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Abstract—A general formalism based on the Green’s function
method is given for multielectrode semiconductor lasers. The
effects of both spatial hole burning and nonlinear gain are in-
cluded in this formalism. An effective nonlinear gain is intro-
duced by taking into account the influence of the laser structure
and the associated distribution of the mode intensity along the
cavity length. The results obtained for Fabry-Perot and dis-
tributed feedback lasers show that the effective nonlinear gain
could be considerably enhanced. Affected by the laser struc-
ture, the nonlinear gain has a different power dependence than
expected from material considerations alone. By including this
effective nonlinear gain, the frequency and intensity modula-
tion properties of multielectrode semiconductor lasers are stud-
ied. A general linewidth expression is given which includes con-
tributions from spontaneous emission and carrier shot noise. It
is found that the effective o-factor affecting the linewidth is in
general different from its counterpart affecting modulation and
injection locking properties due to spatial hole burning and
nonlinear gain. For lasers with uniform intensity distribution,
the effective «-factor affecting the linewidth increases or re-
mains constant with increasing output power depending on the
model used for the nonlinear gain. For X\ /4 phase-shifted dis-
tributed feedback (DFB) lasers, the effective «-factor affecting
the linewidth is slightly larger or smaller than that for uniform
lasers depending on the value of the normalized grating cou-
pling coefficient. The linewidth due to various contributions is
calculated for both uniform intensity distributed lasers and
phase-shifted DFB iasers.

I. INTRODUCTION

Multielectrode semiconductor lasers have attracted
considerable attention in recent years [1], [2]. This
is largely motivated by the worldwide development of ad-
vanced communication systems, in which optical sources
with narrow spectral linewidth, wavelength tunability, and
flat frequency modulation response are required. Al-
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though the theory of such lasers is well developed, some
phenomena limiting the laser’s ultimate performance have
not yet been completely understood. For example, line-
width rebroadening occurring at high output powers [1],
[2] is contradictory to the standard laser theory, which
predicts a monotone linewidth decrease with increasing
output power [3]. Various factors, such as side mode in-
fluence [4], 1 /f noise at high output powers [5]-[7], etc.,
have been involved to explain this phenomenon. For
highly single mode semiconductor lasers driven by a
noiseless current source, much attention has been paid to
longitudinal inhomogeneities and the nonlinear gain.

Longitudinal inhomogeneities include two principal as-
pects: the structural inhomogeneity and the functional in-
homogeneity. The structural inhomogeneity results from
the multielectrode nature of the laser structure, in which
an optical grating can be introduced in one or more sec-
tions and the injection current in each section is separately
controlled. The functional inhomogeneity originates from
the phenomenon of spatial hole burning [8], [9], occur-
ring even in a homogeneous cavity structure. Its existence
is due to the fact that the intensity distribution is not uni-
form in most laser structures, especially in phase-shifted
distributed feedback (DFB) lasers. This nonuniformity in-
troduces a nonuniform carrier density distribution, which,
in turn, affects again the field intensity distribution, and
SO on.

Longitudinal inhomogeneities can be easily included by
using the Green’s function method initially proposed by
Henry [10]. In this method, the solution of wave equation
corresponding to a point source (spontaneous emission
event in the laser case) is called the Green’s function. For
distributed excitation sources, the general solution is ob-
tained through a spatial integration of the Green’s func-
tion weighted by the correspondent excitation source. Us-
ing this method, the spontaneous emission rate coupled to
the lasing mode is related to the laser structure [10]. This
method has been generalized to include complex phase-
amplitude coupling effects in DFB and composite-cavity
laser structures [11]. More recently, Tromborg et al. have
included spatial hole burning by considering the Wron-
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skian, appearing in the Green’s function formulation, as
a functional of carrier density distribution in multiclec-
trode DFB and distributed Bragg refiector (DBR) lasers
[12]. This treatment enables them to take into account any
nonuniform carrier density distribution due to the pres-
ence of multielectrodes and/or due to spatial hole burn-
ing. However, the results show that the spatial hole burn-
ing alone can not explain linewidth rebroadening.

Another phenomenon that should be considered is the
nonlinear gain, which should include the material nonlin-
ear gain (spectral-hole burning, carrier heating, ezc.) [13]-
[16] and the nonlinear gain introduced by nonuniform lat-
eral carrier density distribution [17]. The material nonlin-
ear gain due to the spectral-hole burning has been studied
by using a density matrix formalism [13], [14]. By study-
ing its influence on Fabry-Perot type lasers, it was con-
cluded that the material nonlinear gain can lead to line-
width rebroadening [15]. Recent results obtained by
Olesen ef al. give a contrary conclusion for the same type
of laser structure [18]. An effort was made by Tromborg
et al. to include the material nonlinear gain for lasers with
a nonuniform intensity distribution using the Green’s
function method [12]. In their analysis, the Green’s func-
tion method is directly applied even for a nonlinear di-
electric constant. Conceptually, this is not permitted as
the method is only valid for a linear dielectric constant.
Consequently, the Wronskian, resulting from solutions of
wave equation for a linear dielectric constant, can never
be an explicit function of photon density distribution.

