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A spatiotemporal instability is shown to occur in a dispersive nonlinear optical medium whose refrac-
tive index varies linearly with the optical intensity (the Kerr medium). The physical origin of the spa-
tiotemporal instability lies in the simultaneous presence of diffraction and dispersion in nonlinear media.
For a self-focusing medium the instability can occur for both normal and anomalous dispersion. In con-
trast, the instability exists only in the normal-dispersion region of a self-defocusing medium. A linear
stability analysis is used to predict the initial growth rate of the spatiotemporal instability. Numerical
simulations are used to analyze the behavior in the nonlinear regime where the results of the linear sta-
bility analysis become invalid. Our results show that the spatiotemporally modulated mode has a larger
growth rate than that of the spatially homogeneous mode and is expected to dominate in practice. The
periodic state eventually evolves into spatiotemporal chaos with further propagation inside the nonlinear

medium.

PACS number(s): 42.65.Jx, 42.60.Fc, 42.65.Re

I. INTRODUCTION

Instabilities and chaos can occur in many types of non-
linear physical systems belonging to plasma physics
[1-3], fluid mechanics [4,5], and nonlinear optics [6—11].
Generally speaking, optical instabilities can be classified
as temporal or spatial depending on whether light is
modulated temporally or spatially after its passage
through the nonlinear medium. A temporal instability
which has attracted considerable attention, known as the
modulation instability [4,12,13], occurs through an inter-
play between self-phase-modulation and group-velocity
dispersion. It manifests itself as the breakup of
continuous-wave (cw) or quasi-cw radiation into a train
of ultrashort pulses when light propagates in a self-
focusing medium with anomalous dispersion [12]. Its
spatial analog corresponds to the development of a ring
pattern on the transverse intensity profile of a cw beam in
a self-focusing medium [14,15]. The role played by
anomalous dispersion in the case of temporal modulation
instability is taken on by diffraction in the case of spatial
instability. In this paper we study a spatio-temporal in-
stability occurring when both diffraction and dispersion
are present simultaneously. This spatiotemporal instabil-
ity is of fundamental importance as it shows how
diffraction and dispersion act together to couple space
and time. While this instability has previously been stud-
ied in the context of plasma physics [1-3] and hydro-
dynamics [4,5], it has attracted little attention in the field
of nonlinear optics, where it can be used to convert a cw
or quasi-cw beam into a train of ultrashort pulses by spa-
tially modulating the amplitude or phase of the optical
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beam. We use numerical simulations to discuss the feasi-
bility of such a practical application.

This paper is organized as follows. The basic propaga-
tion equation is presented in Sec. II by considering both
diffraction and dispersion in a nonlinear medium. The
linear stability analysis is carried out in Sec. III where the
gain curves for the spatiotemporal modulation instability
are presented. Section IV extends the linear stability
analysis of Sec. III in the nonlinear regime by solving the
wave equation numerically. Finally, the results are dis-
cussed and summarized in Sec. V.

II. WAVE PROPAGATION
IN DISPERSIVE NONLINEAR MEDIA

For simplicity of discussion, we consider the simplest
kind of nonlinearity corresponding to the so-called Kerr
medium whose refractive index varies linearly with the
optical intensity, i.e.,

Alo,)=n(w)+n,I , (1)

where o is the optical frequency, n(w) is the linear part
of the refractive index, I is the optical intensity, and #n, is
the nonlinearity parameter related to the third-order non-
linear susceptibility [13]. In general, n, is also frequency
dependent. However, in many practical situations, it
varies little over the frequency range of interest and can
be treated as constant. Chromatic dispersion is then in-
cluded through the frequency dependence of n(w). Opti-
cal instabilities in Kerr media have been studied before
[16—18]. In most of the earlier work, however, the Kerr
medium is assumed to be nondispersive. We show here
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that new instabilities can occur when the dispersive na-
ture of the Kerr medium is considered.

Wave propagation in a dispersive nonlinear medium is
governed by Maxwell’s equations together with Eq. (1).
To simplify the analysis, we solve the problem by making
the slowly-varying-envelope and paraxial approximations
and write the electric field as

E(r,t)=Re{8 A (r,texpli(Byz —wot)]} , 2)

where Re stands for the real part, € is the polarization
unit vector assumed to remain unchanged during beam
propagation, A(r,t) is the envelope assumed to vary
slowly with respect to both z and ¢, w, is the carrier fre-
quency, and B,=n(wy)w,/c is the propagation constant.
The slowly varying amplitude A (r,?) satisfies the follow-
ing paraxial wave equation [19]:
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where v, is the group velocity, B, is the group-velocity

dispersion parameter (in the notation of Ref. [13]), and
no=n(w,) is the linear refractive index. The parameter
Bz=(d23/dw2)w=wo with f=n(w)w/c. Both B, and n,

can be positive or negative. The dispersion is said to be
normal or anomalous depending on whether f3, is positive
or negative. The nonlinear medium is said to be self-
focusing or self-defocusing depending on whether n, is
positive or negative. The character of spatiotemporal in-
stability discussed here changes considerably with the rel-
ative signs of 3, and n,; this will become clear later.

