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This paper provides a general treatment of the pulse-propagation problem in doped fiber amplifiers
within the rate-equation approximation. The dopants are modeled as a two-level system whose dynamic
response is governed by the population relaxation time T'; and the dipole relaxation time T,. For in-
cident optical pulses with a width T, such that T, >>T,>>T,, pulse amplification is governed by a
Ginzburg-Landau-type equation that includes gain saturation, gain dispersion, fiber dispersion, fiber
nonlinearity, and the detuning effects occurring when the carrier frequency of the input pulse does not
coincide with the gain peak. In the absence of gain saturation, this equation has solitary-wave solutions
in the form of chirped solitons. Qur numerical results show that the chirped solitons are stable only in
the normal-dispersion regime. In the case of anomalous dispersion, as is the case for erbium-doped fiber

amplifiers, the amplified pulse develops many subpulses.

amplification is also discussed.

PACS number(s): 42.50.Qg, 42.65.Bp, 42.65.Re

II. INTRODUCTION

The technique of doping silica fibers with rare-earth
elements such as erbium, neodymium, and samarium pro-
vides an excellent gain medium that can be pumped opti-
cally to make lasers and amplifiers [1-19]. Although
such lasers and amplifiers were studied [1,2] as early as
1961, they have attracted considerable attention only re-
cently [4—19]. The current interest in erbium-doped fiber
amplifiers is motivated mainly by their potential applica-
tions in fiber-optic communication systems [8—11]. From
a fundamental standpoint, doped optical fibers offer prac-
tical realization of a two-level system in a dispersive non-
linear host [15-19] whose waveguiding property allows
one to ignore the diffractive transverse effects which often
complicate the study of other two-level systems. Many
physical phenomena observed in quantum optics (self-
induced transparency, photon echo, etc.) should be stud-
ied in doped optical fibers whose dispersive and nonlinear
properties may lead to new qualitative features [13-19].

The objective of this paper is to provide a theoretical
framework for the study of pulse propagation in doped
fiber amplifiers. A basic propagation equation is derived
in Sec. II by modeling the dopant response in terms of the
population relaxation time 7', and the dipole (or polariza-
tion) relaxation time T, of a two-level system. This equa-
tion is valid for incident optical pulses of width T, such
that T, >>T,>>T,, as is the case in most practical situa-
tions. The propagation equation includes the effects of
gain saturation, gain dispersion, fiber dispersion, fiber
nonlinearity, and atomic detuning. Sections III and IV
solve this equation numerically without and with gain
saturation, respectively, by considering the cases of
anomalous and normal fiber dispersion. Particular atten-
tion is paid to the formation of chirped solitons. The
main results are summarized in the concluding Sec. V.
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The effect of gain saturation on pulse

II. BASIC PULSE-PROPAGATION EQUATION

The propagation of optical pulses in undoped single-
mode fibers has been studied extensively, particularly in
relation to optical solitons [20]. This study can be ex-
tended to include the effect of dopants. The analysis is
simplified considerably if dopants are modeled as an ideal
two-level atomic system. Mathematically, the response
of a two-level atomic system is governed by the Bloch
equations [21] and the associated population and dipole
(polarization) relaxation times T'; and T,. The atomic
system can be assumed to respond instantaneously if T,
is much shorter than the pulse width T,. For most
dopants T, is in the range 50-100 fs whereas T is
~1-10 ms. Since T, <<T, for pulses as short as 1 ps,
the atomic response for such pulses can be included
through the susceptibility of a two-level system given by
[21]

