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Transient Multimode Dynamics in Nearly
Single-Mode Lasers
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Abstract—The transient dynamics of nearly single-mode semiconduc-
tor lasers is studied analytically and numerically for lasers biased be-
low threshold. The side-mode excitation probability is evaluated by
solving a Fokker-Planck equation approximately. The validity of the
approximate solution is verified through Monte Carlo simulations of
the corresponding Langevin equations. The results show the relevance
of the carrier-density overshoot during laser turn-on in determining
the side-mode excitation probability. They also indicate the depen-
dence of this probability on various device parameters such as the gain
margin between the main and side modes. The experi ts performed
by using distributed feedback (DFB) iconductor lasers show qual-
itative agreement with theory. The experiments also suggest that the
inhomogeneous nature of the carrier-density distribution may be im-
portant for understanding the transient multimode dynamics in DFB
lasers.

INTRODUCTION

LUCTUATIONS of physical quantities usually represent
only small corrections to a well-defined deterministic evo-
lution. There are few exceptions to this general behavior of
physical systems: one of them is the decay from an unstable
equilibrium point [1]. A material point on the top of a hill, for
example, leaves its initial unstable position due to the effect of
ever-present fluctuations driving the system towards a new sta-
ble equilibrium state. The effect of these fluctuations is twofold.
First, the time the system needs to attain the new equilibrium
state is a random quantity. The second effect of the fluctuations
is to randomize the direction of departure from the unstable
state. The system, in fact, will leave the initial state preferably
along a direction very close to that of maximum slope but, due
to initial fluctuations, sometimes the direction can be very far
from this one. The statistical properties of the first passage time
[2], that is, the time the system needs to reach for the first time
a given distance from the initial unstable point, have been ex-
tensively studied in the literature [3]-[5], and are used to ex-
plain many physical phenomena. In spite of its importance, there
are, to the best of our knowledge, no studies on the effects of
the fluctuations in determining the initial direction of leaving
from an unstable state.
It has been generally recognized that the Q switching and the
gain switching of lasers can be usefully studied in the general
framework of the decay from an unstable state [6]-[10]. In these
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systems, in fact, the effect of spontaneous-emission noise is to
drive the system from an initial state in which the cavity is al-
most empty of photons towards a final state in which coherent
radiation is established inside the cavity. Here the effect of the
spontaneous emission is to randomize the delay between the
buildup of the laser radiation and the instant of the switching of
the cavity in Q-switched lasers, or the attainment of threshold
in gain-switched lasers. The second effect of the spontaneous-
emission noise arises in lasers in which more than one mode is
present. Even though the laser usually starts to oscillate in the
main mode, i.e., the mode having the minimum cavity loss,
occasionally the spontaneous-emission noise can trigger the
laser to oscillate on a side mode as well.

In laser systems, the equations for the fields contain an initial
unstable state corresponding to a mean value of the field equal
to zero in each mode. This instability is not clearly shown in
the equations for the photon densities, due to the presence of
the mean spontaneous-emission rate. Finding the probability
that the lasing action starts on the main mode is equivalent to
finding, in the multidimensional phase space of the system, the
direction of departure from this unstable point.

The evaluation of the probability that a side mode is excited
transiently in a nearly single-mode laser is also an important
task from the point of view of the applications. In fact, mode-
partition noise greatly affects the bit error rate (BER) and hence
the performance of semiconductor lasers when they are used in
optical transmission systems, particularly when dispersion
shifted fibers are not employed. It has been recently shown [11]
how random excitations of a side mode during transients can
have a detrimental effect on the BER even in distributed feed-
back (DFB) lasers having a side-mode suppression ratio larger
than 30 dB in stationary conditions. The problem of the exci-
tation of a side mode during the transient operation has been
initially studied in many papers using the rate equation ap-
proach by considering only mean evolution of the spectrum dur-
ing the transient operation without considering fluctuations [12]-
[14]. From the above considerations, one can understand that
this is a rough approximation of the process because the sto-
chastic nature of the emission can produce effects not accounted
for in that approach. The importance of the spontaneous-emis-
sion noise in this context has been already pointed out by using
numerical simulations by Jensen et al. [15], Liu and Choy [16],
[17], and Miller [18], [19].

