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Steering of optical beams in nonlinear Kerr media
by spatial phase modulation
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A simple scheme to steer optical beams is proposed. The basic idea is to impose a sinusoidal phase modulation
on the optical beam and then propagate it in a nonlinear Kerr medium. Spatial phase modulation splits the
input beam into multiple subbeams, while the nonlinear medium shapes a particular subbeam into a spatial
soliton in such a way that most of the beam power appears in a narrow beam whose direction can be controlled
by changing the modulation parameters. We present numerical results showing how spatial phase modulation
can be used to alter the path of an optical beam propagating in a nonlinear Kerr medium.

In both the temporal and spatial domains the multi-
dimensional nonlinear Schr6dinger equation (NLSE)
has long been a useful tool for describing the behavior
of optical fields in nonlinear dispersive media.1' 2 It
has proved valuable in the description of such di-
verse phenomena as pulse compression, dark soliton
formation, and self-focusing of ultrashort pulses. In
recent years it has been useful in describing some
of the new innovations in beam steering.3 -6 One
technique uses area modulation of a second beam to
induce a temporal prism in the nonlinear medium,
which then deflects the beam.3 Another two-beam
technique uses cross-phase modulation from a pump
beam to alter the phase profile of a probe beam
and so induce a deflection.4 Others have employed
single beams with asymmetric power profiles, which
resulted in self-bending on propagations Another
technique uses the properties of dark solitons for
beam steering.6 There are also a variety of tech-
niques for steering beams in linear media.7 '1 The
technique that we propose here employs spatial phase
modulation of a beam entering a nonlinear medium
and shows that high-efficiency beam steering is possi-
ble. Spatial phase modulation splits the input beam
into many subbeams, while the nonlinear medium
shapes a particular subbeam into a spatial soliton in
such a way that most of the beam power appears in
a narrow beam whose direction can be controlled by
changes in the modulation parameters.

We model beam propagation with the NLSE in
the dispersionless (cw or quasi-cw) approximation
by using the well-known split-step Fourier method.'
Spatial transverse coordinates t and 7 are normal-
ized to the input beam width o-, and the propagation
distance ; is measured in units of the diffraction
length, Ld = (27/A)u2, where A is the optical wave-
length. The normalized NLSE then takes the form

d;u 21 d2U + a2u + N 2U12U = 0, (1)
a~ 2 ae2 a 72/

where the parameter N = (2iro-/A)\ non2 Io represents
the strength of Kerr nonlinearity. The quantity n210
represents the maximum nonlinear index change for

an input beam of peak intensity Io in a medium
of linear refractive index no and nonlinear index
parameter n2. We have performed simulations for
both one and two transverse dimensions.

We focus first on the case of one transverse di-
mension so that the results are applicable mainly to
planar waveguides. The NLSE is solved for a phase-
modulated input beam having a spatial profile

u(e, 0) = exp(- e
2/2)exp[i0(e)]. (2)

For the case of sinusoidal phase modulation, .0 (49 has
the form

0(6t) = q00 sin(21rpe + 8), (3)

where 00 is the amplitude of the modulation, p is
the spatial modulation frequency, and 8 is a constant
phase shift. By using a standard Bessel-function
expansion of the modulation term, one can see that
phase modulation breaks up the input beam into
multiple subbeams propagating at different angles
(Raman-Nath scattering7 ):

u(6, 0) = exp(- 2/2) EJm(q5o)exp[im(2Trp6 + 8)].

(4)

In this form it is clear that the amplitude of each
subbeam is determined through the modulation am-
plitude 00 and that the steering angles are deter-
mined from the modulation frequency p. Thus our
numerical simulations represent the interaction and
evolution of these initially intersecting subbeams as
they propagate through a Kerr medium. We show
that, with the proper choice of modulation parame-
ters p, 00, and 8, we can steer most of the initial
beam power into just one of the subbeams.