8¢ (0=, )T, —i

JSo)=m=——
Xal@)=7, 1+(o—w,)*T3

(1

where o is the optical frequency, w, is the atomic reso-
nance frequency, and the peak gain g,=o(N,—N,),
where o is the transition cross section and N, and N, are
the atomic densities for the lower and upper energy levels
of the two-level system. The rate equations for N; and
N, can be used to obtain the following rate equation for
the gain [21]:

dg, 808 _ [2_0

I, 2
dt T, o |8 @

P

where g, is the small-signal gain created by optical
pumping and I is the optical intensity. The factor of 2 in
Eq. (2) appears for two-level atoms whose lower level cor-
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responds to the ground state [21]. This is the case for
many dopants such as erbium. In the steady state Eq. (2)
is readily solved to obtain g,=g,/(I +1/I;), where
I, =%w/(20T),) is the saturation intensity. However, the
steady-state solution can only be used either in the
continuous-wave (cw) case or for long pulses such that
To>>T,. In most cases of practical interest T <<T,
and the transient nature of gain must be included.

Equation (1) assumes that the gain profile is homogene-
ously broadened. In general, the response of dopants in
optical fibers has an inhomogenous-broadening com-
ponent because of the amorphous nature of silica glass
[7]. For alumino-silicate glasses the inhomogenous con-
tribution is small and T, in Eq. (1) can be related to the
homogeneous line width Aw,=2/T,. The inhomo-
genous component appears to be larger for germano-
silicate glasses. For simplicity, we use Eq. (1) for all
glasses with T', as a fitting parameter that is determined
from the gain bandwidth.

The pulse-propagation problem in doped fibers can be
solved by defining a complex dielectric constant as

elw)=n}w)+2ins(c/w)a;+x,(0), (3)

where a + accounts for the fiber loss and n r is the refrac-
tive index of the fiber. The fiber index » r should include
both linear and nonlinear contributions so that

nelo)=n(w)+n,l, 4)

where the linear index n is different for the core and the
cladding regions of the optical fiber. The frequency
dependence of n, and Y, governs the dispersive effects as-
sociated with the fiber and the dopants, respectively.
Furthermore, both n; and x, are intensity dependent; the
nonlinear effects result from such an intensity depen-
dence. The application of Maxwell’s equations leads to
the following wave equation:
2 D _

VE—pg o’ o, (5)
where E is the electric field vector, p, is the vacuum per-
meability, and D is the displacement vector. The Fourier
transform of D is related to that of E by the constitutive
relation

D(r,0)=¢ye(0)E(r,0), (6)

where €, is the vacuum permittivity and a tilde denotes
the Fourier transform defined as

E(r,o0)= f_w E(r,t) exp(imt)dt. 7

Equations (3)-(7) govern the propagation of electromag-
netic field in any dispersive nonlinear medium. They are
considerably simplified in the case of optical fibers be-
cause of the guided nature of the optical field. The elec-
tric field vector is written as

E(r,t)=1{€F(x,y) A (z,1)
X expli(Byz —wpt)]+c.c.}, (8)

where € is the polarization unit vector, F(x,y) is the field
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distribution associated with the fundamental fiber mode,
(HE;; mode), A(z,t) is the complex amplitude of the
pulse envelope, 3, is the propagation constant at the car-
rier frequency w,, and c.c. stands for the complex conju-
gate. The optical field is assumed to remain linearly po-
larized along the same direction € during its propagation
inside the fiber. This would be the case for polarization-
preserving fibers with input polarization along one of its
principle axes. The analysis, however, applies approxi-
mately even for conventional fibers.

Equations (3)—(8) can be used to obtain a basic propa-
gation equation for the pulse envelope 4 (z,¢) by follow-
ing the well-known techniques [20]. The dispersive
effects are included by defining the propagation constant
at the frequency w as

Blw)=Velw)w/c 9)

and expanding it in a Taylor series in the vicinity of the
carrier frequency w, By substituting Eq. (3) in Eq. (9)
and noting that a > 1y, and [x.| are much smaller than
n, B(w) is written as

(0] i 1
I3(co)=/3’f(co)+7n21+5af+-2—n)(a(w), (10)

where B(w)=n(w)w/c is the propagation constant of
the undoped fiber. The refractive index n(w) stands for
the model index.