In this paper we develop an analytical theory of the dynamic
evolution of the spectrum of semiconductor lasers having high
side-mode suppression in stationary conditions, namely DFB
and distributed Bragg reflector (DBR) lasers. This theory, valid
only for bias levels below threshold due to the involved ap-
proximations, shows the relevance of the overshoot of the car-
rier density in determining the transient excitation of a second-
ary mode.
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GENERAL THEORY

The dynamics of a semiconductor laser can be theoretically
modeled by using the well-known rate equations for the density
of minority carriers and for the density of photons in the cavity
modes [20]:
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The meaning of the symbols, the same used in [15] and [16],
is summarized in Table I. F,(¢) are uncorrelated Gaussian white
noise terms introduced in order to take into account fluctuations
[21]-]23]. They have the following correlation functions:

(F) =0, (FOFE)) =35,560—1). @

Equations (1) and (2) are a set of stochastic differential equa-
tions in the Ito sense (see [2]).

We limit our analysis to the case of a two-mode laser (v =
1, 2). This is justified for the nearly single-mode DFB laser,
where only one side mode can have an appreciable probability
to be excited during the transient. The aim of this paper is to
analyze the evolution of the field inside the cavity, and conse-
quently the evolution of the output power, of a semiconductor
laser in which the injected current is suddenly switched from a
value C, below to a value C above the threshold current. The
evolution of photon densities during the switching can be char-
acterized by the probability density function (PDF) P(S,, S,, n;
1), defined as the probability per unit volume to find the system
at time ¢ around the state defined by S, S,, n. The time depen-
dence of P(S,, S,, n; t) can be obtained by solving a Fokker-
Planck equation (FPE) obtained from the Langevin equations
(1) and (2) by using the well-known techniques [2].

Let us suppose that at ¢+ = O the injected current of the laser
is suddenly switched from Cj, to a value C above the threshold
current C,,. As a consequence, P(S,, S,, n; t) evolves from a
given initial distribution according to the following FPE [2]:

AP(S,, S, n; 1) _

% =VIGS,, 8y, 15 1) &)

where the tilde indicates the transpose, J(S,, S,, n; ?) is the
probability current defined as

JS1, S, n; 0) = [AGS), S, ) — 39B(S), Sy, MIP(S,, Sy, 13 1)

(6)
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TABLE 1
MEANING OF THE SYMBOLS USED IN THE PAPER
S, density of photons in the pth mode
n carrier density
n mode confinement factor
d . thickness of the active layer
w width of the active layer
D, line shape factor
T spontaneous lifetime
n, group index
y fraction of spontaneous emission coupled
into the mode
A differential gain
ng carrier density at transparency
a, loss of the main mode
a; loss of the side mode
J injection carrier density
e electron charge
c speed of light in vacuum

C=1J/ed injection current of the laser in electron/s.
X saturation photon density
Ag = cla, — o))/, gain difference between the modes in s ™'

g, net gain of the vth mode
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In order to characterize the statistics of the power partition
between the two modes during the switching of the laser radia-
tion, let us define the PDF &(S,) (0 < S, < §y) in the following
way. ®(S,) dS, is the probability that, when the total photon
density is for the first time S, + S, = Sy, the main-mode photon
density is between S, and S, + dS,. ®(S,) does not depend on
the evolution of the system when the total photon density be-
comes larger than S, i.e., outside the domain D = {0 < §, <
$,0=<3S, =<8 — 8,0 <n < »}. Moreover, since we are
interested in the first exit from D, we have to be careful to avoid
the system crossing again the boundary of D once it has already
exited. From the point of view of the stochastic process, this is
equivalent to removing the points representing the process when
it has reached for the first time any point of the surface £ = {S,
=8;— 8,,0 = n < o}, i.e., when the total photon density
of the laser §; + S, has reached for the first time the value S;.
The same constraint can be given to the FPE by imposing the
s0 called absorbing boundary condition on D, corresponding to
imposing P(S;, S; — S, n; ) = O for any ¢.

Let us suppose now that P(S;, S,, n; t) is the solution of (5)-
(9), corresponding to the initial distribution P(S,, $,, n; 0), ob-
tained by imposing the absorbing boundary conditions on the
domain D; let J(S,, S,, n; 1) be the probability current obtained
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Fig. 1. Surface dT on the boundary of the domain D (see text).

with this PDF through (6). The probability that the system exits
for the first time through an element d L of the surface I is (see
Fig. 1)

Pr (dT) = S: dt J(S,, Sy — S, n; e dT (10)
where
L
2
1
e=|5 an
0

is the unit vector perpendicular to the surface L. We are inter-
ested in the probability of the first exit through I around a given
value S, of the intensity of the main mode, whatever the value
of n is. This probability can be obtained by writing dL = dn
d\ and integrating over all the possible values of n, and is given
by