III. SPATIOTEMPORAL INSTABILITY

In general, Eq. (3) should be solved numerically. The
origin of spatiotemporal instability, however, can be un-
derstood by considering the ideal case of a cw plane wave
having a constant amplitude V/1,, (I, is proportional to
the beam intensity) at the input end of the nonlinear
medium. Equation (3) can be solved analytically in that
case since A is independent of x, y, and ¢t. The solution is

A(x,p,2,)="Toexpliyz) , @)
where
Bon, 21
= " IO=T"210- (5)

and A is the wavelength of incident light. Equation (4)
shows that the cw plane wave remains unchanged during
propagation except for acquiring an intensity-dependent
phase shift.

Stability of the steady-state solution, Eq. (4), depends
on whether small perturbations grow or decay with prop-
agation. We use the standard linear stability analysis [13]
and assume that A4 is perturbed slightly such that

A(x,y,z,t)=[\/T(,+a(x,y,z,t)]exp(i7/z) , (6)

4203

where the perturbation |a| <<1/I,. By substituting Eq.
(6) in Eq. (3) and linearizing in a, we obtain

(20 100, 1 (0%, 5
8z v, ot | 2B, |ax? | ap?

B> 9%

— i tratan=0. @

This linear equation can be solved analytically. If we as-
sume a general plane wave solution of the form

a=a,cos[K-r—Q(t —z/v,)]
+ia,sin[K-r—Q(t —z/v,)], (8)

a nontrivial solution is found to exist only when the wave
vector K and the frequency ) satisfy the following
dispersion relation:

ABIK =K+ K] = BB 0K+ K] —BoB,0* —4yBy) ,
9

where K, K, and K, are the Cartesian components of K.
This dispersion relation reduces to that obtained for
modulation instability in optical fibers [13] in the limit
K,=K,=0 (diffraction absent due to the guided nature
of the optical field). The steady-state solution becomes
unstable whenever K, has a negative imaginary part since
the perturbation then grows exponentially with the inten-
sity gain given by g=2Im(K,). In general, g is a func-
tion of K, Ky, and ). However, g depends on K, and
K, only through K| =(K3+Ky2)1/2. Thus g can be treat-
ed as a function of K, and Q only. It is useful to intro-
duce a spatial frequency (), as

1/2

Q.= fi__ = K§+Ky2 (10
C VBB Bol B
By using Eq. (9), the gain can be written in the form
g(9,9,)=1B,/[Q2—sgn(B,)Q?]'/?
X [sgn(n,)Q2 +sgn(B,)Q*—Q2]'/? | (11)
where
2=yl _ Brinally (12)

< 0Bl AlB,

Equation (11) shows that perturbation at a temporal
frequency (1 and a spatial frequency ), would grow ex-
ponentially due to an inherent instability of the steady-
state solution. We call this instability a spatiotemporal
instability because it leads to simultaneous spatial and
temporal modulations of the steady state. The range of ()
and () over which instability occurs depends on the rela-
tive signs of n, and [3,. It is easy to see that no instability
occurs when both n, and 3, are negative. For the three
remaining choices of the combinations of signs for n, and
B,, there exists some range of 0 and Q; for which the
gain is real and positive. Figure 1 shows the instability
region in the (Q,Q;) plane for the three cases. The
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FIG. 2. Normalized gain plotted as a function of the normal-
05 ized temporal frequency Q/Q, for four values of Q2/Q? for the
Y case of a self-focusing medium with normal dispersion (n, >0,
—05 . B,>0). Self-pulsing occurs only for Q, > Q, /V'2.
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FIG. 1. Ranges of normalized temporal frequency Q/Q,
(horizontal axis) and normalized spatial frequency Q, /. (verti-
cal axis) for which the spatiotemporal instability occurs for the
three cases: (a) n, >0, 3,>0; (b) n, >0, 3,<0; (c) n, <0, B,>0.
Solid lines enclosing the instability region are contours of zero
gain. Dashed line in each case indicates the contour of max-
imum gain.

dashed line in each case shows the contour of maximum
gain, whereas solid lines show the contours of zero gain.