Care must be exercised while expanding B(w) in a Tay-
lor series. Both n, and « ¢ vary with frequency, but the
variation is slow enough that they can be treated as con-
stants over the pulse bandwidths (typically <10 THz).
However, this is not the case for the atomic susceptibility
X.(w) governing the response of dopants. Because of a
finite gain bandwidth, all spectral components do not ex-
perience the same gain, a phenomenon referred to as gain
dispersion. Furthermore, if the carrier frequency of the
incident field does not coincide with the gain peak locat-
ed at w,, gain is accompanied by index changes which
provide an additional contribution to the host dispersion
governed by n(w). The Taylor expansion of x,(w) in Eq.
(1) yields the following expression:

& | 8—i |, 1—82+2i6
2n, | 1+82 (1+8%)?

Xol@)= (0— )T,

8(82—3)+i(1—38%)
(1+8%)3

(w—‘ﬁ)o)ZT% 9
(11)

where ny=n (w,), and we have introduced a detuning pa-
rameter 8 by defining

8=(wy—w,)T,. (12)

The effects of fiber dispersion are included by expanding
Bs(w) in a Taylor series and neglecting the cubic and
higher-order terms, i.e.,

Bf(w)=B0+Bl(a)—wo) %Bz(a)_wo)z, (13)
where f3,, =(d"’B/da)"’)m:wo for m =0, 1, and 2. The pa-



44 OPTICAL PULSE PROPAGATION IN DOPED FIBER AMPLIFIERS

rameter f3; is related to the group velocity as v, =1/8;.
The parameter 3, is called the group-velocity-dispersion
parameter [20] since 3, is proportional to dv, /d .

The propagation equation is obtained by solving Eq. (5)
in the frequency domain with the help of Egs. (6)-(8). In
a simple approach, the Fourier component A(z,w) of
A (z,t) is found to evolve as [20]

S —i1Blo)—F] 4, (14)
where B(w) is given by Eq. (10). By using Egs. (11) and
(13) and taking the inverse Fourier transform, A4 (z,t)
satisfies the propagation equation

04 ﬂraA 702 A
3z thi ZB3 o2
__ 9 &p 5— 24
= — +—
5 A 2n, 1+52 A+iylal’4, (15
where
T, 1—§2 i
mﬁ=31+gp 2 1—8°+2i6 ’ (16)

2ng  (1+82%)?

8, T3 8(82—3)+i(1—382)
2ng (1+8%)3
Y=n,0q/(cay) . (18)

Bgffzﬁz"‘

, (17)

The amplitude A is normalized such that | 4|? represents
power. The nonlinearity coefficient y in Eq. (18) contains
the effective core area defined as

_ [ffw |F(x
e ff |F(x,y )|*dx dy

where F(x,y) is the dimensionless spatial profile of the
fundamental fiber mode. Typically a . is larger than the
core area because of spreading of the fiber mode into the
cladding. For single-mode fibers a.; varies in the range
10-60 um? depending on the operating wavelength and
the core diameter.

Equation (15) together with Eq. (2) describes pulse
propagation in doped optical fibers. A further
simplification can be made by noting that in most practi-
cal applications of fiber amplifiers the pulse width is
much smaller than the population relaxation time
(Ty<<T,;) as T, is ~1-10 ms for commonly used
dopants such as erbium. As a result, the term containing
T, in Eq. (2) can be neglected. Equation (2) can then be
solved analytically with the result

2
»)|%dx dy

(19)

g,(2,t)=gg exp ——Eifi | A (z,¢)|%dt |, (20)

where the saturation energy E is defined as
E =f%wqa4/20. 21D

In obtaining Eq. (20), the intensity I in Eq. (2) was re-
lated to the pulse amplitude A(z,t) as I=|A4|*/a4.
Equation (20) governs saturation of the amplifier gain.
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Gain saturation is important and must be included if the
energy E, of the amplified pulse becomes comparable to
the saturation energy E,. A curious feature of gain satu-
ration is that both BT and BT become intensity depen-
dent as they depend on g,(z,¢) through the last term in
Egs. (16) and (17). The intensity dependence of Beff im-
plies that different parts of the pulse move at slightly
different speeds. Such an intensity dependence can lead
to pulse shaping. In practice, gain saturation is almost
negligible for most doped fiber amplifiers since the satura-
tion energy is relatively large (E; ~ 1 pJ).

