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A perturbative method, is used, which includes, for the first time, local field effects, to obtain a set of generalized Bloch equa-
tions based upon averaging of the Bloch equations over the intraband distributions by the introduction of new dynamical vari-
ables. It is shown that the new set of Bloch equations, taken in the rate-equation limit, and neglecting local field effects, leads to
the standard rate equation for the carrier density. Also is shown that the index saturates because of intraband relaxation effects,
whereas the gain saturates mainly due to interband transitions. In our approach, the origin of phase-amplitude coupling, mani-
fested through the linewidth enhancement factor, lies in the asymmetric nature of the carrier distribution within the conduction

and valence bands.

1. Introduction

Considerable interest has been expressed over the
last decade in the formulation of the dynamics of
semiconductor lasers in terms of Bloch-like equa-
tions coupled to the electromagnetic field [1]. This
has been due, in part, to the surge of importance of
semiconductor lasers in pure and applied science as
well as in a plethora of device applications in opto-
electronics, and optical communications and optical
data processing [2]. It is also due to the relative ease
of manipulation that a Bloch-Maxwell-like formu-
lation would provide in predicting and analyzing new
physical phenomena and characteristics, as has been
the case in nonlinear and quantum optics of gases
and vapors [3,4]. Attempts to arrive at an analogous
formulation of reduced equations of motion, ab in-
itio, have not been particularly successful [1].

On the other hand, the somewhat phenomenolog-
ical approach based on the linear variation of the gain
and the refractive index with respect to the carrier
density, has produced a variety of important and in-

teresting results [5]. Attempts have been made to
improve the phenomenological description by using
the density-matrix formulation in which the semi-
conductor laser is modeled as a collection of two-level
atoms with a range of transition frequencies, similar
to an inhomogeneously broadened two-level system
[6-107. Such an approach has been successful in ex-
plaining a number of features. For example, it has
led to fundamental understanding and interpreta-
tion of gain suppression (so-called nonlinear gain)
in semiconductor lasers [6,9], the description of gain
and mixing susceptibilities in amplifiers [7,8], and
analysis of spectral hole-burning and gain saturation
[9,10] in semiconductor lasers. A formulation, sim-
ilar to that of the optical Bloch equations [3], how-
ever, has yet to be presented and justified. A set of
such equations would certainly be exceedingly useful
in their regimes of validity, in predicting and ana-
lyzing new physical effects and possibly unexplored
phenomena in semiconductors such as self-induced
transparency, superfluorescence, and four-wave
mixing,.
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It is our purpose, here, to introduce a hierarchy of
Bloch-like equations, suitable for investigating non-
linear dynamical behavior in semiconductor lasers.
To proceed unencumbered, we confine our attention
to single-mode operation. In the next section, we in-
troduce the density-matrix formulation of the equa-
tions of motion which account for the band struc-
ture, and intraband and interband relaxation pro-
cesses. We use the perturbative method of Graham
and Cho [11], to reduce the set of equations for an
inhomogeneously broadened, single-mode laser, to a
set of Bloch-like equations which do not require
treatment of the band-structure details. In sect. 3, it
is shown that in the rate-equation limit, the new gen-
eralized Bloch equations yield the standard rate
equation for the carrier density. The final section is
used for discussion, summary, and conclusion.

2. Equations of motion

The density-matrix formulation and semiclassical
theory are used to express the equations of motion
for an inhomogeneous distribution of two-level sys-
tems interacting with the electromagnetic field in the
electric dipole and rotating-wave approximations {6—
10],

d
%‘—=%ELP12—;%E?,P21, (1)
d,

2;2 =- %ELPIZ+ i_%Efpzl ) (2)
d 1

Z;Z =E(51—62)P12+£EL(/711—/722)' )

Here, p,; and p,, represent the occupation proba-
bilities for electrons in the conduction and valence
bands, respectively, for a certain wave vector, k, and
P12 1s related to the polarization induced by an elec-
tron transition between the valence and conduction
bands initiated by the local electric field E;, and u
is the associated matrix element of the transition di-
pole moment [5]. The energy-level separation for
corresponding k-states in the conduction and va-
lence bands is given by ¢, — €, =%w in eq. (3), where

€, (k)= E.(k)=h*k?/2m. +E, , (4a)
& (k) =E, (k)= —#*k*/2m, . (4b)
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E, is the gap energy and m, and m, are, respectively,
the electron effective mass in the conduction and va-
lence bands.

