when
comparing the modulation currents employed experimentally
with those of the simulations. Figure 17 shows RIN versus
OFB for several different modulation frequencies, using a
modulation current of 40 mA (peak-to-peak). Of the five
modulation frequencies shown, 480 MHz results in by far the
greatest suppression of the RIN enhancement: the RIN remains
below —125 dB/Hz up to 5% OFB. Recall that the computer
simulations predict (see Fig. 12) that a modulation frequency
in the range 450-500 MHz gives the lowest values of RIN.
Typical two-sided error bars for this plot are 3-4 dB.

The next experimental result, shown in Fig. 18, shows
RIN versus OFB for different modulation currents, using the
modulation frequency of 480 MHz. The modulation currents
shown are peak-to-peak values and are similar to the values
used in the simulations. The unmodulated case is shown for
comparison. The similarity of the experimental measurements
to the simulated results in Fig. 13 is quite apparent. With no
modulation, the experimental RIN has already increased to
high values for a feedback of 0.1%, similar to the simulations.
At high feedback levels, the experimental RIN can actually
decrease to low values when OFB lies between two chaotic
windows, as seen in the simulations [see Fig. 4(b)]. Experi-
mentally, the high-feedback regime is very unstable, and the
RIN fluctuates between high and low values. A typical error
bar shown on the unmodulated RIN curve is 10 dB for OFB
levels > 1%. This is consistent with Fig. 4(b), where multiple
chaotic windows are seen to occur. When current modulation
is turned on, the RIN becomes low and approaches the solitary-
laser value, in agreement with the numerical simulations (see
Fig. 13). Larger modulation depths are more effective in
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Fig. 15. Temporal variation of mode powers at a feedback level within a chaotic window in Fig. 4(b).

delaying the onset of chaos, again in agreement with computer
simulations.

VHI. CONCLUSIONS

Semiconductor lasers in the presence of external optical
feedback exhibit an enhancement of low-frequency RIN that
is detrimental to some system applications such as optical
data recording. Based on the results presented here, one can
conclude that this RIN enhancement is due to the onset of
deterministic chaos whenever the feedback level lies within a
chaotic window of the bifurcation diagram. We have integrated
the multimode rate equations numerically to determine the
location of such chaotic windows. It turns out that the OFB
range over which the laser becomes chaotic is sensitive to
several parameters. The most important among them are i)
external cavity length L.y, ii) linewidth enhancement factor
a, and iii) nonlinear gain . We have discussed the dependence
of chaotic dynamics and the associated enhancement of the
low-frequency RIN on these three parameters in detail.

A new feature of multimode chaos is the dependence of
mode spectra on the OFB level. We have found that OFB
in multimode lasers generally forces the laser to oscillate
in a single longitudinal mode, although the dominant mode
is not always the same. In fact, chaos in multimode lasers
is accompanied by mode hopping. When the laser output
becomes chaotic, the laser hops from mode to mode apparently
randomly. Further increase in the OFB level may return the
laser to a periodic state, and mode hopping stops.

A solution of the RIN enhancement problem is provided by
modulation of the injection current. With the proper choice of
modulation frequency and current, the onset of deterministic
chaos, and consequently the enhancement of the low-frequency
RIN, can be delayed by more than an order of magnitude
so that it occurs at much higher feedback levels. Current
modulation forces the laser to go below threshold during
each modulation cycle. Since the mode powers grow from
noise in the below-threshold regime, spontaneous emission
and the associated stochastic noise dominate the dynamics
of a modulated multimode semiconductor laser. Numerical
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conditions identical to those of Fig. 4(b) except that spontaneous emission is
included and that the laser is modulated at the optimum modulation frequency
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Fig. 17. Experimental measurement of RIN versus OFB for five different
modulation frequencies. Modulation current is 40 mA peak-to-peak.
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Fig. 18. Experimental measurement of RIN versus OFB for three different
modulation currents, The unmodulated case is also shown for comparison.

simulations indicate that mode switching is eliminated in this
case simply because all modes carry roughly equal powers on a
time scale much longer than the modulation period. In essence,
current modulation forces the laser to become multimoded, and
in the process eliminates the chaos. The current-modulation
technique has application in optical data recording systems
since its use reduces the laser noise even in the presence of
OFB from the optical disk [20]-[22].
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