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The effect of phase-conjugate feedback on the dynamic response of semiconductor lasers is studied by using a

rate-equation approach. The steady state exists only for certain well-defined values of the phase of the intra-

cavity optical field. Depending on the amount of phase-conjugate feedback, the steady state becomes unstable

through two independent instabilities, referred to as fold and Hopf instabilities. The fold instability is due

solely to the phase-conjugate nature of the feedback and does not occur in the case of normal feedback. In the

instability region, the laser output is found to become chaotic by following a period-doubling or quasi-periodic

route to chaos, depending on the amount of feedback.

Semiconductor lasers are known to be extremely
sensitive to external optical feedback.`8 Depending
on the amount and the phase of feedback, the feed-
back may improve the laser characteristics (such as
a reduced linewidth4 ) or may degrade the laser (e.g.,
enhanced intensity noise'). It can even destabilize
the laser and lead to optical chaos.6' 8 In general,
the laser dynamics depend on the phase shift
acquired in the external cavity. This dependence
on the external phase shift can be eliminated if the
feedback occurs from a phase-conjugate mirror
(PCM) placed at a distance from the semiconduc-
tor laser, simply because the phase shift in the for-
ward direction is canceled during the backward trip
from the PCM to the laser. The objective of this
Letter is to investigate the effect of phase-conjugate
feedback on laser dynamics through the well-known
rate equations.' Even though the coupling of a
PCM to semiconductor lasers has been considered
previously,9' 4 the dynamic aspects have attracted
little attention.

The mathematical model follows closely the case
of ordinary optical feedback described in Sec. 6.7 of
Ref. 1. The only difference in the rate equations
occurs in the feedback term, which should include
the phase-conjugate nature of the feedback by
changing the optical field E to E*. The resulting
rate equations are'

E(t) = i(coo - fl)E(t) + 2 (G - y)(1 - ia)E(t)

+ KE*(t - T)exp(iopcM), (1)

N(t) = I/q - yeN(t) - GIE(t)12, (2)

where the dot represents a derivative with respect to
time. Various parameters have their usual mean-
ing.' Specifically, wo is the optical frequency with
feedback, while ft is its value in the absence of feed-

back. G = GN(N - No) is the optical gain assumed
to vary linearly with the electron population N, y is
the cavity decay rate related to the photon lifetime
Tp = y 1, a is the linewidth enhancement factor
with typical values in the range of 4-8, I is the in-
jection current, and ye is the population decay rate
related to the electron lifetime Te = Y/e,. The opti-
cal field E is normalized such that JEl

2 represents
the intracavity photon number P.

The feedback term in Eq. (1) consists of three
parameters, K, C, and 'PCM. The feedback rate K

and the round-trip time X are given by

K C(1 -R) (RPCM) 1/2

IrL R. 
2Lext7 = 

c
(3)

where q, is the coupling loss, Rm is the laser facet
reflectivity, 'L is the round-trip time in the laser
cavity, RPCM is the reflectivity of the PCM, and
Lext is the spacing between the laser and the PCM.
The parameter PPCM is a constant phase shift occur-
ring at the PCM. It is included here for generality.
The extra phase shift wojr occurring for ordinary
feedback is absent in Eq. (1) because of the phase-
conjugate nature of the PCM. Note, however, that
even though the steady-state solutions of Eqs. (1) and
(2) do not depend on the PCM location (because of
the absence of wtor phase shift), the dynamic behav-
ior still depends on it because of a delayed feedback.
Finally, the PCM is assumed to respond instan-
taneously in Eq. (1). If the PCM responds slower
than the round-trip time T, K would become time de-
pendent. This case can be studied by adding a third
equation that governs the PCM dynamics.