The purpose of this paper is to give an analysis of lasers
by including both spatial hole burning and the nonlinear
gain. Different from previous approachs, the material
nonlinear gain is taken into account through a perturba-
tion method. This enables us to treat the nonlinear gain
within the validity of the Green’s function method. Using
this perturbation method, an effective nonlinear gain is
introduced, which depends also on the mode distribution
along the cavity length. The spatial hole burning is in-
cluded through a power dependent carrier density distri-
bution.

This paper is organized as follows. In Section II, the
Green'’s function method is generalized to multielectrode
lasers. In Section III, the effective nonlinear gain is dis-
cussed. In Section IV, a small-signal analysis is per-
formed, leading to expressions of modulation transfer
functions and spectral linewidth. In Section V, results for
lasers with uniform intensity distribution are given. Re-
sults for a phase-shifted DFB laser is presented in Section
VI. Finally a conclusion is given at the end of the paper.

II. GENERALIZED RATE EQUATION

The starting point of our analysis is the propagation
equation in the frequency domain. We shall concentrate
our attention on the longitudinal axis alone, although the
same principle of analysis could be used for transverse
tuning devices such as tunable-twin-guide DFB lasers
[19]. The electrical field in the laser cavity is thus gov-
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erned by the inhomogeneous scalar Helmholtz equation
[10]:

VIE,(2) + Ke (N, SYEL2) = F(2) (1)

where V7 is the Laplacian operator for the longitudinal
coordinate z, ky = w/c is the wavenumber in vacuum,
€,(N, ) is the dielectrical constant depending on the fre-
quency w, carrier density is N, and photon density is S.
Finally, F,(z) is the Langevin force describing the spon-
taneous emission. Equation (1) is valid for either Fabry-
Perot or DFB, DBR, lasers.
The complex dielectrical constant is written as

€N, S) = [n + j(g — ap)/ (ko)) 2)

where n is the refractive index, g is the gain, and «; the
internal loss. The dielectrical constant can be split into
linear part €; and nonlinear part ey, :

e, (N, S) = ¢ (w, N) + exc{w, N, §). 3)

The nonlinear part is intensity dependent. The inclu-
sion of the nonlinear dielectric constant makes the theo-
retical analysis somewhat complicated, as the Green's
function method is only valid for the linear case [20]. To
overcome this difficulty, the nonlinear part of the dielec-
tric constant is moved to the right-hand side so that (1)
takes the form:

V?Ew + k(z)eLEw = Fw - k(z]ENLEw' (4)

It should be stressed that the nonlinear part is being
treated nonperturbatively here. The general solution of the
scalar equation is obtained by using the Green’s function
formalism and is given by [20]:

E ) = — S(L G,(z, 2)koen E., dz’
)

+ S G,(z, 2)F (') dZ’ (5)
®)

where the integration is performed over the total cavity

length. G,(z, z') is the Green’s function given by [20]:

_ Z,:>)Z-<)

Gule ) = T N (©)

where z> = max (z, z') and z< = min (z, '), Z,(2),
Z_(z) are two independent solutions of the homogeneous
equation, satisfying the boundary conditions for the left
or right facet and W(w, N(2)) is the Wronskian of these
solutions. The Wronskian is a functional of the frequency
w and the carrier density distribution N(z). It is not ex-
plicitly dependent on the coordinate z. Our approach is
different from that of Tromborg et al., in which the Wron-
skian is considered also as a functional of photon density
distribution [12]. This is not permitted within the validity
of the Green’s function method. In our approach, the pho-
ton density distribution does not appear explicitly in the
Wronskian, although it affects the carrier density distri-
bution through the spatial hole burning effect [8], [9].
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For a laser system, it is important to consider the laser
oscillation condition. In the linear case, this condition is
expressed by setting the Wronskian of functions Z, (z) and
Z _(2) equal to zero. These two functions Z (z) and Z_(2)
are then identical to one solution Zy(z), satisfying the
boundary conditions at both facets and representing the
longitudinal distribution of the electrical field in the laser
cavity. In the present case where nonlinear dielectric con-
stant is considered, the above conclusions are only a first
order approximation. Within the validity of this approxi-
mation, we obtain from (5) and (6):

WE,(2) ) S S
= —kj Zy(Z' E, d7' +
Zy(2) 0 (L) ol )en .