Pr (d\) = S dt S dn J(S,, Sy — S, n; e d\
0

()
= &(S)) ds,. (12)
Taking into account that d\ = V2 dS,, we finally obtain

&) = V2 So dt SO dn J(S,, S¢ — §,, n; De.  (13)

The exact expression for ®(S,) can be found only resorting
to a numerical solution of the FPE. Nevertheless, an analytical
expression can be found once some reasonable approximations
are made. The first approximation is to neglect the Langevin
noise terms F,(f) and F,(z) in the rate equation for the carriers.
This is reasonable because the Langevin noise term on the car-
riers gives rise only to small fluctuations in the gain. These fluc-
tuations have small effects during the transient compared with
the fluctuations induced by the Langevin noise term on the pho-
tons, as they are amplified by the stimulated-emission process.
The second approximation consists of neglecting the stimu-
lated-emission term in (1). This is reasonable, because there is
practically no lasing emission until the carrier density rises to a
level well beyond its threshold value, and because we are in-
terested in the probability of excitation of the side mode before
stimulated emission depletes the population inversion. This ap-
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proximation, however, limits our analysis to the bias levels be-
low threshold. Its advantage is that it decouples (1) from the set
of (2), so that they become

dn n
—=C-— 14
T - (14)
ds,
@ =m+ g,mnS, + V2rnS,F,(® (15)
where
&(n) = a(n — ny) — Ag, 16)
c
Ag, =0 Ag, = = ( —ap), op>a (A7)
8
| Y 1
=-— = =74 18
r=s T a=zn (18)

nAn,ny + coy
my =2 —

(19)

nAng

and we have supposed D, = D, = 1/2, a valid assumption
when the frequency difference between the two modes is much
less than the spontaneous-emission linewidth. This simplified
expression for (1)-(2) is valid below threshold and during the
first stage of the exponential growing of the photon density.
Initially, the laser is below threshold, and its initial distribution
can be written as

P(Sy, $3, n; ¢t = 0) = pi(8s; 0) pa(Sy; 0) 8[n — n(@)] (20)

where p,(S,; 0) is a negative exponential distribution

| s
] _ _ v i 21
PSSO = 5y P [ <Sv(°>>] =

Furthermore, n(0) and ¢ S,(0)) are the initial values of the car-
rier density and of the mean photon density, which read

n(0) = Gyt (22
=1

C Ag,
(8,0 = =2 <c.h -G+ ) 23)

a ary

where C,, is the threshold current of the laser and is given by
Cp =20, 4)
Tep

The mean photon density ¢ S,(0)) for the side mode is smaller
than the main mode because the parameter A g,, known as the
gain margin, is not zero for lasers such as DFB and DBR lasers.
This initial distribution corresponds to two modes which fluc-
tuate independently from each other and are at equilibrium with
a given value of the carrier density, determined by the initial
value C, of the injected current.

Due to the initial é-like carrier density distribution given by
(20), the solution of (14) can be obtained as

nt) = Crsp{l — exp (— %)] + Coryp, €Xp <— TL> 25)
sp sp

and the result inserted into (15). As a consequence of our ap-
proximation, the stochastic differential equations for the two
modes are decoupled, and the PDF of the system still reads

P(S), Sz, n; 1) = pi(Si; 1) pa(S; 1) 8ln — n(1)] (26)
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where p,(S,; 1) is the solution of a one-dimensional FPE given
by

S, _ 3 .
a - s, [mn(?) + g,[n(O]1S,1p.(S,; )
+la—2[2 @S, 1p.S,; ¢ 27
2952 m®) 8,1p.(S,; 1. 27
The solution of (27) with the initial condition (21) is
1 S,
S, 1) = —— -—
PAS,; 1) ) P [ m,(r)] (28)

where m,(t), the mean value of the photon density for the mode
v, can be analytically obtained, once some reasonable approx-
imations are made (see Appendix A).

The solution we have obtained obeys natural boundary con-
ditions, i.e., the PDF vanishes at infinity. As shown in a pre-
vious paper ([9]), this solution is a good approximation inside
the domain D of that obtained for absorbing boundary condi-
tions on D.

Substituting (28) into (13) one obtains (see Appendix B):

> dr {m.(r)

o my(t) my(2)

X exp| - _Sr =5
P17 me ~ Tm

my()
my(t)

o 't

o) = S Sr — Sl):|

(29)

where the dots stand for time derivatives.