Several interesting conclusions can be drawn from Fig.
1. In the absence of diffraction ({2, =0), the spatiotem-
poral instability reduces to the temporal modulation in-
stability observed in optical fibers {12,13] and occurs only
when n,>0 and B,<0 [Fig. 1(b)]. This instability is
preserved even in the presence of diffraction, but now
temporal modulation can be accompanied by spatial
modulation as long as Q>+ Q? <Q2. The most interest-
ing feature is that the spatiotemporal instability does not
necessarily require anomalous dispersion. It can occur
even in the normal dispersion regime of a self-focusing
medium (n, >0,3,>0), although the instability domain
is quite different [Fig. 1(a)]. Indeed, the instability gain
occurs for all frequencies Q such that

02—02<0?<Q?. (13)

Spatial modulation at Q; would thus lead to temporal
modulation at the frequency  for which the gain is max-
imum. The same situation exists in the normal dispersion
region of a self-defocusing medium [Fig. 1(c)] except that
1 is now bounded in the range

Q1<0’<02+0?. (14)

In both cases cw light can be converted into a train of ul-
trashort pulses as a result of the spatiotemporal instabili-
ty described in this paper by simply imposing a spatial
modulation on the input beam. The case of self-
defocusing is most interesting since the repetition rate
can be made quite large by increasing Q; and Q. (i.e., by
increasing the intensity of the input cw beam).

Figures 2 and 3 show the variation of instability gain g
with Q/Q, for several values of 0, /Q, by using Eq. (11)
in the normal dispersion region (/3,>0) of self-focusing
and self-defocusing media, respectively. In the self-
focusing case, the gain exists for all values of 3, >0. The
gain peak is located at Q=0 for Q, <Q,/V'2 and shifts
away from it for larger values of . Physically, the tem-
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FIG. 3. Same as in Fig. 2 except that the nonlinear medium

is self-defocusing (n, <0). In this case self-pulsing occurs for all
values of (},.
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poral modulation would be induced only when
exceeds Q_./ V2. By contrast, in the self-defocusing case,
spatial modulation induces temporal modulation for all
values of ;. In each case the gain is normalized to its
peak value g, given by

_ |Bz|ﬂ§ _ 47T|n2|10
&max 2 - A .

(15)

The maximum gain is seen to be twice the nonlinear
phase shift as given in Eq. (5) and is entirely determined
by the wavelength and the nonlinear index change
Anyy =|n,|I,. In the visible region (A~0.5 um), the in-
stability gain exceeds 20 cm ! even for Any; =107% In
order for the instability to develop from noise [12], the
nonlinear medium should be long enough to amplify the
perturbation by a factor of 107 or so. Since exp(gL)=10’
for gL =~ 16.1, the spatiotemporal instability can be ob-
served in a nonlinear medium of length L <1 cm when
Any; exceeds 10™*. The required intensity depends on
the value of |n,].

IV. NUMERICAL SIMULATIONS

The linear stability analysis detailed above indicates
the possibility of producing a pulse train through the spa-
tial modulation of a cw beam. However, the analysis is
limited in scope simply because the exponential growth of
perturbations ceases to occur when the perturbation am-
plitude becomes comparable to that of the incident beam.
A numerical analysis of the evolution of spatiotemporal
instability beyond the applicability of the linear analysis
becomes necessary in the nonlinear regime.

We present the numerical solutions to Eq. (3) corre-
sponding to the case of normal dispersion in a self-
defocusing medium (n, <0,3,>0). Exact solutions are
difficult to obtain even with supercomputers because of
the four-dimensional nature of the problem. For simpli-
city, the diffractive effects are limited to one transverse
dimension. Although, strictly speaking, the results are
only valid for wave propagation in planar waveguides,
they may indicate the qualitative behavior even for bulk
media. For numerical calculations, Eq. (3) is normalized
to the form

2
QUL LU 13U, 1ypy=o 16)
9 2 oy’

by using the following normalized variables:

E=v'z, 1=V7B,
(17)

’ A
T=VY /|Bz|

=‘/le

z

t——

, U
Ug

where y'=yI'/I, and I' is an intensity used for normali-
zation.