(L

(N

As the RHS of the above equation is independent of the
coordinate z, the only solution of the electrical field in the
frequency domain E(2) is of the type:

E.(2) = B,Z(2). (8

For small perturbations due to the nonlinear gain and
the driving noise sources (spontaneous emission, carrier
shot noise, etc.), the Wronskian is expanded around the
linear operating point:

ow

ow
—— ANy dz (9)
dw

W(w, N2)) = 3N

(U) - (.00) + 5
where w, is the emission frequency at this point and AN
is the deviation of the carrier density distribution from
this point. By using the properties of Fourier transform
the following rate equation for 3,(2) is obtained [10], [11]:

dgy

L . 1
i = {j(w —wy) —J S(L) WyAN dz + EGNL(N’ S)}

* Bolt) + Fgol0) (10)
where Wy = (0W/3N) /(W /dw), @ is the actual lasing
frequency, different from w, due to the nonlinear gain,
Bo(r) is the slowly varying complex amplitude given by:

1 =]

Bot) = 2 S B, exp j{w — o)t dw. (11)

Fj is the Langevin force associated with the complex am-

plitude in the time domain. The spontaneous emission rate
R,, is given by [10]:

g Z*gom)m,,Zsz Z*ngnyZ dz

4asy YL (L

R, = —
P

sp

| oW /0w |? 12

The integration in (12) is restricted to laser sections with

gain only since passive sections with different bandgap do

not contribute directly to the spontaneous emission rate.
The term Gy is the effective nonlinear gain given by:

J 2k
oW /3w

Gu(N, §) = - S(L) Z¥ e (N, $) dz.  (13)

Zy(ZF (2') d7'.
5

This newly defined nonlinear gain takes into account
both the material and the structural dependences and will
be discussed in detail in Section III.

Some assumptions have been made in deriving the
above rate equation. First, the nonlinear gain term is,
strictly speaking, a convolution between the effective
nonlinear gain and the field complex amplitude. This is
replaced by a simple multiplication. This assumption is
valid as long as the field complex amplitude variations are
much slower than the optical frequency. Second, the in-
fluences of nonlinear gain on field distribution have been
neglected. Our theory can be considered as a first-order
perturbation theory. A more complete theory would take
into account these higher-order effects.

III. EFFecTIVE NONLINEAR GAIN
For Fabry-Perot, DFB and DBR lasers with a refrac-
tive index and gain varying smoothly in the cavity, it can
be shown that [12]:

aw .

Sy = Konga(=an + )HZi@ (14)
oW 2k

— == S nn,Z(z) dz (15)
ow c Jaoy

where g, is the differential gain and «y is the linear ma-
terial linewidth enhancement factor [3]. Inserting (15) into
(13) together with ey = jngni / ko, the effective nonlinear
gain can be finally written as [21]:

S Zi(2)gn (N, S) dz
(L)

GNL(Nﬂ S) = U, (16)

S Zy(2) dz
(L)

where gy is assumed to be complex. Its real part repre-
sents the nonlinear gain and the imaginary part the non-
linear refractive index. Thus the effective nonlinear gain
is a spatial average of the material local nonlinear gain
weighted by the squared field distribution rather than by
the intensity. This newly defined nonlinear gain takes into
account both material and structural dependences. It sim-
plifies to the material gain for uniform intensity distribu-
tions. The effective nonlinear gain has the same origin as
the longitudinal spontaneous emission enhancement fac-
tor K. [10], [11]: the different longitudinal mode distri-
butions {Z,(z), m = 0, 1, - - - }. forming a complete set,
are not orthogonal in the Hermitian product sense, due to
the presence of optical gain in the cavity [22].

In fact, when the mode distribution forming a complete
orthogonal set is used. as is assumed in the classical laser
theory, the effective nonlinear gain is given by [23]:

S | Zy(2)
(L

S | Zy(2) | dz
(L)

g (N, S) dz

GV, $) = ¢, (17)
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Several consequences of the effective nonlinear gain can
be predicted by comparing (16) and (17):

i) Different laser structures can give rise to different
values and forms of the effective nonlinear gain for the
same material. This is due to the dependence of the field
distribution Zy(z) on the cavity structure.

1i) As the field distribution generally includes a spa-
tially dependent phase, the material nonlinear gain can
result in an effective nonlinear index and vice versa.

iii) As the intensity distribution is not uniform and
changes with the output power due to spatial hole burn-
ing, the effective nonlinear gain will have, in general, a
different power dependence than the material nonlinear
gain.

In order to understand the implications of (16), we have
to consider a specific functional form of the nonlinear gain
gnL- However, the functional form depends on the mech-
anism responsible for the nonlinear gain (spectral-hole
burning, carrier heating, etc.). In many cases of practical
interest, one can assume that gy, decreases linearly with
the photon density (S(z)) as:

e = —8L5(2) /P, (18)

where P is referred to as the saturation photon density
and g, as the linear gain. This expression is obviously
valid at low powers such that S(z) << P,. P, is a material
parameter that depends on details of carrier relaxation
within the conduction band. An expression of P, can be
found in [15] for the case in which spectral-hole burning
is the origin of nonlinear gain. Its typical value is in the
range of 3-6 X 10' em™. Equation (18) assumes that
gne is real such that the refractive index is power inde-
pendent. In the case of lasers operating away from the
gain peak, the nonlinear gain is accompanied by index
changes [15] that can be included through a complex gy .
In this paper, such changes are neglected by treating gy,
as purely real.