The steady-state solution of Eqs. (1) and (2) is ob-
tained by setting the time derivatives to zero. The
result is

G = - 2 K cOS 0, (4)
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Fig. 1. Hopf-instability domain for a = 0 and 5 in the
parameter space formed by KTc and 0. The steady-state
solution is unstable inside the region of each curve.
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Fig. 2. Pulse trains emitted by the laser for Cf = 1.1, 2.2,
and 2.5 showing the dynamic evolution of the output from
self-pulsing (period 1) to chaos and then to period 3 as the
amount of phase-conjugate feedback increases.

discussed previously,`3 only a brief description is
given here. The three linearized equations cor-
responding to fluctuations in P, ', and N are solved
by assuming a time dependence of the form exp(zt),
where z is the growth rate of perturbation. It
is determined by solving an eigenvalue equation of
the form

[(z + rp) (z + FN) + GGNP + (z + FN)
X K COS 6(1 - e`z][z + K COS 0(1 + ezr)]

= K sin 0[aGGNP - (z + FN)
X K sin 0(1 - e z`] (1 + e z), (7)

where

Fp = RSp/P + eNLGP,

FN = ye + N(a ye/aN) + GNP. (8)
In Eqs. (8), R.p is the spontaneous emission rate and
ENL is the nonlinear-gain parameter (ENL - 10-7) in-
troduced phenomenologically.' The eigenvalue
equation, Eq. (7), is solved numerically to find the
growth rate z. The steady-state solution becomes
unstable whenever the real part of z is positive since
small fluctuations grow exponentially in that case.

In the absence of feedback (K = 0), Eq. (7) cor-
responds to a solitary laser and is readily solved. It
has three solutions, one of them being z = 0. The
other two are given by z = -FR ± iMR, where

=R [GGNP - (Fp - rN)'14] 1/

co = o - K(sin 0 + a Cos 0), (5)
where

0 = 24) + Opcm (6)

and 4 is the optical phase defined by E =
VP exp(-io). Thus the effect of feedback is to
change the threshold gain and the optical frequency
from their solitary-laser values y and Ql. The
threshold is reduced for 101 < 7r/2; maximum reduc-
tion occurs for 0 = 0. In that case, the phase k is
pinned to a value ' = -kPcM/2 (i.e., the laser phase
is governed by the PCM). The situation is different
from the case of normal feedback for which the laser
phase remains arbitrary. Another major difference
is related to the laser frequency. Equation (5) has a
single solution for all values of K, whereas multiple
solutions are allowed in the case of normal feedback.
These multiple solutions correspond to the longi-
tudinal modes of external cavity. Since the steady-
state solution of Eqs. (1) and (2) does not depend on
the PCM location, external-cavity modes play no
role; the only effect of phase-conjugate feedback
is to shift the laser frequency slightly. The maxi-
mum frequency shift of K(l + a2 )" 2 occurs for 0 =
-tan la.

Since the value of 0 remains undetermined in
Eqs. (4) and (5), a natural question is how the sta-
bility of the steady state depends on 0. To investi-
gate the stability issue, we perform a linear-stability
analysis of Eqs. (1) and (2) by linearizing them in
small fluctuations around the steady-state values.
Since the procedure is straightforward and has been

FR = (Vp + FN)/2.

Since the real part of z is never positive, the solitary
laser is stable. Small fluctuations decay toward the
steady state through relaxation oscillations; fIR and
FR represent the frequency and the damping rate of
relaxation oscillations.'

In the presence of feedback, both the real root and
the pair of complex conjugate roots change their val-
ues. The real root becomes positive for all values of
KT when 0 lies in the range of 0, to vi + 0, where 0,

C, - 8.5
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Cf - 9.0

C. 10.0
A,............ ...

Fig. 3. Phase portraits (P versus N) for Cf = 8.5, 9, 9.5,
and 10 showing the quasi-periodic route to chaos in the
Hopf-instability region.

z * 1 . . . . . . . I * - - -

(9)
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is a critical value given by

tan0 1i(1 + NPra) a (10)
For a = 0, 0, = 900, and the steady-state solution is
then unstable for values of 0 such that 900 < 0 <
2700. For a = 5, Oc = 11.30, and the instability re-
gion corresponds to values of 0 in the range of 11.3°
to 191.3°. Since the eigenvalue crosses the complex
z = 0 plane along the real axis, we refer to this in-
stability as the fold instability.' 5 It is interesting to
note that the fold instability never occurs in the case
of normal feedback, since the eigenvalue equation
does not have a real solution such that z > 0.