III. PULSE AMPLIFICATION
WITHOUT GAIN SATURATION

To gain a physical understanding of the amplification
process in fiber amplifiers, let us first consider the case of
weak optical pulses whose energy remains well below the
saturation level. The saturation energy of most dopants
is quite large (E,~1 uJ). As an example o ~3X 102!
cm? for erbium dopants [7]. By using #iw,~0.81 eV at
1.53 um and a.;=50 um?, E;=10.8 uJ. Typical pulse
energies for optical pulses used in fiber-optic communica-
tion systems are ~1 pJ. Even if such pulses are amplified
by a factor of 1000 (30 dB), the output pulse energy
remains well below E; and gain saturation can be neglect-
ed. The exponential factor in Eq. (20) can then be ap-
proximated by 1, and g, in Egs. (15)-(17) can be replaced
by its small-signal value g,. For simplicity, let us also as-
sume that the carrier frequency w, of the incident pulse is
matched exactly to the gain peak occurring at the atomic
transition frequency w, so that §=0 from Eq. (12). The
parameter BT is then real and can be related to the
effective group of the pulse as ve‘f—l/ﬁ’?ﬂ. By defining a
reduced time as

T=t—pBz, (22)

Eq. (15) can be written as

94 i igoT3 | 924
__+_ >
az 2 nyg | orT?
— L8 lativlaPra, @3
2 | ng

where Eq. (17) was used. This equation reduces to the
well-known nonlinear Schrodinger equation in the ab-
sence of fiber loss (a;=0) and the gain provided by
dopants (g,=0). The nonlinear Schrodinger equation
permits specific solutions, know as solitons [20], which
correspond to optical pulses which either preserve their
shape (the fundamental soliton) or follow a periodic evo-
lution pattern (higher-order solitons) as they propagate
inside the undoped fiber.
It is useful to normalize Eq. (23) by defining

U=A4/(P)"? r=T/T,, and £=z/L, , (24)

where P, is the peak power and T, is the width of the in-
put pulse. The dispersion length L, is defined as [20]
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L,=T3/|B, . (25)

Solitons exist only in the anomalous dispersion region of
the optical fiber where 3, is negative. This is the case
when the carrier wavelength Ay=2mc /w, exceeds the so-
called zero-dispersion wavelength A, of the fiber. For
conventional fibers A,p==1.3 um; it can be moved to the
wavelength region near 1.55 um in the especially
designed dispersion-shifted fibers. Assuming 3, <0, Eq.
(23) can be written in the normalized form

QU U _ i
la—§+;<1—zd)aT2 +NUIU=ZpU, (26)
where
8T 8o
d= , = |——a, |Lp. 27N
nolBl Ry I
The parameter N defined as
N=(yPoLp)"*=(yP,T3/|B,1)'"? (28)

is referred to as the soliton order. For undoped fibers the
input pulse travels as a fundamental soliton when N =1.
From Eq. (28) the peak power and the width of funda-
mental solitons are related by

Py=|B,| /¥ T}. (29)

Typically Py=1-5 W for Ty=1 ps. It is easy to verify
that [20]

U (&, 7)=sech(7)exp(i§/2) (30)

is a solution of Eq. (26) when N =1 and the parameters d
and p are set to zero. Equation (30) shows that a pulse
with the intensity profile sech?r would propagate without
change in its shape as it propagates down the fiber. Such
a shape-preserving soliton exists only for undoped fibers
without any loss or gain so that the pulse energy is con-
served along the fiber length.