The PDF &(S)) is defined for 0 < §;, < S, and hence, it is
of the order of S7'. In order to define a PDF which is of the
order of 1, it is convenient to define a scaled intensity as s, =
S,/ 87, so that the correspondent PDF is

&(s)) = P(5,5) Sr- (30)

This PDF will be very useful in the following to provide us an
analytical expression for the probability of excitation of the side
mode.

Some comments on the particular expression of the PDF re-
ported in (26) are in order. The decoupling between the PDF of
the main mode and that of the side mode in (26), which is es-
sential in our derivation of (29) and (30), could be hard to be
accepted. It is generally assumed, in fact, that main and side
modes are strongly anticorrelated, even during the transient (see
[11]). This anticorrelation, however, is induced by the deple-
tion of the carrier density due to the stimulated emission, which
_starts to be effective when the total intensity attains a value of
the order of its final stationary value. For these reasons, we do
not choose to follow the laser dynamics in the time domain, but
we consider the laser evolution until the total value of the in-
tensity does not overcome a small fixed value of the intensity
Sr, when the mode correlation can be neglected. This approach
cannot be followed when the initial biasing is above threshold
(see [18]).

Q-Switching Conditions

The integral in (29) cannot be performed analytically. In or-
der to obtain some physical insight into the transient multimode
dynamics, let us consider the most simple situation of a class A
[24] Q-switched laser. In these kind of lasers, the population
inversion can be adiabatically eliminated, so that the well-
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known van der Pol equations hold:
djs;l =R, + (g — 8uS — 8258 + ~/2R—,S,F,(t) (31)
ds,
Rt (8 = gnS — 2505 + V2R,S, B0 (32)

where the Langevin noise terms have the properties given by
(4). Further, g, (v = 1, 2) are the net gains of the two modes,
g, = 8 — «,, where g is the gain and «, are the losses of the
two modes defined as in (16)-(17) (¢; < ), while g,, are
saturation coefficients. Let us suppose now that at t = 0 the
laser gain g, is switched from a value below «, to a value above
o, and «,. Consequently, before saturation occurs the laser ra-
diation starts growing, obeying to a linearized version of (31)
and (32):

ds
Ttl =R, + g8 + V2R S\F\(t) (33)
ds,
Br o+ 025, + RS F, 69

We suppose the two modes have gains of the same order (g, =
g») in order to have a nonvanishing probability of excitation of
the side mode. Proceeding as above, we obtain an equation equal
to (29), where now m,(f) are the mean values of the photon
densities during the linearized evolution which can be obtained
performing a mean on (33)-(34). The final result is

m,(1) = (50> = % (e = 1) + (S,0e*.  (35)

For the sake of simplicity, we consider in the following, the
particular case in which the mean photon number is initially
zero in each of the two modes ({ 5,(0)) = 0). In order to have
a rough estimate of the probability that the mode 2, the mode
having the lower gain, is excited, let us consider ¢(s, = 0). It
has to be noted that imposing s; = 0 corresponds to consider
the situation in which no excitation of the main mode is present
when the total intensity attains the value S;. From (29) and (30)
we have

_ (", S om0 __Sr_]
#0) = So dtml(t) my(t)* exP[ my(0) |

Substituting (35) into (36) we obtain, after some algebra (see
Appendix C)

Ag/g2
o0 = 8 R ﬁ) P<&+1>
8 Ri \S182 82

where we have defined Ag = g, — g, and I is the Euler gamma
function [25].

Let us now discuss the meaning of (37). If Ag = 0, ¢(s,) is
a function only of s, and of the ratio R, /R, of the spontaneous
emission in the two modes, as can be proved by solving (29).
In particular, ¢(0) is equal to R, /R,, which means that, when
the net gain of the two modes is equal, the probability of excit-
ing only the secondary mode is proportional to the spontaneous-
emission rate in that mode. When Ag > 0, (37) gives a fast
exponential decreasing of ¢(0) when Ag increases, because
R,/Srg, << 1in (36) when S; is of the order of the final sta-
tionary value (see Appendix C). Moreover, for a fixed value of

(36)

€]
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Ag, ¢(0) is an increasing function of g,, as the relevant quantity
is not just A g but the ratio Ag/g,. This property has been ob-
tained for a laser in which the gain is kept constant, but it ex-
tends also to the case of gain switching. In this last case, which
corresponds to semiconductor lasers, g, has to be considered as
the value of the gain of the secondary mode at the switching
time of the laser radiation. As a consequence, in nearly single-
mode semiconductor lasers, a relevant parameter is not only the
value of Ag, but also the level the carrier density attained dur-
ing the switching of the laser radiation: carrier density is pro-
portional to the gain of the two modes at the same instant. The
overshoot of the carrier density is an increasing function of the
value of the injected current and the differential gain, so that
the larger these two quantities are, the larger the probability of
excitation of the side mode is.