The steady-state solution can also become un-
stable if the real part of the pair of complex roots
becomes positive. Such an instability is referred to
as the Hopf instability' 5 and corresponds to the situ-
ation in which the external feedback changes the
damping rate FR in such a way that relaxation oscil-
lations are no longer damped. Figure 1 shows the
instability region in the plane formed by the
parameters KT and 0 for a = 0 and 5. The calcu-
lations were done by using typical parameter values'
for an index-guided InGaAsP laser operating at
2 mW of power in the absence of feedback. Specifi-
cally, flR/ 2 ,7r = 2.65 GHz, rN= 1.27 GHz, and
rp = 2.56 GHz. The external cavity is taken to be
5 cm long with a round-trip time T = 0.33 ns. The
steady state is unstable inside the region bounded by
the curve for which Re(z) = 0. A notable feature of
Fig. 1 is that the Hopf instability exists even for
a = 0, although the instability region changes con-
siderably with a.

A natural question is what happens to the laser
output in the instability region in which the laser
cannot operate continuously even at a constant ap-
plied current. To answer this question, we have
solved Eqs. (1) and (2) numerically. The laser out-
put exhibits a rich variety of dynamical features de-
pending on the amount of feedback. Figure 2
shows the emitted pulse train for three values of the
feedback parameter Cf = Kr(l + a 2)1"2 and for
0 = 1500 and a = 5. The other parameters remain
the same. For Cf = 1.1, the output is periodic with
a repetition rate close to the relaxation-oscillation
frequency of the solitary laser (2.65 GHz). Self-
pulsing can therefore be interpreted as undamped
relaxation oscillations. The periodic solution be-
comes unstable when Cf exceeds 1.6, and the laser
output becomes chaotic, following a period-doubling
route. Figure 2 shows the chaotic output for
Cf = 2.2. Chaos gives way to a period-3 window be-
yond a critical value of Cf close to 2.4. The period-3
time series is also shown in Fig. 2 for Cf = 2.5. The
laser returns to a regular, period-1 self-pulsing for
Cf = 2.9, but with a repetition rate of approximately
3.2 GHz.

The period-doubling route to chaos discussed
above corresponds to the fold instability as it is out-
side the Hopf-instability region shown in Fig. 1.
For 0 = 1500, Hopf instability occurs only for
Cf > 7.5. One would expect qualitatively new
dynamic behavior when both fold and Hopf insta-

bilities occur simultaneously. Our numerical simu-
lations show that this is indeed the case. The laser
output is found to become chaotic after follow-
ing a quasi-periodic route to chaos for Cf > 7.5.
Figure 3 shows the phase diagrams (P versus N)
for Cf = 8.5, 9, 9.5, and 10. The quasi-periodic
dynamics of the laser at Cf = 8.5 gives way to chaos
as Cf increases. The system returns to the quasi-
periodic state for Cf = 10, but at a much higher
repetition rate. The repetition rate is close to the
solitary-laser relaxation-oscillation frequency
(2.65 GHz) for Cf = 8.5 but nearly triples for
Cf = 10. Chaos develops again as Cf increases be-
yond 10. There appear to exist multiple chaotic
windows in the Hopf-instability region shown in
Fig. 1. A quasi-periodic route to chaos occurs for
other values of 0 also.

In conclusion, we have studied the effect of phase-
conjugate feedback on the semiconductor-laser dy-
namics. The steady state exists only for certain
well-defined values of the phase of the optical field
inside the laser cavity. The steady state becomes
unstable through two independent instabilities,
referred to here as fold and Hopf instabilities. The
fold instability is due solely to the phase-conjugate
nature of the feedback and does not occur in the
case of normal feedback.
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