By relating the photon density to the mode distribution
through S(z) = Py|Zy(z)|>, with P, a spatially indepen-
dent parameter proportional to the output power, the Gy,
can be written as:

S Z52) | Zy(2) |* dz
(L)

Gy = *Ff Ve 8L (19)

S Zé(z) dz
(L)

It is assumed for the moment that spatial variation of
the linear gain due to spatial hole burning in the laser cav-
ity can be neglected. By comparing this effective nonlin-
ear gain with the nonlinear material gain Gﬁ,‘fT corre-
sponding to the average photon density in the cavity:

P
GNAT = _Fé V.81 S(L) |Zy(2) |* dz /L (20)

a correction factor for the gain can be introduced, which
relates the effective nonlinear gain to the material nonlin-
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ear gain. By using (19) and (20), the correction factor C
is given by:

S Z5() | Zy(2) |* dz
G w©

“Taw T -
< S Zi(2) dz> <S | Zy@) |* dz /L)
(L) (L)

@n

The correction factor C given by (21) shows how the
laser structure can affect the value of the material param-
eter P,. Note that C is generally complex. The real part
represents the change in the material nonlinear gain, the
imaginary part represents the contribution of the material
nonlinear gain to the effective refractive index. The latter
directly affects phase variation of the optical field in the
laser cavity and thus contributes to the frequency chirp
and the spectral linewidth.

We have calculated the correction factor for different
types of laser structures. Fig. 1 shows the result for a Fa-
bry-Perot laser with one fixed facet reflectivity of 30%
(R, = 0.3) and a varying reflectivity R, of the other. The
real part of C is slightly larger than unity for small values
of reflectivity (R, < 107*). Beyond this value, the cor-
rection factor keeps at unity. The imaginary part of C de-
creases with increasing facet reflectivity R,. The value of
the imaginary part is quite small in comparison to that of
the real part.

The correction factor C is plotted as a function of the
normalized coupling coefficient in Fig. 2 for a conven-
tional DFB laser. Both facets of the laser are assumed to
be AR-coated (R, = R, = 0). The real part of the correc-
tion factor increases from 0.87 for kL = 1.0 to 1.3 for kL
= 5.0. The imaginary part of the correction factor changes
from negative values to positive values with increasing
normalized coupling coefficient. It is not surprising that
the effective nonlinear gain in Fabry-Perot and conven-
tional DFB lasers is not very different from the material
nonlinear gain (corresponding to the average photon den-
sity), as the intensity distribution in these lasers is rather
uniform.

The result for an AR-coated \ /4 phase-shifted DFB
laser is shown in Fig. 3. The real part of the correction
factor becomes larger than unity for «xL > 1.25 and
reaches 2 for kL = 4.0. The imaginary part of the correc-
tion factor changes sign at kL = 1.25 and becomes neg-
ligible for larger values of «L. This is due to the fact that
for kL = 1.25, the field intensity distribution is nearly
uniform inside the cavity [8]. For «L larger than 1.25, the
field intensity is more concentrated at the center of the
cavity. Otherwise, the field intensity is concentrated near
the two facets [8].

To evaluate its output power dependence, the effective
nonlinear gain is calculated by using (16) for an AR-
coated N\ /4 phase-shifted DFB laser with kL = 3.0. In
our calculations, the field distribution and the linear gain
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are calculated by including the spatial hole burning. The
material nonlinear gain is assumed to have the form [15]:

gve = gL/ V1 + 28 /P, — g (22)

Compared with the expression given in [15], a factor 2
is added in (22) to give the same small signal approxi-
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mation result as (18). The real and imaginary parts of the
effective nonlinear gain divided by vg(GNL/vg) are plotted
as a function of the output power in Fig. 4(a) and (b),
respectively. The material nonlinear gain corresponding
to the average photon density is also given in Fig. 4(a)
for comparison. It can be seen that at low output powers
(<1 mW), the effective nonlinear gain and the material
nonlinear gain exhibit nearly the same power dependence.
The ratio of their values is close to 1.5, the value of the
correction factor C given in Fig. 3 for kL = 3.0. When
the output power increases, the intensity distribution be-
comes more uniform due to spatial hole burning [8], [9].
Consequently, the real part of the effective nonlinear gain
approaches the material nonlinear gain at an output power
of about 10 mW and continues to decrease for higher out-
put powers. At the same time, the imaginary part of the
nonlinear gain tends to change sign.

IV. SMALL-SIGNAL ANALYSIS
To study the dynamic and noise properties, one has to
use the rate equation for the carrier density in the laser
cavity:
dNGz, 1 _

0l J(z, n — RNG. 1)
- v,8(z. 8@, 0 + Fyz,n  (23)

where J(z, t) = J(z, 1) /(ed), J(z, 1) is the current density,
e is the electron charge, d is the thickness of the active
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layer, S(z, t) is the photon density, R(N(z, t)) is the non-
stimulated carrier recombination rate, and Fy(z, ?) is the
Langevin force representing the carrier shot noise. The
photon density is related to the field intensity distribution
by:

-1
Sz, ) = Gyl Zo() |’P(H, Cy = (S(L) | Zo(2) | dZ/L>

(24)
where C, is a normalization constant, and P(¢) is the av-
erage photon density in the cavity. The assumption that
the spatial and temporal dependences of the photon den-
sity can be separated is a direct consequence of the
Green’s function method [see (8)]. This is a good approx-
imation for modulation frequencies much lower than the
mode separation frequency of the cavity.

