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Concept of Linewidth Enhancement Factor in
Semiconductor Lasers:
Its Usefulness and Limitations

Govind P. Agrawal and Charles M. Bowden

Abstract—The usefulness and the limitations of the concept of
the linewidth enhancement factor « in semiconductor lasers are
examined by considering the laser dynamics without the rate-
equation approximation. The rate equations with a constant
value of o can be used for semiconductor lasers operating
continuously or modulated directly such that the carrier density
does not change significantly during each modulation cycle. A
new set of generalized Bloch equations should be used whenever
subpicosecond optical pulses are involved.

Abremarkable feature of semiconductor lasers is that
oth the optical gain and the refractive index of the
active region change with injected carrier density. Simul-
taneous variations of the mode gain and the mode index
with external pumping result in an amplitude-phase cou-
pling that affects many laser characteristics [1]-[3]. Per-
haps the most well-known effect of such an amplitude-
phase coupling is the enhancement of the laser linewidth
by a factor of 1 + a2, where the parameter a is referred
to as the linewidth enhancement factor (LEF) [1]. In the
simple rate-equation model commonly used for semicon-
ductor lasers, « is introduced phenomenologically by as-
suming that both the optical gain and the refractive index
vary linearly with the carrier density [2]. Because of its
importance in governing the laser behavior, the LEF has
been extensively studied both theoretically and experi-
mentally [3]-[9]. However, in spite of its usefulness, the
concept of LEF is viewed with suspicion because of its
phenomenological origin. The objective of this paper is to
discuss the limitations behind the concept of the LEF and
identify the conditions under which such a concept can be
used in the theory of semiconductor lasers.

In the density-matrix formulation [10]-[12] the dynamic
response of a semiconductor laser is modeled by consider-
ing transitions between the individual conduction and
valence band states and integrating over the entire range
of transition frequencies in a way similar to an inhomoge-
neously broadened two-level system. The calculation of

Manuscript received February 12, 1993; revised March 19, 1993. The
work of G. P. Agrawal was supported by the U. S. Army Research Office
and the New York State Center for Advanced Optical Technology.

G. P. Agrawal is with The Institute of Optics, University of Rochester,
Rochester, NY 14627.

C. M. Bowden is with Weapons Sciences Directorate, AMSMI-RD-
WS-ST, U.S. Army Missile Command, Redstone Arsenal, AL 35898.

IEEE Log Number 9209446.

gain and the refractive index under steady-state condi-
tions requires a knowledge of the band structure {41, [5].
In the transient regime the procedure becomes impracti-
cal since the gain and the refractive index cannot even be
defined without making the rate-equation approximation.
We have recently developed a set of generalized
Maxwell-Bloch equations [13] which allows us to study
semiconductor-laser dynamics without explicitly perform-
ing an integration over the band states. In our model,
details of the band structure are included through a single
parameter s that can be calculated numerically or used as
a fitting parameter. The generalized Bloch equations ob-
tained from the density-matrix equations are [13]

aw I

7 A, = v (W =W, + E(E*p — Ep*) (¢))]
dp , s s

E = *')’T(l + lA)p -8 ‘)/TS + EEW (2)
ds . 1

- = —y,(1 +iA)S + yrp + ﬁEU 3)
du — 12

o = —y(U-0) -y (U-U,) - g(E*S + ES*)

@

where W = (p;; = pp)y P = (hp)y S = (8pn);
U= (8(p, — py))/s* and p, is the slowly varying part
of p;, = py, exp (—iwt). Here pyy, py, and py, are the
density-matrix elements [10]. The angle brackets denote
averaging over the band states, ie., (x) = [x(8)D(8)d3,
where 8 = (w — w,)/ vy is the normalized detuning from
a reference frequency w,. The parameter A in (2) and (3)
is defined as A = (w, — @)/ vy, Where w; is the laser
frequency. We choose w, = w; since this choice makes
A =0 and simplifies the analysis. In (1)-(4), A, is the
pumping rate, u is the dipole moment, y; is the dipole
relaxation rate inversely related to the intraband relax-
ation time 7,,, v, is the intraband relaxation rate of
electrons, and vy, is the interband carrier relaxation rate
that is related to the carrier lifetime 7, as 7, = y['.
Typically y;! and 7! are ~ 0.1 ps whereas y;' ~ 1 ns.
W, and U, are the values of W and U in thermal
equilibrium, whereas U in (4) denotes the quasi-equi-
librium value of U established by the intraband relaxation
processes.
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The parameter s appearing in (2) is defined as
s? = (82Cpii — p2))/<pii — P22 (5)

where the superscript ss stands for steady-state values. All
band-structure details appear in our model through a
single parameter s, defined to be dimensionless. Physi-
cally, s is a measure of the spread of the electron and
hole populations.

The generalized Bloch equations (1)-(4) govern the
dynamic response of semiconductor lasers and are valid
even in the femtosecond time domain. However, the con-
cept of LEF is not useful in the femtosecond regime since
neither gain nor refractive index can be defined as long as
the induced polarization p is not proportional to the
optical field E. One can define a time-dependent ratio Re
(p)/Im (p) that reduces to a under steady-state condi-
tions. This ratio plays the role of LEF in the femtosecond
regime.