For doped fiber amplifiers, pulse propagation is
governed by Eq. (26). This equation differs from the non-
linear Schrodinger equation in two aspects. First, the
pulse is amplified because of gain provided by dopants
(u>0). Second, the coefficient of the 3°U /d7% term is
complex because of gain dispersion. Equation (26) can be
classified as a Ginzburg-Landau equation whose solutions
have been extensively studied in many different contexts
[22-24]. An interesting aspect of the Ginzburg-Landau
equation is that it permits solitary-wave solutions in spite
of the presence of the loss or gain that makes the underly-
ing physical system non-conservative [23]. Indeed, a soli-
tonlike solution of Eq. (26) is given by [25,26]

U(&,7)=sech(pr)expliq In cosh(pr)+iTl&], 31

where p, g, and T are constants. These constants can be
determined by substituting Eq. (31) in Eq. (26) and obvi-
ously depend on the gain-dispersion parameter d. A nov-
el feature of the solution (31) is the presence of a time-
dependent phase. Such pulses are called chirped, and the
solitary-wave solution is referred to as a chirped soliton
[15]. Another noteworthy feature of the solution (31) is
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that both the soliton width and its peak power are
uniquely determined by the gain-dispersion parameter d,
or equivalently by T',. This is in contrast with the solu-
tion (30) of the nonlinear Schrodinger equation for which
P, and T, can vary as long as they are related such that
N =1 in Eq. (28). The gain term in Eq. (26) stabilizes
only one soliton among the whole family and selects its
size by breaking the scale invariance associated with the
conservative problem [23].

The solitary-wave solution (31) is an eigensolution of
the nonlinear propagation Eq. (26). In a practical situa-
tion, fiber amplifiers are used to amplify an input pulse of
given width and peak power. Equation (26) can be used
to describe the amplified pulse at the fiber output. We
use the split-step Fourier method [20] to solve the initial-
value problem numerically. The parameters pu and d are
fixed by considering a fiber amplifier with the 10-dB gain
per dispersion length L, (e#=10 or pu=2.3) and by
choosing an input pulse width T, such that T, /T(;=0.2
(d =0.092). The parameter N is related to the input peak
power P, according to Eq. (20) and is varied over a wide
range to understand the amplification process.

Consider first the amplification of a fundamental soli-
ton by choosing N =1 and solving Eq. (26) with the ini-
tial condition U (0,7)=sechr. Figure 1 shows pulse evo-
lution over a distance {=z /L, =2.5 by displaying pulse
shapes after every Lj /2. The most noteworthy feature
of Fig. 1 is the dramatic pulse compression accompany-
ing its amplification [27]. The compression stage is simi-
lar to that occurring for higher-order solitons [20]. It can
be understood by noting that the initial stage of
amplification of fundamental solitons raises the peak
power such that N exceeds 1, and the pulse behaves as a
higher-order soliton during the early stages of
amplification. The extreme narrowing of the central peak
can also be understood by noting that the pulse attempts
to maintain N near 1 as it amplifies in order to propagate
as a fundamental soliton. From Eq. (28) the pulse width

120
80
z
(%2}
& 2
2 A
or L
1 ¢
o e .
—-10 -5 0 5 100

TIME T

FIG. 1. Evolution of fundamental soliton (N =1) in a doped
fiber with 10-dB gain per dispersion length (#=2.3). At fiber
input U(0,7)=sechr, where =T /T, is the normalized time
and pulse width T, is chosen such that T, /T;=0.2 (d =0.092).
The propagation distance £=z/L; where L) is the dispersion
length.
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FIG. 2. Pulse spectra at £=1.5 and 2 for parameter values of
Fig. 1. Spectral narrowing at £=2 is due to gain dispersion,; it is
responsible for pulse broadening seen in Fig. 1 when the pulse
propagates from £=1.5 to 2.

T, decreases as P~ !/2 where P is the peak power.