The above analysis defines the basis of our formalism.
In the following, it will be used to discuss the dynamic
and noise properties in multisection lasers. It is more
practical to convert the field complex amplitude rate equa-
tion into photon density P and phase ¢ rate equations by

using Bo(f) = VP(1) exp (jo (1)):

dP
ar =2 S(L Wni AN(z) dz P(t) + Gy (N, SP(t) + Fp(2)
)
(25a)
@ _ @ S Wy, AN(2) d
7 LA (2) dz
1
3 Gnui (N, §) + Fu(0). (25b)

The subscripts r and i represent the real and the ima-
ginary parts, respectively. The stationary solution is ob-
tained by setting d/dr = 0 and eliminating the noise
terms. The obtained @, P, N(z), Zy(z), etc. are power de-
pendent stationary values and distributions because of the
effects of spatial hole burning and nonlinear gain. Small
deviations from the stationary point are obtained by
linearizing the rate equations. If AP(Q), AN(z, Q), Aw()
represent the Fourier transform of deviations, the small
signal solution is given by:

AJ(z, Q) + Fy — AR) | Zo(2) |* APQ)

ANG, Q) =
@) 0+ 1/

(26a)

APQ) = Fr

jQ = Gup P + 2P SL U,AR) | Zy) |* dz
L

+ S(L Hp(z, W) (AJ + Fy) dz
)

(26b)
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S(U UA@) | Zo(@) |* dz + Gnrpi/2

Aw(Q) =
jQ — GupP + 2P S(L) U,A2)| Zo(2)|* dz

«Fp + Fy + SL He(z, ©)(AJ + Fy) dz
(L)

(26¢)
where A(z), 7, U;, U, are given by:
085, -
AR = Gy, <§P + g> (27a)
1 OR(N(2)) 0g —
— = — + v, ->8@ (27b)
TR NG@) vy =N ‘N
y _ War = 1/2 3G, /N
te _]Q + l/TR
; N
Uz - W’Vl +' 1/2 aGNLr/a (27C)
JjQ + /7
v,0gn(N, S)/ONZi(z
aaGAT;L _ Y gni( )/ ol ). 27d)

S Z32) dz
(L)

The local modulation transfer functions denoted by H,(z,
) and Hy(z, Q) are given by:

2U,
HP(Zv Q) =
J.Q/T'5 + 2 SL UzA(Z)|Zo(Z)|2 dz — Gipy
L
(28a)
H Q) = —U(jQ/P = Guip) + GarUa
JQ/ﬁ + 2 S UzA(Z)lzo(ZHz dz — Guier
(L
(28b)
Gy
Gnep = P

S(L) Z32) | Zo(z) |*0gnL(N, S)/3S dz

Col)g

g Zi(z) dz (28¢)
(L)

In obtaining the above solutions, it has been assumed that
the field distribution Zy(z) remains unchanged even in the
presence of perturbation due to the noise and/or modula-
tion.

In Section II (Fourier transform from w to ), it has been
assumed that the carrier density distribution AN(z) is a
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constant in the time domain. This is a reasonable approx-
imation, as the temporal variation of AN(z) is much slower
than the optical frequency w, (~ 10" s™'). By contrast,
the same AN(z) is considered time dependent in this Sec-
tion (Fourier transform from ¢ to Q). This is not incon-
sistent with the first part as long as @ << wy (typically
< 10"s7Y).

A. Dynamic Response

The dynamic responses can be obtained from (26)-(28)
by eliminating all noise terms. For the case of uniformly
injected single electrode laser, we have:

AP(Q) = S Hp(z, @) dz AL (29a)
(L) eV

Aw(Q) = S Hi(z, Q) dz alty (29b)
(L) eV

In obtaining (29), we have used AJ = Al/(eV), with
¥V the volume of active layer. A convenient, parasite-free
measure of FM is the chirp-to-modulated power ratio
(CPR) [17]. From (28) and (29), the CPR is found to be:

Aw amd — _
SaAP 4::% (jQ = Gup P + GuunP/ o)

CPR =

(30a)

where an effective a-factor affecting the modulation prop-
erties is defined:

S Uiz, Q) dz

(L)

B (30b)
S Uy(z, ) dz
(L)

The CPR expression (30a) has the same form as the
classical one [17], but with the effective parameters. It is
interesting to note that the newly defined «-factor (30b)
is modulation-frequency dependent for lasers with non-
uniform intensity distributions.

In the case of a two section laser, the excitation source
is the modulation current density AJ(z) = Al /s,, for val-
ues of z lying within Section I and AJ(z) = AL /s,, forz
within Section II, where s, and s, are the cross section of
areas. The carrier density, the photon density and the fre-
quency deviation can be obtained from (26):

AP(Q) = APlNl + ApzAIQ (31a)
where the transfer functions Ap,, Ap,, - - * can be ob-

tained directly from (26)-(28). Using (31a) and (31b),
conditions for pure frequency and pure amplitude modu-
lation are given by:

Al Ap

. f

Al A, or pure FM (32a)
Al Ay

Al = A, for pure AM. (32b)

The transfer functions Ap,, Ap,, - - - usually depend
on modulation frequency . Pure frequency modulation
or pure intensity modulation have been obtained using this
method for multielectrode distributed-Bragg-reflector
(DBR) and DFB lasers [24], [25].