For time scales longer than a few picoseconds one can
consider the rate-equation limit of the generalized Bloch
equations by assuming that both y, and vy, are > vy, and
setting dp/dt, dS/dt, and dU/dt = 0 in (2)—(4). Both p
and S are then proportional to E, and one can introduce
the susceptibility y through the relation

(6)

where P is the induced polarization, N, is the total dipole
density, and €, is the vacuum permittivity. The suscepti-
bility x is found to be given by

P=2uNp = ey xE

2

s (s*U + W) @)
= - i
X ey (1 + 5%
where
U
1+ 1EI°/I,
and the intraband saturation intensity I, is given by
I, = (R /)y vy, + 57). 9

Equation (7) provides an analytic expression for the
complex susceptibility of a semiconductor laser under
external pumping. The real and imaginary parts of y are
related to the refractive index and the optical gain, re-
spectively. The LEF, defined as a = Rey/Im x, is given
by a remarkably simple expression

o= ﬂ _ (8Cpy — pn))
w « Pu — Pzz)> -

This expression for @ makes it evident that the origin
of « lies in the asymmetric nature of electron and hole
distributions in semiconductors. If we define w = p;; —
py as the local value of the inversion, a = (Sw)/{w)
can be interpreted as the average detuning weighted with
the local inversion. The main point to note is that, in
contrast with the commonly made assumption, « changes

(10)

with both the carrier density N (proportioned to W) and
the intensity |E|*. It is also time dependent whenever N
and |E|* change with time.

One may ask under what conditions o can be treated
as constant. In the case of CW operation of a semicon-
ductor laser, both U and W in (10) are replaced by their
steady-state values. The LEF is then obviously time inde-
pendent. The inversion W remains approximately clamped
to its threshold value and does not change significantly
with laser power. At law operating powers (< 10 mW), U
can be replaced by U since intraband saturation is negligi-
ble. The LEF factor can then be treated as a constant
parameter as long as the laser power remains below the
intraband saturation power (typically > 100 mW). For di-
rectly modulated semiconductor lasers, o is, in principle,
time dependent since W (proportional to the carrier den-
sity N} changes with time. However, variations in N or W
are quite small as long as the laser is not biased well
below threshold, and a can be taken approximately con-
stant. The situation is different for semiconductor laser
amplifiers in which variations in N or W are quite large
during pulse amplification. The use of a constant « is less
justified for optical amplifiers than for semiconductor
lasers. For both lasers and amplifiers, the concept of «a
becomes questionable when ultrashort (subpicosecond)
optical pulses are involved. The full set of generalized
Bloch equations should then be used since the rate-equa-
tion approximation no longer remains valid in that case.

To illustrate the limitation of the concept of the LEF
for subpicosecond pulses, consider amplification of a
Gaussian pulse in a semiconductor laser amplifier. Equa-
tions (1)-(4) are solved numerically with the amplitude

E = E,exp (—t?/27¢ an
by choosing 7, = y7' =0.1ps, 7, =y ' =02ps, 7, =
y;' =03mns, A=0,s =2,and U = 0.5. The peak ampli-
tude E, is chosen such that Ef = Ay, y;/u* corresponds
to the interband saturation intensity. The pump rate is
such that the amplifier can provide 30-dB single-pass gain
in the absence of gain saturation. Fig. 1 shows variation of
a, defined as the ratio Re (p)/Im (p), with time t for
three values of the pulse width 7. For 7y > 1 ps, a is
nearly constant over the entire pulse, indicating that it
can be treated as time independent for picosecond pulses.
However, for subpicosecond pulses, «a varies considerably
over the pulse duration and cannot be assumed to be a
constant. For , = 0.5 ps, a can even change sign. These
results clearly indicate that the use of a constant value of
« becomes less and less justified as pulses become shorter
than a few picoseconds. The generalized Bloch equations
presented here are valid as long as the concept of intra-
band relaxation remains applicable.

In conclusion, the limitations of the concept of LEF in
semiconductor lasers were examined by considering the
laser dynamics beyond the rate-equation approximation.
A constant LEF can be used for semiconductor lasers
operating continuously above threshold and for directly
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Fig. 1. Variation of linewidth enhancement factor a with time for

several values of the pulse width 7, when a Gaussian pulse is amplified
in a semiconductor laser amplifier with 30-dB gain. The carrier lifetime,
the intraband (dipole) relaxation time, and the electron scattering time
are 7, = 0.3 ns, 7, = 0.1 ps, and 7. = 0.2 ps, respectively. Other parame-
ter values used in the numerical calculations are given in the text.

modulated semiconductor lasers as long as the laser is not
biased too far below threshold so that the carrier density
remains nearly constant. A new set of generalized Bloch
equations [(1)—(4)] should be used whenever subpicosec-
ond or femtosecond optical pulses are involved. These
equations would be useful for mode-locked semiconductor
lasers and for amplification of femtosecond pulses in
semiconductor laser amplifiers.
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Reduction of Damping in High-Speed
Semiconductor Lasers

Gary Wang, Radhakrishnan Nagarajan, Dan Tauber, and John Bowers

Abstract—We derive an analytical expression for the intrinsic
gain suppression factor based on carrier heating, The theory
shows good agreement with the published experimental value of
€ = +1.5 X 10 7'7 cm® for in-plane lasers. For the first time, we
predict and experimentally observe a negative gain suppression
factor for particular laser designs. A negative gain suppression
factor can lead to the elimination of damping in semiconductor
lasers. Using vertical-cavity surface-emitting lasers, we observe a
negative gain suppression factor of —2.2 X 10 =7 cm?>,
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NDERSTANDING the difficulties that limit the

modulation bandwidth are crucial to the develop-
ment of high-speed semiconductor lasers. Structure ef-
fects such as carrier transport can severely degrade the
modulation bandwidth of semiconductor lasers [1]. For
properly designed semiconductor lasers without any ex-
trinsic transport limitation, the modulation response is
still damped by intrinsic effect such as gain suppression
(2], [3].

Experimental measurements of damping in the modula-
tion response of high-speed lasers have been modeled
fairly well by assuming the gain is reduced at high photon
densities by a factor in the form of 1/(1 + €S,) [1], [2],

(1 —€S,) [3], or 1//1 + €S, [4], where € is a phe-
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