In the plane-wave approximation, the electric field
amplitude, E, and induced polarization in the me-
dium, P, are expressed in terms of slowly-varying
amplitudes, ¢ and £, and the field carrier fre-
quency, wy,

E=1&exp(—iwpt)+c.c., (5a)
P=1Pexp(—im.t) +c.c., (5b)
where

P=3) u(pra+pa), (6)

and the summation is over the distribution of joint
density of states. Equations (1)-(3) can be written
in terms of slowly-varying variables using eq. (5) and

prz=pexp(—iwr?) . (7)
Then,
P=2uyp. (8)

If, for convenience, 2 =2uN, p, where NV, is the den-
sity of electrons in the absence of injection, then,

1
P=RZP- (9)

It is convenient to replace the sums in egs. (6),
(8), and (9) by an integral. For any variable, x,

(x}z}\%Zx:iJ‘x(w)D(w)dw, (10)

where D(w) is the joint density of states. By intro-
ducing the normalized detuning, d=(w—ws)/ 7T,
where the choice of w, is arbitrary, eq. (10) can be
written as

(X = Jx(é)D(é) ds. (11)

Here, y7 is the dipole dephasing rate between the
electronic excited state, in the conduction band, and
ground state, in the valence band [6], assumed con-
stant over the distribution of states.

The Maxwell wave equation in the plane-wave and
the slowly-varying amplitude and phase approxi-
mation can now be written as
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d& 106 . wiuN,
— 4 — L ==
dz v, 0t €cn

(12)

Here, n is the linear refractive index of the material,
v, 1s the group velocity and c is the speed of light in
vacuum. It is to be observed at this point that the
field amplitude, &, which appears in eq. (12) is not
identical to the field amplitude, &, appearing in eqs.
(1)-(3).

We focus attention on the field amplitude, €, , writ-
ten here as the slowly-varying amplitude component
of E; which stems from the dipole—field interaction,
and is the microscopic field which drives an inter-
band electronic transition, and consists of all fields
acting on the particle. It does not contain the oscil-
lating electron’s self-field, whereas the macroscopic
field &, eq. (12), consists of all fields present [12].
Thus, in order to establish a self-consistent relation-
ship between eqgs. (1)-(3) and eq. (12), a trans-
formation is needed to relate &_to &, i.c., we require
a relation, & = &_.(&). The correction is small and
generally insignificant provided there are very few
dipoles, on the average, within a cubic resonance
wavelength. However, if the density of dipoles is such
that there are many dipoles, on the average, within
a cubic wavelength, one must take into account that
the dipoles interact with one another via their mu-
tual dipole-dipole interactions, and the effect can be
significant [13-15]. With the assumption that there
are many dipoles within a cubic resonance wave-
length, it has been shown that [12-15]

5’L=é"+(a/€0)9’, (13)
or, from eqs. (8) and (9),
& =E+20uN,p/e . (14)

Here, 0< o<1, is a structure factor where o=4 for
cubic or spherical microscopic local symmetry at a
given dipole, and is less than that value for lower
symmetries [12-15,17]. The relation, eq. (13), is
often called the “local field correction™ [16,17], and
is responsible for such phenomena in condensed
matter physics, and dense materials, as the Clausius—
Mossotti relations [18], and linear and nonlinear
spectral shifts [19].

Ifeq. (14) isused inegs. (1)-(3) to eliminate &,
using eq. (7), and upon introducing phenomenolog-
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ical relaxation, dephasing, and pumping terms [10],
eqs. (1)-{(3) become
dw/dt=—y.(W—W) —p(W—wp)

— (iu/h) (8*p—p* &)

—2ie({pY*p—p*<ip>)+4, (15)
dp/dt=—yr(1+id)p—iyrdp

+ (u/2ih) Ew—ielpd>w, (16)
where A= (wo—wy )/ 7+ is the detuning parameter,
€= i—:%zN, R (17)
W=p1y —P2 > (18)

Wy, is the value of w in thermal equilibrium and W is
the effective steady-state value. The strength of the
near dipole-dipole interaction is given by €, eq. (17),
and appears in egs. (15) and (16) explicitly due to
the introduction of eq. (14) into eqs. (1)-(3). In
introducing the non-hamiltonian contributions to
egs. (15) and (16), y. represents interband relaxa-
tion, assumed equal for the entire distribution, and
yr is the dipole dephasing rate for electronic tran-
sitions, also assumed constant over the distribution
of states. y, represents the population relaxation rate
and is related to the interband transitions occurring
spontaneously through phenomena such as sponta-
neous emission. Typically, y.~10° s~!, but y, and ¢
are 1013 s~! in semiconductor lasers. The last term
in eq. (15), 4 is the pumping rate related to current
injection. Equations (15) and (16) are now self-
consistent with the Maxwell equation, eq. (12).
These equations (15), (16), and (12), constitute our
set of self-consistent working equations.