B. Phase Noise and Spectral Linewidth

The Langevin forces representing the spontaneous
emission F,(2), Fy(?) are delta-correlated [10]:

(Fy(@F} @)y = 2Dy 8@ — @), X, X' =P, ¢.
(33a)

The nonzero diffusion coefficients are given by [10]:
2D,, = R,/@D); 2D, = 2PR,/V  (33b)

where I (= PV) is the total photon number in the laser
cavity. The carrier shot noise is assumed to be delta-cor-
related in time and in space. The correlation relations are
found to be [12]:

(Fyz, F ¥z, Q)Y = 2Dy (z, Moz — 2)8(Q — Q1)
(34a)

2Dy (2, Q) = 2[,8@)ny, S (@) + RN/ V

(34b)
(Fo(@)Fy(z, ) = 2Dpy(z, S(Q ~ Q) (35a)
2Dpy(z, Q) = —20,8(Dn, S@) /V (35b)

The frequency variation driven by noise at zero frequency
( = 0) is obtained from (26¢):

Aw = F, — ol§*Fp/(2P) + SL Hy(z, 0Fy(z, 0) dz.
(L)

(36)

The effective phase-amplitude coupling factor for the
linewidth is obtained from (26¢) and written as:

noise

Qeff

laGNu} 2 1
S(L) |:WNr 3N RAQ) | Z|” dz + 2 Gnipi

10Gn., 2 1 .
S(L) I:WM‘ + 29N } RAQR) | Zy|” dz + > Gnipr

(37
Using (14)-(16) and neglecting the nonlinear refractive

index, the effective a-factor for the linewidth can also be
written as:

ol = —Real(x) /Imag(x) (38a)
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Fig. 5. The interaction scheme in a semiconductor laser due to (a) photon density fluctuation caused by spontaneous emission,
(b) current modulation or light injection.
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S(L) [(—ay + jg/8eamrAR) — jCy08/0S1|Zy|*Zi2) dz
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(38b)

X =

By comparing (30b) and (37), we found that the effec-
tive a-factor for the linewidth is different from its coun-
terpart for modulation at zero-modulation frequency. This
is explained in Fig. 5. In the modulation case, current
modulation creates carrier density variations, which give
rise to a simultaneous change of photon density and phase
through the change of gain and the index. The afff® rep-
resents the ratio between variations of photon density and
phase. In the linewidth case, the Langevin force F, due
to spontaneous emission gives rise to a change of the pho-
ton density, which leads to a carrier density variation. The
latter introduces an additional phase noise through the
change of the refractive index. The «-factor for the line-
width relates this additional phase change to the Langevin
force F,. Thus these two effective a-factors have different
definitions. More importantly, current modulation and
spontaneous emission affect laser dynamics differently.
For instance, an increase in electron population due to
current modulation leads to an increase in the output
power. In contrast, an increase in the output power due
to the spontaneous emission results in a decrease of elec-
tron population to conserve the laser-oscillation condi-
tion.

The linewidth is given by the value of the power spec-
trum density of frequency noise at zero frequency divided
by 2x. By using (33)-(36), the final expression is given
by:

R, . 1
Av = =2 (1 + (&%) + —
YT 4xl ( (@) 27

S(L | Hy(z, 0)|22Dxn(z, 0) dz
)

noise

_ 2L S 2Real(H,(z, 0))2Dpn(z. 0) dz. (39)
27P Jw

S Zi(2) dz
(L)

The first term represents the contribution of phase fluc-
tuations due to spontaneous emission and that of photon
density fluctuations via the well-known phase-amplitude
coupling. The second term is the contribution due to the
carrier shot noise. The last term represents the contribu-
tion of cross correlation between the photon density and
carrier density. The carrier shot noise induced linewidth
has also been pointed out by using other methods [26],
[27].

The above discussion completes our formalism on laser
dynamics and noise. To get some insight into the influ-
ence of nonlinear gain, the theory is applied at first to
lasers with uniform intensity distribution. Results for
phase-shifted DFB lasers are given thereafter.