RESULTS AND DISCUSSION

In this section we present the results of the linearized theory
together with those obtained by numerical simulations of the
complete set of stochastic differential equations (1)-(2). Even
if the results of the simulations are not completely original (see
[18] and [19]), their discussion can be useful for the comparison
between the complete model and the approximate analytical
theory. The simulations has been performed by using a second
order Runge-Kutta method (Heun’s method) [26] with an in-
tegration step of 1 ps. In our simulation, the current is supposed
to change instantaneously from the bias to the on value. Before
applying the current step, our computer program has been run
for 1 ns with the current in its biasing value, to ensure that the
initial distribution was the equilibrium one at the biasing state.
Our simulation does not reproduce any practical modulation of
a semiconductor laser used in optical communication systems,
but they are useful to investigate the switching properties in-
dependently of the particular modulation scheme which is con-
sidered. In practical modulation schemes the probability of ex-
citation of the side mode depends also on pattern effects (see
[18]).

Before passing to the discussion of the obtained results, how-
ever, let us discuss briefly the meaning of the main quantity
given by the theory, i.e., ¢(s,) [(30)], and its connection with
the meaningful quantity from a practical point of view, that is
the probability the secondary mode exceeds a given value of
photon density. To this end, let us assume in the following dis-
cussion that S; = S, /2, S, being the stationary value of the
total photon density in the on state. The linear theory cannot be
used to determine ¢(s,) if larger values of S; are considered,
because of the presence of gain saturation. Under these condi-
tions, the quantity

1/0+m
Pr (S, > 28) = So é(s,) ds, (38)
represents the probability that the side mode has a photon den-
sity S, larger than 7S, (0 < n < o) when the total photon
density is Sy. The analytical expression of this probability is
given in Appendix D.

The values of the physical parameters, which are common to
all the figures, are the same as in [15] and are given in Table
II. The plots of ¢(s,) obtained through numerical integrations
of (29)-(30) are compared in Fig. 2 with the PDF’s obtained
by means of 40 000 realizations of the process. The two curves
have been obtained for Ag = 2.5 cm™', an excitation current
C = 1.5Cy, and a differential gain4 = 4 = 5.62 x 10~% cm’

rr '
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TABLE II
VALUES OF THE PARAMETERS USED IN OBTAINING
THE RESULTS

Parameter Value Unit
7 0.5
d 0.3 pm
w 2 pm
D, 0.5
D, 0.5
L 400 pm
Tep 2 ns
ng 4
Y 2.2 x107°
A 5.62 x 107¢ cm®s™!
no 6.8 x 10" cm™3
a, 50.3 cm™!
10°
10'
w o .
¥ 10 b
10" a
102
[} 02 04 06 08 1

R

Fig. 2. Probability density function ®(s,) versus s, for x /S, = 20, Ag =
25cm™!, C=1.5C,, 4= A=562%x10%cm*s™! (curvea)and 4 =
2 A (curve b).

s~! (curve a) and A = 24 (curve b); a good agreement between
theory (regular line) and simulations (wavy line) is present. The
two curves have been obtained for x /S, = 20, where x is the
saturation photon density; other simulations, performed with
x/Sq¢ = 6.66 and x/S,, = 100 while leaving unchanged the
other parameters, show practically the same results, in agree-
ment with the linear theory. Almost the same result (curve b of
Fig. 2) is obtained for A = 4 and for C = 2C,,, because ¢(s,)
strongly depends on A and C — C,;, only through their product
[A(C — C,)] (see Appendix A). Both theory and simulations
show that ¢(s,) is independent of the initial biasing conditions
up to values of the ratio C,/Cy, equal to 0.95 [27].