If we perform the averaging of egs. (15) and (16)
over the joint density of states, applying the opera-
tion defined by eq. (11) to both sides of each equa-
tion, we obtain

dW/dt=—yp(W—Wy)

—(ip/h)y(E*p—p* &)+ A, (19)
dp/dt=—yr(1+id)p—yr {idp>
+ (u/2ih) EW —iepW . (20)

Here, W={(w>=<{p;; —p»>. The term y.(w—w)
involving the intraband relaxation does not appear
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in eq. (19) since W= (W) simply because the total
carrier density is not affected by the redistribution
of carriers within the conduction and valence bands.
The problem for inhomogeneous effects resides in
the second term on the right side of eq. (20). We
make use of the perturbative procedure of Graham
and Cho [11], to obtain from egs. (15) and (16) a
set of coupled Bloch-like equations which relax the
requirement for a detailed treatment of the band
structure required due to the presence of the inho-
mogeneous contribution in eq. (20).

To proceed further, we follow the procedure of
Graham and Cho [11], and introduce a parameter
&% and a new variable .S, such that

S2S=(idp> . (21)

Thus, we eliminate the explicit inhomogeneous con-
tribution from eq. (20), and taking the time deriv-
ative of eq. (21), introduce an additional coupled
equation of motion for the new variable,

dS/dt= =y (1+id)S+ (yr/ S?)<{0%p>
+ (/20 ELOWD ] P+ ep(Swd [ F2. (22)

Because of this procedure, we have introduced two
new variables corresponding to the last three terms
in eq. (22), which give rise to two additional cou-
pled equations of motion. Let

U= (owy/ &2, - (23)
po=<(1=0%/)p> . (24)

It is noted that eq. (24) now involves the second
moment in . Using eqs. (23) and (24) in eq. (22)
and taking the time derivative of eq. (23), we have

dS/dt= —yr (1 +id) S+ (p—Do)

+ (u/20) EU+epU (25)
dU/dt= —y(U=U) =y (U= Uy)

— (u/h) (E*S+ 6S*)

_2e(p*S+S*p) + (04> ] F2, (26)

where U is the effective steady-state value [9]. Since
7.3> ¥, this term will give a lowest order contribu-
tion near steady state as will become clear later on.
It is expected that Uy, ~0, since U is nonzero only if
the distribution of states is asymmetric (see eq.
(23)), and its relaxation is expected to be domi-
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nated by intraband relaxation. The value of U is sen-
sitive to induce asymmetry.

We must terminate the hierarchy at some point.
Here, we will address the situation for first-order
contributions, so we terminate the hierarchy at the
second moment contribution in the perturbation by
setting p,=0. From eq. (24), this gives an effective
evaluation of &2,

S*= <52ps5>/<pss> ) (27)

where we have defined &2 in terms of the steady state,
Pes- We have, now, the following four-dimensional set
of nonlinear, coupled equations,

dW/dr= (A5 =y (W—Wy)

+ (u/ih) (&*p—p*€) , (28)
dp/dt=—yc(1+id)p—F*prS

+ (u/2ih) EW —iepW , (29)
dS/dt=—yp (1 +id)S+yprp

+(u/2%) EU+epU , (30)
dU/dt= -y, (U=U) =y (U= Up)

— (/) (6*S+ES™)

—2e(p*S+S*p) + (3> | 2. (31)

It is noted that egs. (28) and (29) reduce to the
usual optical Bloch equations if we set #%2=¢=0.
Equation (30) has a form similar to eq. (29) and is
polarization-like, but through two of its terms cou-
ples with p to cause counter-phase contributions.
Equation (31) has the form of population difference
evolution, similar to eq. (28), but couples through
S and p to cause changes in W. It accounts for the
asymmetry in the distribution of electrons (see eq.
(23)). All of the details of the band structure are ex-
pressed through the parameter .2, given by eq. (27).

3. Rate equation limit

Equations (28)-(31) are certainly rich in their
dynamical structure. It is, therefore, interesting to
study them by numerical integration, and such a
study will be relegated to a future treatment [20].
For the present, however, we focus on the effects
which arise within the rate-equation approximation,
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i.e., for conditions consistent with adiabatic elimi-
nation,

|dp/dt| <prp, |dS/dt| K yrS. (32)

In order to proceed unencumbered, we also set
(64> =0 and A=¢=0. We shall address the effects
of including € in the analysis in a future publication
[21].