The compression stage cannot continue indefinitely be-
cause of the presence of gain dispersion. When the pulse
becomes so short that its spectrum exceeds the gain band-
width, spectral wings are amplified less than the central
peak. As a result, pulse spectrum narrows, and pulse
width increases. Gain-dispersion-induced broadening is
evident in Fig. 1 if we compare the pulse shapes at £=1.5
and 2. The corresponding spectra are shown in Fig. 2
where spectral narrowing occurring when the pulse prop-
agates from £=1.5 to 2 is clearly seen. The optical pulse
is also considerably chirped because of gain dispersion.
Figure 3 shows the frequency chirp defined as

NORMALIZED CHIRP

NORMALIZED TIME

FIG. 3. Frequency chirp Av across the pulse at £=1, 2, and
3. The chirp is absent at the amplifier input (Av=0) Parameter
values are the same as for Fig. 1.
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_ 1 93¢
27 or’ (32)

where ¢ is the phase of U(&,7). The chirp profile
changes considerably along the fiber length. In particu-
lar, the chirp behavior is qualitatively different beyond
£=2 as is evident by rapid oscillations seen in Fig. 3 for
£=3.

The qualitative changes beyond £=2 can be attributed
to the generation of additional subpulses in the time
domain. Figure 1 shows the appearance of such sub-
pulses at £=2.5. The number and the amplitude of sub-
pulses grow with further propagation. Figure 4 shows
the pulse shapes and spectra at £=3 and 5. The number
of subpulses has grown to 7 at £=35 and keeps increasing
with further propagation. Each subpulse has about the
same width and about the same amplitude. The spacing
between the subpulses is nearly uniform (except for the
subpulses near the boundary that are still in the process
of formation) and does not change with propagation.

How can one understand such a behavior? A partial
answer lies in the solitary-wave solution. Eq. (31), associ-
ated with the Ginzburg-Landau equation (26). The width
and the peak power of each subpulse are determined by
the gain-dispersion parameter d or T,/T,. The input
pulse evolves toward the chirped soliton. However, once
it attains the required peak power, it cannot amplify any
further. This appears to be the case near £=2 in Fig. 1.
Beyond £=2, the fiber amplifier supplies energy to the
pedestal that accompanies the pulse. Each subpulse
grows out of such pedestal amplification. From a physi-
cal standpoint a steady state is not reached simply be-
cause the amplifier continues to provide gain, and small
fluctuations are amplified and shaped to become chirped
solitons. Figure 5 shows how the energy E, and the
root-mean-square width (rms) o, (of the entire pulse
train) increase with distance. They are defined as

Av=

E &)= [" lu(gnldr,
(33)
oy )= [" AU,

and are normalized to 1 at the input (£=0). The pulse
energy E, increases tenfold (by 10 dB) within one disper-
sion length, oscillates from £=1 and 2 as the compressed
pulse tries to form a chirped soliton, and then increases
once again beyond £=2 as the new subpulses are formed.
From a fundamental standpoint, the chirped soliton
given by Eq. (31) is not stable against perturbations.

One may wonder what happens if the optical pulse
propagates in the normal-dispersion regime of fiber
amplifiers. The solitary-wave solutions of the Ginzburg-
Landau equation exist in the form of a chirped soliton
even in the case of normal dispersion (3,>0). Our nu-
merical simulations show that the input pulse amplifies
and evolves toward this chirped soliton just as it does in
the case of anomalous dispersion. Interestingly enough,
it stabilizes when f3, is positive, and no subpulses are gen-
erated. Figure 6 shows the variation of pulse energy E,
and the rms width o, along the fiber length and should
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be compared with Fig. 5. Both E, and o, have become
constant for £>>1 indicating that the pulse has evolved
toward a stable chirped soliton. The origin of soliton sta-
bility in the normal-dispersion case is not clear and re-
quires further investigation. A partial explanation is that
the input pulse broadens in the case of normal dispersion
rather than undergoing compression as is the case for
anomalous dispersion. As a result, it encompasses any
radiation generated during the evolution phase. By con-
trast, the radiation generated in the case of anomalous
dispersion is separated from the main pulse and seeds the
instability.