The numerical simulations for various values of
8 show that beam steering is quite sensitive to the
phase shifts 8. The beam profile remains symmetric
only for 8 = ir/2, as expected from Eq. (3). For
other values of 8 the beam steers to one side in an
asymmetric manner. Specifically, as 8 is increased
from v/2 to 7r, the beam is deflected to the left
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Fig. 1. Spatially modulated phase profiles for 8 = 7r/2
(dashed curve) and 8 = 7r (dotted-dashed curve) with
p = 0.2. The bottom plot shows for comparison the
Gaussian intensity profile of the input Gaussian beam.

(it is deflected to the right if 8 is decreased to 0).
This behavior can be understood by reference to
Fig. 1, which shows the modulation function 0(6)
and the intensity profile of the beam on the same
horizontal scale for p = 0.2. When 8 = 0 or 8 = x,
phase modulation is nearly linear and is equivalent to
placing a prism in the beam path, resulting in beam
deflection. By contrast, the phase shift 8 = tr/2
is nearly equivalent to placing a lens in the beam
path, as it produces a nearly quadratic variation of
the phase front. The amount of power deflected into
a given subbeam also depends on 8 and is optimal for
8 = 0 or 8 = vr, depending on whether the beam is
steered toward the right or the left.

As seen from Eq. (4) the amount of power ini-
tially in a subbeam also depends critically on the
modulation amplitude 00 through the factor Jm(S0o).
Indeed, for 00 s 1 there are only three (m = 0, +1)
beams with any significant power. But the ideal
choice of modulation depth is 00 = 2.405, the first
zero of Jo. For this choice of modulation depth,
phase modulation leaves no power in the central
undeflected portion of the beam. For higher mod-
ulation amplitudes not only will some power creep
back into the central subbeam but more power will
leak into the higher-order subbeams at the wider
angles. For low modulation amplitudes, the modu-
lation has the effect of shedding some of the power
from the central beam. The impact of the modu-
lation is also highly dependent on the modulation
frequency. As is clear from Eq. (4), the modulation
frequency determines the transverse component k, of
the subbeam wave vector (e.g., the mth subbeam has
a transverse wave vector of 2m-7rp/or). The initial
steering angle of the mth subbeam is thus given by
Am = tan- 1(k,/k). In terms of the beam parameters
the steering angle becomes Om = tan-'(mpA/cr). For
very low modulation frequencies (p << 1), subbeams
diverge so slowly that the effect of the modulation be-
comes irrelevant. By contrast, for high modulation
frequencies (p > 1), subbeams may diverge so rapidly
that the paraxial approximation used to derive the
NLSE becomes suspect. Even for p < 1 the steering

angle Am for higher orders becomes large enough
to violate the paraxial approximation (expected to
hold for 0m < 20°), particularly for ou - A. In gen-
eral, for beam widths considerably larger than A,
the paraxial approximation remains valid as long as
only lower-order beams carry significant power. We
choose modulation frequencies in the range 0.1 <
p < 1 such that the paraxial approximation remains
valid.

All the above discussion is quite general since it
refers to the initial effect of phase modulation; it
can be applied to propagation in both linear and
nonlinear media. What we now discuss is the effect
of the nonlinear medium on the phase-modulated op-
tical field in a one-dimensional (waveguide) geometry.
Figure 2 compares the beam evolution in a nonlinear
medium for three values of N (or peak intensity
Io). As seen in Fig. 2(a), for low powers the steered
beam diverges on propagation since the medium is
nearly linear. But as the power is increased, the pri-
mary subbeam is capable of solitonlike propagation,
whereas the remaining lower-power subbeams sim-
ply diverge. Thus the majority of the beam power
is steered in a different direction. We can return
again to Eq. (4) to estimate the value of N for which
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Fig. 2. Evolution of a phase-modulated Gaussian beam
in a Kerr medium for three different peak intensities:
(a) N = 0, (b) N = 2, and (c) N = 3. The modulation
parameters are p = 0.2, 0o = 2.405, and 8 = 0.
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the mth-order subbeam will propagate as a soliton.
Since the peak amplitude of the subbeam is given
by Jm(<t>o) and the soliton order Nm of the subbeam is
linear in field amplitude, we require Nm = NJm(0O) >
1/2 for soliton propagation of the mth subbeam.1
For 00 = 2.405, JJ(0o) 0.52, and N, > 1/2 when
N > 0.96. So for N - 0.96 the first-order subbeam
should propagate as a soliton, although for such a low
N, it would be quite broad. Ideally one would like a
narrow subbeam for which a higher N, is required.
Fundamental solitons will still be obtained for N, <
3/2, and the higher the N, the narrower the subbeam.
For 00 = 2.405, N, < 3/2 when N < 2.88. Thus the
first-order subbeam can form a soliton for values of
N in the range 0.96 < N < 2.88.