V. APPLICATION TO LASERS WITH UNIFORM INTENSITY
DISTRIBUTION

For Fabry-Perot lasers with high facet reflectivities (R,
= R, = 0.3) and specially designed DFB lasers [28], the
field intensity distribution is nearly uniform inside the
cavity. In this case, the spatial hole burning effect can be
neglected. The effective nonlinear gain becomes simply
the material nonlinear gain. By using Wy = v,g,(—ay +
j)/2 [11], the rate equations in this case are written as:

dP

m = v,84ANP(t) + Gy (N, P)P(t) + Fp(1)  (40a)
d _ 1
7(1: =w— wy + EOIHU;'&/AN(Z)

1

The modulation and noise properties have been widely
studied using similar or the same equations previously.
We are essentially interested in the linewidth and the
phase-amplitude coupling factor.
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A. Linewidth Calculation

Using the same method as the previous section, the
linewidth is written as:

R‘ noise 1
Av=ﬂy1+mmf>+gﬂmﬁﬁww

Qe
— 267?13 2Real(H(0))2Dpy

(41)

The effective phase-amplitude coupling factor is given
by:

ay + 1 dgni - 1 agN_Li/aP
CYnoise — gd oN 84 UgTR 8 + Pag/aP (42)
T 1w, L dew, /0P
gd ON g4V, T & + Pdg /P
8
where gy = Gy /v, and:
1 1 agNL —
— ==+ 0, + P 4
TR T, Y <gd N “3)

where 7, is the carrier lifetime corresponding to the non-
stimulated carrier recombination. It is assumed that the
index nonlinearities are neglected in what follows. Using
the nonlinear gain expression in the low output regime
(18) and (42), (43), the effective «-factor for the line-
width for P — 0 is:

[697] 1
= — r=P. /P P. =
1+ r o/ Ps U 8uTe

noise
eff 0

(44)

where P, denotes the interband saturation photon density.
Using the values given in Table I, P, is estimated to be 3
X 10" cm™>. The typical intraband saturation photon
density is P; = 3-6 X 10'® cm™>. Thus the ratio P,/P,
is typically of the order 0.01, leading to a correction of
the a-factor of the order of 1%.

This result shows that the effective a-factor for line-
width differs from the linear material parameter ay even
for zero output power. Mathematically, this is due to the
fact that the first order derivative dgy./dP is not zero.
This result seems surprising since the nonlinear material
gain becomes negligible in the low output regime. How-
ever, the effective a-factor depends not only on the mag-
nitude of the nonlinear gain, but also on its first order
derivative. The latter does not vanish even in the low out-
put regime.

As a consequence, the effective «-factor at high output
powers should be compared with a4 rather than with the
linear parameter oy,. First, it is assumed that the nonlinear
gain has the same form as in a two-level system:

_ 2N = Ny,

= P/Ps.
T, PP/ @5)

In this case, the «.q is exactly the same as oggqq. Sec-
ond, a more accurate nonlinear gain expression given by

TABLE |
LASER PARAMETERS
Parameters Symbols Values
Cavity length L 400 pm
Thickness of active layer — 0.15 um
Width of active layer — 2.0 pm
Effective refractive index n 3.50
Group index n, 3.56
Internal loss . 40 cm !
Linear linewidth enhancement factor ay 4.0
Bragg wavelength Ngo 1.50 pum
Carrier lifetime T, 2 ns
Differential gain gy 1.5 - 107" cm?
Transparent carrier density Ny 1.0 - 10" cem
Derivative of loss da /dN -2.5-10 " em?
Derivative of refractive index dn/dN -1.0- 10" cm’
Spontaneous emission factor n,, 2.0
Saturation photon density P, 50 10"cm *

(22) is used. The ratio between a4 and a.q¢ is found to
be:
ai _(L+pd +7)

= . (46)
l+2p +r

oS
The ratio increases with increasing photon density, as is
shown in Fig. 6 for various values of r. The material
a-factor [see (48b)] normalized by «.g¢ is also shown in
the same figure for comparison. It can be seen that the
increase of the material a-factor is more rapid than that
of the effective a-factor for the linewidth.
The frequency tuning efficiency is obtained by inte-
grating the local tuning efficiency over the cavity length:

Wm=&mmma

= E Ve 8aO¥HTR

. agn, /9P
—~v, 7238 /0N (gP) /3P + dgy.. /0P’

47)

By using (41), (46), and (47), the three contributions
to the linewidth are plotted in Fig. 7 as a function of the
inverse of the normalized photon density. It can be seen
that the contribution from spontaneous emission is dom-
inant. This contribution decreases with increasing photon
density. The contributions from the carrier shot noise and
the cross correlation increase with output power because
of the increase of the noise diffusion coeflicients Dyy and
Dyp. However, their values remain many orders smaller
than that due to spontaneous emission.

It is important to note that the thermal effects are not
included in our analysis. In practical cases, thermal ef-
fects are dominant mechanism for the frequency tuning at
low frequency. Another important point is that the drive
current noise has also been neglected in our model. How-
ever, the drive current noise is converted by nonlinear
gain, especially by thermal effects, into phase noise [29].
The recent result on tunable lasers showed a very impor-
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Fig. 6. The normalized effective a-factor for the linewidth as a function
of the normalized photon density for a uniform intensity distribution laser.
The parameter is the ratio of the interband saturation power to the intraband
saturation power. The normalized material a-factor is also shown for com-
parison.
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Fig. 7. Calculated linewidth due to spontaneous emission, carrier shot
noise, and their cross correlation as a function of the inverse of the nor-
malized photon density for a laser with uniform intensity distribution.

tant linewidth increase and lineshape change due to the
drive current noise [30], [31}].