Assuming, in addition, that y.>> y;, we eliminate
p, S and U from eq. (28) in the adiabatic limit,
dp/dt=dS/di=dU/dT=0. These conditions result
in the relation

U=0/(1+1), (33)

where I=|&|?/I,, I, is the intraband saturation in-
tensity given by

L= (0. / ) (1+52) (34)
and

T wE iW+FPU/(1+])

= o, 1+9°2 ’ (35)
_pé iW=U/(1+])

ST TR (36)

If egs. (33), (35), and (36) are used in eq. (28),
the result is
aw ur | &1Pw

? =<A>—J’L(W—Wm)— h—zy’T‘ 1+y2>-

(37)

Writing the gain (A} in terms of the injection cur-
rent I,, and W in terms of the carrier density N as

N=3iN(W—-Wy), (38)
equation (37) becomes

dN n 1617

KT AL )
where No= — N W, ln=qVN (A /2, and L= (#*/
12) 71y is the interband saturation intensity. Equa-
tion (39) is the main result of our paper. This equa-
tion is isomorphic to the simplest standard rate
equation for semiconductor lasers [6]. In addition,
the usual phenomenological gain parameter a, intro-
duced by writing the last term as a(N—Ny) | &%,

(N=No) , (39)

2

u

=1+ 77)° (40)
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is determined in terms of the parameters of the two-
level, inhomogeneously broadened model, specifi-
cally, the dipole moment y, the dipole relaxation rate
71, and the inhomogeneous distribution parameter,
e

From the consecutive relation, p=2uN, p=¢€px&,
together with the analytic relaxation for p, eq. (35),
we obtain the following expression for the suscep-
tibility, y,

WCN, . F0 )
= — w = 1. 4
1= (14 97 (‘ e, (41)

The real and imaginary parts of y are related to the
index change [22], An, and the optical gain, g,

N,
- 2kImy=— PO 42
g mx 2ephyre(1+£2) 7 (42)
Rey w2 20N, 1
An= X _ _ _. (4
"= i+ o) 1+167% )

The linewidth enhancement factor [22], f, is de-
fined as the ratio Re y/Im y and is given by
Rey S*(U/W)

Imy  1+]&%/1°

B.= (44)
Itis noted that S, is not a constant, but depends upon
the inversion W as well as the intensity. Its origin lies
in the asymmetric nature of the inversion in semi-
conductors through the parameter U (see eq. (23)).
For a two-level atomic system B.=0 at resonance
simply because U= (dw) /#? is zero. The intensity
dependence of 8. has its origin in the field-induced
changes in U through redistribution of electrons
within the conduction band.

4. Conclusion

We have derived a four-dimensional Bloch-like set
of coupled equations for an inhomogeneously broad-
ened, two-level system interacting via dipole—dipole
interactions as well as with the electromagnetic field,
eqs. (28)-(31), which are coupled, self-consis-
tently, with the Maxwell field equation, eq. (12). We
neglecied detuning, 4, and near dipole-dipole inter-
actions to show, for the first time, that a two-level
model reduces, in the rate equation limit, to the usual
rate equation for the carrier density, eq. (39), where
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the usual phenomenological gain parameter, 4, €q.
(40), is determined in terms of the two-level model
parameters and the field intensity. We have further-
more, obtained expressions for the gain, g, and index
change, An, egs. (42) and (43), respectively, in terms
of system parameters, and we have derived an ex-
plicit expression for the linewidth enhancement fac-
tor, B., eq. (44).

The obvious agreement of our results, in the rate
equation limit, with the standard relations, implies
that the four-dimensional set of equations, egs. (28)—
(31), and (12), should be very important for pre-
dictions for pulse propagation, phase modulation,
and dynamical instabilities. Although the approxi-
mation to steady state for the perturbation param-
eter, &2, eq. (27), should be quite adequate in the
rate-equation regime, this approximation in relation
to the four-dimensional model has been shown by
Meziane [23] to lead to significant departures from
the Monte Carlo results for large dynamical depar-
tures from steady-state. That author found signifi-
cant improvement and remarkably close agreement
when 2, eq. (27), was replaced, arbitrarily, by the
saturable relation, ¥?—.%%/(1+|&|?). Since all of
the band structure detail in this formulation is con-
tained in %2, a knowledge of the structure of the joint
density of states may allow a better approximation,
and, in particular, lead to a self-consistent functional
dependence. For instance, the steady-state solution
of eqs. (15) and (16) when €=0 is given by

_u EWg

T 2fyr 14167
w(1+62%)

Wss= T 211 01277 ¢
1+6%+ | &)/ 1

Pss (45)

(46)

One might use egs. (45) and (46), together with
some assumptions about the joint density of states,
to actually integrate the expression in eq. {(27) to
yield #2=92(|&|%) in a self-consistent manner,
within the structure of the model and a particular
material system. Further aspects of these ideas will
be explored in the near future.
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