Equation (16) is solved numerically, utilizing the split-
step Fourier method [20]. The initial field distribution at
the entrance to the nonlinear medium is a sinusoidally
modulated plane wave U=U,[l+a,sin(f;n)] with
a;=0.1and f,=2U,Q,/Q.. From Fig. 3, it can be con-
cluded that in the absence of any applied spatial modula-
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tion, temporal instability can develop at the normalized
temporal frequency f,=2U,Q,/Q, with a gain of g_.,,
where ), corresponds to the peak of the gain curve for
Q,=0 in Fig. 3, ie.,, Q,/Q,=1/V2 and f,=V2U,.
When the cw plane wave is spatially modulated at f, the
figure indicates that there will be a corresponding nor-
malized temporal frequency, denoted here by f,, that
likewise exhibits a gain of g,,,,. Thus the linear theory
shows that the two temporal frequencies f, and f, have
the same growth rate. However, the growth rates can be
quite different in the nonlinear regime due to mode com-
petition. The purpose of numerical simulations is to
identify which frequency wins the nonlinear mode com-
petition. In a laboratory experiment, noise in the system
provides the seed from which temporal frequencies begin
to develop. However, for the numerical simulations, it is
necessary to explicitly provide an initial seed at the tem-
poral frequency f,, f,, or both to stimulate a response
(induced modulation instability). To examine the subtle
effects of the applied perturbing frequencies in the nu-
merical simulations, the results of different initial tem-
poral frequency seedings are considered below.

The spatial modulation is applied at the normalized
frequency f;,=13. The corresponding induced temporal
frequency which has a peak in the gain curve near
f,=14 is provided with an initial amplitude seeding of
0.005. Thus the input field has the form

U(E=0,71,7)=Uy[1+0.1sin(f,1)][1+0.005sin(f,7)] ,
(18)

where the amplitude U, is taken to be 5. Figure 4 shows
the temporal and spectral distribution of the field intensi-
ty at =0 at a propagation distance of £=0.25
(z=12.5/8max) into the medium. The dotted curve,
shown for comparison, is the input field intensity at £=0.
The linear theory predicts that the frequency f,; should
evolve simultaneously and at the same rate as f,. How-
ever, since no seed was provided at that frequency, only
the frequency f, grows until it generates higher harmon-
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FIG. 4. Temporal and spectral distribution of optical intensi-
ty at a propagation distance £=0.25 with initial seeding at
f2=14 [see Eq. (18)]. The dotted curve shows the input intensi-
ty distribution. The input cw beam is modulated sinusoidally
such that f, =14.
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ics through nonlinear interactions within the medium as
seen in Fig. 4. Since f, is the dominant spectral com-
ponent, the spatiotemporal instability gives rise to a
periodic modulation at a repetition rate of f,. We refer
to this case as the spatially inhomogeneous (SI) case since
temporal modulations are accompanied by spatial modu-
lations.

When f, is applied as the only temporal frequency
seed to the input cw beam, we would expect the spatially
homogeneous (SH) mode (f,=0,f,=V2U,=7) to dom-
inate the power spectrum for the same reason that the f,
frequency component dominated in the preceding case.
This is indeed the situation, as shown in Fig. 5, where the
temporal and spectral distributions are shown under con-
ditions identical to those of Fig. 4. An interesting point
to note is that even though the initial perturbation ampli-
tude of the SI mode (5X 10~ % at f, =13, f, =14) is small-
er by an order of magnitude than that of the SH mode
(5X107 % at f,=0f,=7), the SI mode grows much more
rapidly than the SH mode in the nonlinear regime beyond
the applicability of the linear stability analysis. For this
reason, the depth of modulation is much larger than that
of the SH mode, given the same amount of time for the
instability to develop. It is remarkable that the gain of
the SI mode is much larger than that of the SH mode in
the nonlinear region despite the linear theory prediction
that these two frequency components would initially
grow at the same exponential rate.

In a practical situation the SI and SH modes would
evolve simultaneously and their growth rates would be
affected through their mutual nonlinear interaction. To
include such a nonlinear coupling we consider the case in
which both frequencies f; and f, are initially seeded.
Then the input field takes the form

U(E=0,7,7)=U,[1+0.1sin(f;7)]
X [140.005 sin(f,7)+0.005 sin(f,7)] .
(19)

Figure 6 shows the temporal distribution of the field in-
tensity and the corresponding power spectrum under
conditions identical to those of Figs. 4 and 5. In order to
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FIG. 5. Same as in Fig. 4 except the initial seeding is at
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FIG. 6. Same as in Fig. 4 except the initial seed is supplied at
both frequencies f, =7 and f,=14 [see Eq. (19)]. Normalized
amplitude is plotted on the vertical axis of the spectrum to show
multiple peaks clearly.