B. Measurement on the Power Dependence of the
Effective a-Factor

Various methods such as chirp-to-modulated-power-ra-
tio (CPR) measurement [32] and the injection locking
technique [33] are used to measure the effective a-factor
and its dependence on the output power. It was usually
recognized that the a-factor measured from these methods
is the same as that for the linewidth. Using (30), the CPR
for lasers with uniform intensity distribution is given by
[17]1, [32]:

CPR

Aw Olg;‘(f)d , 0g —
=—— =" [0 _ g8
27aP  4np VP T egpP)  (489)

where o is the effective a-factor for modulation given
by:

omed = OH (48b)
|+ Lo
&1 aN
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Fig. 8. The normalized effective a-factor for the linewidth as a function
of the normalized photon density for a phase-shifted DFB laser. The pa-
rameter is the normalized coupling coefficient «L. The normalized o-factor
for the linewidth in a Fabry-Perot laser is also shown for comparison.

This is exactly the material linewidth enhancement fac-
tor in nonlinear gain cases. The same parameter o™ ap-
pears in the technique of injection locking. For every
model of nonlinear gain, o is thus always larger than
the linear a-factor ay. The measurement results recently
made by Nakajima er al. on a strained quantum-well DFB
laser confirmed the increase of this parameter with in-
creasing output power [34].

It is thus not appropriate to measure the power depen-
dence of a.q for the linewidth by using the CPR or injec-
tion locking method, since such experiments measure the
power dependence of o rather than that of «$*. Direct
measurement of this dependence from linewidth is also
difficult, as many other factors, in addition to the spon-
taneous emission, contribute at the same time to the li-
newidth [see (39)].

VI. APPLICATION TO A PHASE-SHIFTED DFB LASER

For \ /4 phase-shifted DFB lasers, the intensity distri-
bution is highly nonuniform due to the presence of the
phase shift, except for the normalized coupling coefficient
kL in the neighborhood of 1.25 [8], [9]. The field distri-
bution is obtained by solving the coupled wave equations
and the carrier conservation equation using a matrix
method. The self-consistent field distribution is then used
to calculate the effective o-factor and the linewidth.

Fig. 8 gives the results of the a-factor for the linewidth
normalized by o, in (44) as a function of the normalized
photon density for kL = 1.0, 2.0, and 4.0, respectively.
The normalized «-factor for the linewidth in a Fabry-
Perot laser is also shown for comparison. The nonlinear
gain model described by (22) is used. It can be seen that
for all values of the normalized coupling coefficient the
effective a-factor increases with increasing photon den-
sity. This factor is slightly larger than the a-factor of a
uniform laser for kL > 1.25 and slightly smaller for «/ <
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Fig. 9. Calculated linewidth due to spontaneous emission, carrier shot
noise, and their cross correlation as a function of the inverse of the nor-
malized photon density for a phase-shifted DFB laser with xL = 2.0.

1.25. If nonlinear gain is not taken into account, no dif-
ference between the effective and the linear a-factor is
observed.

Fig. 9 shows the three contributions to the linewidth as
a function of the inverse of the normalized photon density
for a phase-shifted DFB laser with «kL = 2.0. The contri-
bution due to spontaneous emission has the same order of
magnitude as in a uniform laser. In contrast, contributions
due to carrier shot noise and the cross correlation are much
more important than in a uniform laser. This is due to the
fact that a more important frequency tuning efficiency is
obtained by spatial hole burning. However, the sponta-
neous emission remains the dominant contribution to the
linewidth in the usual output power regime (P/P, < 1).

VII. CONCLUSION

In this paper the Green’s function method has been ex-
tended to include spatial hole burning and the nonlinear
gain in multielectrode semiconductor lasers. Different
from previous approachs, a complex effective nonlinear
gain has been introduced replacing the material nonlinear
gain. Based on this method, a generalized rate equation
has been obtained. Amplitude and frequency modulation
transfer functions have been given for single and multi-
electrode lasers. A linewidth expression has been ob-
tained, which includes contributions from spontaneous
emission and carrier shot noise. The spontaneous emis-
sion coupled to the lasing mode and the effective a-factor
for the linewidth have been found to be dependent on the
stationary carrier density distribution. The carrier shot
noise leads to a spectral linewidth proportional to the
square of frequency tuning efficiency. The contribution of
the correlation between photon density and carrier density
depends on the tuning efficiency and the effective a-factor
for the linewidth. It is found that the effective a-factor
affecting the linewidth is in general different from its
counterpart affecting modulation and injection locking
properties due to spatial hole burning and nonlinear gain.

For lasers with uniform intensity distribution, it is found
that the effective a-factor for the linewidth increases or
remains constant with increasing output power depending

on the model used for the nonlinear gain. For X\ /4 phase-
shifted distributed feedback lasers, the effective a-factor
for linewidth is slightly larger or smaller than that for uni-
form lasers depending on the value of the normalized cou-
pling coefficient. The linewidth due to various contribu-
tions is calculated for both uniform intensity distributed
lasers and phase-shifted DFB lasers.
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