Before leaving this section, let us consider briefly the
case in which the carrier frequency o, and the gain-peak
frequency w, do not coincide so that the parameter &
given by Eq. (12) is nonzero. Such detuning effects can be
studied by solving Eq. (15). The main difference is that
the amplifier gain is accompanied by an index change
whose magnitude depends on 8. Both 35T and BT become
8 dependent. A new qualitative feature is that BT be-
comes complex. The imaginary part of 5T leads to a

100 ——1—————1——
s ]
80 F ¢ —
r 60| .
(V2]
=z L J
Lt
Z 40} ]
20 ]
0 ___A__AA_MLHA.A_‘__
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100 —————————
go | €= .
x eof .
[72]
-4 L |
[T}
Z a0} 4
20 | —
o - Jl.JUIUl.Jt
-10 -5 0 5 10
TIME
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shift of the pulse spectrum toward the gain peak. This
behavior can be understood qualitatively by noting that
when the peaks of the pulse and gain spectra do not coin-
cide, the spectral peak of the pulse at w, experiences less
gain than the spectral components located near w,. This
feature leads to a pulling of the pulse spectrum toward
the gain peak.

IV. PULSE AMPLIFICATION
WITH GAIN SATURATION

This section considers the effect of gain saturation on
soliton amplification in fiber amplifiers. Pulse evolution
is governed by Eq. (15), but the gain g, is now time
dependent and is given by Eq. (20). By using the normal-
ized parameters given by Egs. (22) and (24), Eq. (15) can
be written as

U U i
—— +1(1—id" )= +N|UPPU=—u
zag S(1—i )812 |Ul 2;LU (34)
where
16 T T T T T T T
- E’:S
10 | .
=
7]
=z L
]
-
Zz
6 i
- :
0 L y- ¢ N "
-4 -2 0 2 4
FREQUENCY
20 ————————
16
£
210
i
=z
5
0
-4 -2 o 2 4
FREQUEINCY

FIG. 4. Pulse shapes and pulse spectra at £=3 and 5 for the case shown in Fig. 1. New subpulses are generated continuously as

the pulse propagates along the fiber amplifier.
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FIG. 5. Energy (solid line) and rms width (dashed line) of the
amplified pulse (including subpulses) as a function of the propa-
gation distance. Parameter values are the same as for Fig. 1.

d'=d exp

—sf: |U|2d'r],
W= exp [—sf: |U‘2dr], (35)

d and p are defined as in Eq. (27), and the new saturation
parameter s is given by

s =Py1o/E,. (36)

In the absence of gain saturation (s <<1), d'=d, u'=pu,
and Eq. (34) reduces to Eq. (26), as it should. The effect
of gain saturation is to make the parameters d’ and pu’
time dependent through their dependence on the intensi-
ty. For most fiber amplifiers s <<1 under typical operat-
ing conditions as the saturation energy is relatively large
compared with the input pulse energy. To illustrate the
gain-saturation effects we choose s =0.01.

Figure 7 shows the temporal profiles of the amplified

300 , . . . . ' ; 6
250 } 1
XN
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200 /] AN {4
/ ST T T
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/

& 150 | y 15
& / =
100 b / 12

/
/
Ve
50 - §
O L 1 1 1 1 1 1 O

NORMALIZED DISTANCE ¢

FIG. 6. Energy (solid line) and rms width (dashed line) when
the input pulse propagates in the normal-dispersion region of
the fiber amplifier. All other parameter values are the same as
in Fig. 1.
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FIG. 7. Pulse shapes for £ in the range 3.5-5 for the case of
anomalous dispersion. Parameter values are the same as in Fig.
1 except that gain saturation is included by choosing s =0.01.