One should also ensure that the second-order sub-
beam does not form a soliton if the objective is to
obtain most of the power in a single steered beam.
It would appear that this requirement severely lim-
its the range of N since N2 can exceed 1/2 when
N > 1.16. However, such a simplistic argument as-
sumes that the subbeams propagate independently.
In reality, first- and second-order subbeams interact
strongly during propagation until they are separated
from each other. Our numerical simulations auto-
matically include mutual interaction of the subbeams
with proper phase. As seen in Fig. 2(b), the second-
order subbeam does not form a soliton even for values
of N as large as 2. For larger values of N [N = 3 in
Fig. 2(c)], the second-order subbeam does form a soli-
ton. However, as seen in Fig. 2(c), the two solitons
corresponding to m = 1 and m = 2 pass through each
other and keep propagating as solitons after their
collision. Our numerical simulations indicate that
the optimal beam power for steering the first-order
subbeam is such that the parameter N is close to 2.

We now consider beam steering in bulk nonlinear
media by including both transverse dimensions in our
numerical simulations. The two-dimensional analog
of Eqs. (2) and (3) is

u(i , 0) = exp[-(4e2 + 172)/2]exp[i'k sin(2irplf
+ 81) + iO2 sin(27Tp277 + 82)], (5)

where Pi and P2 are spatial phase-modulation fre-
quencies in the two directions. One can steer the
beam along one axis by setting either 'k or 'k2 equal
to zero. In the general case the beam can be steered
in any direction by choice of 01, 102, 81, 82, P1, and
P2 appropriately. Most of the above discussion can
be easily carried over to the two-dimensional case.
The main difference comes from the fact that now
the first-order subbeam can collapse catastrophically
if the subbeam power exceeds the critical power and
the medium length exceeds the so-called self-focusing
distance. However, one can easily avoid the collapse
problem in practice by choosing the medium length
shorter than the self-focusing distance since the ob-
jective is to counteract diffraction broadening. In
essence, the nonlinearity is used only to control the
beam size.

These results have an interesting temporal ana-
log. The NLSE for cw beam propagation in a one-
dimensional (waveguide) geometry is mathematically

equivalent to the NLSE for short optical pulses prop-
agating in single-mode fibers.1 The interpretation
of our results in the temporal domain is as follows:
a sinusoidal temporal phase modulation of an ul-
trashort pulse can create subpulses that are either
delayed or advanced with respect to the input pulse.
These subpulses can of course become solitons with
the proper choice of modulation parameters. The
width of the input pulse imposes a limit to the amount
of delay or advance of the subpulse that is physically
possible in the same way that the beam width limits
the amount of steering that is actually possible. The
limitations on the temporal delay or advance have
been observed experimentally by da Silva et al. in a
different context. 1 2

In conclusion, we have proposed a simple scheme
to steer optical beams. The basic idea is to impose
a sinusoidal phase modulation on the optical beam
and then propagate it in a nonlinear Kerr medium.
Spatial phase modulation splits the input beam into
many subbeams, while the nonlinear medium shapes
a particular subbeam into a spatial soliton in such a
way that most of the beam power appears in a narrow
beam whose direction can be controlled by changes
in the modulation parameters. To our knowledge,
this kind of beam steering has not yet been observed
experimentally. The basic concept can be demon-
strated with the use of the Kerr nonlinearity of CS2.
Practical applications would require the use of a
solid-state medium.
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