show the multiline nature of the power spectrum clearly,
the vertical axis of the spectrum plots the normalized am-
plitude. In spite of the smaller initial perturbation ampli-
tude of the SI mode, it dominates the power spectrum
through the frequency components at f, and its harmon-
ics. In fact, the power contained in the f, frequency
component exceeds that of the f| component as early as
£=0.05. The spectral asymmetry seen in Fig. 6 appears
to be a consequence of the fact that f, and f, are multi-
ples of each other (f,=2f,). In the nonlinear regime
new frequency components at harmonics of f, and f,
and at f,*f, are expected to be generated. Several of
these components overlap and induce a strong coupling
between the SI and SH modes. This coupling not only
makes the spectrum asymmetric but also gives rise to the
temporal distribution seen in the figure.

In the preceding simulation, f, is a multiple of f,. To
analyze the situation where f, and f, are incommensu-
rate, the value of f| is taken to be 15; the corresponding
temporal frequency at the gain peak is located near
f>=17. Figure 7 shows the temporal and spectral behav-
ior at the same propagation distance as in Fig. 6. The
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FIG. 7. Same as in Fig. 6 except f, =17 and the spatial fre-
quency f, =15. The propagation distance is £=0.25.
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FIG. 9. Field intensity as a function of both the transverse
spatial coordinate and time at normalized propagation distances
of £=0.3 and 0.5.

most notable feature is the dominance of the spectrum by
f> and its harmonics (corresponding to the SI mode).
The SH mode does not grow significantly as little power
is carried by the spectral components at f, and its har-
monics. The nonlinear generation of other frequency
components such as f,—f, is also kept to a minimum.
Figure 7 shows that the depth of modulation can ap-
proach 100% with a proper selection of the spatial fre-
quency at the input. The zero-frequency (dc) component
in the power spectrum is due to the residual cw back-
ground. Since the cw background in Figs. 4-6 is several
times larger than in this case, the dc component was not
shown in those spectral plots. With further propagation,
frequency components arising from nonlinear processes
such as sum and difference frequency generation and
four-wave mixing acquire significant power levels, result-
ing in a chaotic output. An example of chaos is shown in
Fig. 8, which corresponds to a propagation distance of
£=0.35.

The intensity distributions and power spectra displayed
in Figs. 4—8 are shown for a fixed transverse position in
space 71=0. However, the spatiotemporal nature of the
instability can be more clearly seen in a three-
dimensional plot of the field intensity as a function of
both space and time. Figure 9 shows such a plot at prop-
agation distances of £=0.3 and 0.5 where the only ap-
plied temporal frequency seed is f, (same as in Fig. 4).
Figure 9(a) corresponds to £=0.3, a distance slightly
greater than that of Fig. 4. Here we clearly see the spa-
tiotemporal nature of the instability induced by imposing
a spatial modulation. Figure 9(b) shows the situation at
twice the propagation distance of Fig. 4 (§=0.5). It indi-
cates that the periodic state eventually degenerates into
spatiotemporal chaos.

V. DISCUSSION AND CONCLUSIONS

A spatiotemporal instability is shown to occur in a
dispersive Kerr medium as a result of interplay among
diffraction, dispersion, and self-phase modulation. In the
case of self-focusing, the instability can occur both for
normal and anomalous dispersion. In contrast, the insta-
bility exists only in the normal dispersion region of a
self-defocusing medium. In the latter case, numerical
simulations incorporating one transverse dimension
demonstrate that temporal modulations can be induced
on a laser beam by imposing a spatial intensity modula-
tion on the input cw beam. The temporal period of these
modulations can be controlled through the period of the
spatial modulation and can be much shorter than that
occurring in the absence of spatial intensity modulation.
Given enough time to develop, the periodic modulation
usually degenerates into spatiotemporal chaos. From the
standpoint of the underlying nonlinear dynamics, more
work is required to understand the transition from self-
pulsing to chaos quantitatively.

One may expect a qualitatively similar behavior for the
case of a self-focusing medium with normal dispersion.
This situation is particularly interesting since the medium
is temporally stable in the absence of spatial modulations.
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Numerical simulations suggest that even though tem-
poral modulations can be induced by imposing spatial
modulation, the temporal modulation depth is much
smaller than that obtained in the self-defocusing case.
The experimental observations of spatiotemporal insta-
bilities would be of considerable interest. An atomic va-
por such as sodium can be used for this purpose. Other
possibilities consist of using either a nonlinear organic
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