pulse by using parameter values identical to those used
for Figs. 1-4 except that the gain-saturation effects are
included by using s =0.01. Specifically, the input pulse
corresponds to a fundamental soliton (V. =1) and propa-
gates in the anomalous-dispersion regime of the fiber
amplifier. The amplification process is qualitatively simi-
lar to the case s =0 (no gain saturation) in the sense that
the input pulse splits into many pulses. The new qualita-
tive feature is that the temporal profile of the amplified
pulse becomes asymmetric. This asymmetry has its ori-
gin in gain saturation and can be understood as follows.
The leading edge of the pulse (7<0) experiences more
gain than the trailing edge since it experiences nearly un-
saturated gain. The gain is reduced by the time the trail-
ing edge arrives because of gain saturation induced by the
leading edge. Each subpulse in Fig. 7 can still be inter-
preted as a chirped soliton whose width and peak power
are determined by the saturated value of the local gain.
It is noteworthy that the pulse amplification process is
affected by values of the gain-saturation parameter as
small as s =0.01.

One would expect that the gain saturation would also
affect pulse amplification in the normal-dispersion regime
(B,<0) of the fiber. In particular, the amplified pulse
may not be able to form a stable chirped soliton as was
the case in the absence of gain saturation. This indeed
turns out to be the case. Figure 8 shows the pulse profiles
in the range £=0-8 by using the parameter values identi-
cal with those of Fig. 7 except that 3, is now taken to be
positive. A comparison of pulse shapes in Figs. 7 and 8
reveals the dramatic difference between the normal-
dispersion (3,>0) and anomalous-dispersion (3, <0) re-
gimes. The amplified pulse tries to form a chirped soli-
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FIG. 8. Pulse shapes for £ in the range 0-8 for the case of
normal dispersion. All other parameter values are identical to
those used for Fig. 7.

ton. However, stability of this soliton is lost because of
the presence of gain saturation. Since the leading edge
experiences more gain than the traveling edge, the peak
of the amplified pulse moves continuously toward the
leading edge. The pulse shape also becomes asymmetric
with a relatively long leading edge.

V. CONCLUDING REMARKS

This paper has attempted to provide a general treat-
ment of the pulse-propagation problem in doped fiber
amplifiers within the rate-equation approximation. The
dopants are modeled as a two-level system whose dynam-
ic response is governed by the population relaxation time
T’y and dipole (or polarization) relaxation time T,. For
most dopants, T, is in the range 1-10 ms whereas T, is
extremely short (T, ~50 fs). In most cases of practical
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interest, the input pulse width T, is expected to be such
that T, >>T,>>T,. The amplification of such pulses is
governed by our main propagation equation [Eq. (15)]
which includes gain saturation, gain dispersion, fiber
dispersion, fiber nonlinearity, as well as the detuning
effects occurring when the carrier frequency of the input
pulse does not coincide with the gain peak. In the ab-
sence of gain saturation this equation reduces to a
Ginzburg-Landau equation and has special solitary-wave
solutions in the form of chirped solitons. We have used
this equation to study numerically the amplification of
fundamental solitons in the anomalous-dispersion regime
of the fiber amplifier. An important result is that the
amplified pulse does not form a stable chirped soliton as
one might have expected. Instead, the amplified pulse
takes the form of a pulse train whose individual subpulses
can be interpreted approximately as chirped solitons.
This qualitative behavior remains unchanged even in the
presence of gain saturation. The amplification process is
found to be drastically different if the input pulse propa-
gates in the normal-dispersion regime of the fiber. In the
absence of gain saturation, the amplified pulse evolves to-
ward a chirped soliton that is a solution of the underlying
Ginzburg-Landau equation. Surprisingly, the chirped
soliton is stable in the case of normal dispersion in con-
trast with the anomalous-dispersion case where new sub-
pulses are continuously generated. It would be of consid-
erable interest to observe experimentally stable solitons in
the normal-dispersion region of doped optical fiber. Op-
tical fibers doped with Nd*>* are most promising for such
an observation [28-30].
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