In Fig. 3 ¢(s,) is shown for 4 = 4, for C = 1.5C,, and for
Agequalto2.5cm™ ' (curve a), Scm™' (curve b), and 7.5 cm ™'
(curve c). As expected, the larger the value of Ag, the lower
the probability of excitation of the side mode is. It has to be
noted that the probability of having a side mode larger than the
main mode during the leading edge of the optical pulse is rel-
atively large even for the largest value of Ag in Fig. 3. One
should be careful to use such a laser in optical communication
systems typically requiring a BER of <107° since each time
the side mode exceeds the main-mode amplitude an error would
be made. This happens in spite of the low value, at any time,
of the mean photon density of the secondary mode with respect
to that of the main mode, as can be seen in Fig. 4. Fig. 4 shows
on a logarithmic scale the evolution of the mean values of the
main and side mode photon density during the switch on, ob-
tained by means of 20 000 realizations of the process in the
same conditions of curve ¢ of Fig. 3, together with the temporal
evolution of the side-mode suppression ratio. The side-mode
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0 0.2 0.4 0.6 0.8 1

S
1

Fig. 3. Probability density function &(s,) versus s, for4 = 4, C = 1.5C,,,
Ag =2.5cm ' (curvea), Ag = Scm™' (curve b), Ag = 7.5 cm ™' (curve

c).

——Main Mode — - -Extintion Ratio
----- Side Mode
15
~ 10
g =]
2 g
1o £
é &
'8
A 5
= 2
g 10 Bt =
= <
£ ot
10°

0.0 0.4 0.8 1.2 1.6 2.0
Time (ns)

Fig. 4. Evolution of the average photon density of the main mode and the
side mode under conditions of curve ¢ in Fig. 3. SMSR is also shown as a
function of time during switching.

suppression ratio is 35 dB in the stationary conditions corre-
sponding to the on state of the laser, and 29.3 dB at the peak
of the overshoot of the secondary mode, which seem to be good
values for applications in the optical transmission system. The
high probability of excitation of the secondary mode under this
condition is also confirmed by the observation that, during the
20 000 realizations, the side mode exceeded once a level of
50% of the stationary value of the photon density of the main
mode is in the on state.

Fig. 5 shows the probability that the side mode has a photon
density larger than that of the main mode when the total photon
density is one half the main mode photon density in the station-
ary state, as a function of the gain difference Ag between the
two modes. The curves have been obtained through a numerical
integration of (6) of Appendix D and show the dependence on
Ag of the probability of excitation of the side mode. The dot-
ted-dashed line corresponds to A = 4 and C — Cy, = C =
0.5C,, while the upper and lower solid lines have been ob-
tained for A = 24 and A = 0.754, respectively, (leaving un-
changed the injected current). The upper and lower dashed lines
corresponds to C — Cy, = 2Cand C — Cy, = 0.75C, and 4 =
A. As can be seen, there is a small difference between curves
obtained for different values of A and C — C,, when [A(C —
Cy)] is constant. The dependence of the probability of excita-
tion of the side mode upon the value of [A(C — Cy)] can be
explained by noting that, when this product increases, the over-
shoot of the carrier density and, consequently, the gain at the
time corresponding to the leading edge of the optical pulse
emission also increases. As a consequence, according to (37)
which can be considered a rough estimate of the probability of
the excitation of the side mode also for gain-switching condi-
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0.0 4.0 8.0 12.0 16.0 20.0
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Fig. 5. Probability that S, > S, when Sy = S, /2 versus the gain difference
Ag between the two modes. Upper solid line: 4 = 24; C — Cy, = C =
0.5C,,; upper dashed line: A = 4; C — Cy, = 2C; dashed-dotted line: 4
=14; C — Cy =_C; lower solid line: 4 = 0.754; C — Cy = C; lower
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Fig. 6. Evolution of the mean photon densities of main and side modes for
the case of curve a in Fig. 2.

tions, this probability increases due to a decrease in the ratio
Ag/g.

The high values of the probability of the excitation of the side
mode that we have obtained cannot be due to the photon fluc-
tuations at the bias state. It has been already shown both theo-
retically [8] and experimentally [9] that the photon fluctuations
at the bias state cannot explain the spreading of the first passage
time statistics of gain-switched semiconductor lasers biased be-
low threshold. Our analysis extends this earlier results to the
side-mode excitation probability in the same driving conditions.
The initial photon distribution S,(0) appears in ¢(s,) only
through its mean value ( S,(0)) which is always multiplied by
a vanishing exponential [see (12.A) and (13.A)]. The large val-
ues of the side-mode excitation probability is the consequence
of the spreading of the field distribution of both modes when
their gains become positive and the phase of the field has not
yet attained a well-defined value (i.e., is the field is yet in-
coherent).

Fig. 5 confirms that Ag = 7.5 cm™"' is not enough, in gen-
eral, to ensure dynamical single-mode operation in laser diodes
used in high-speed optical transmission systems.

In Figs. 6 and 7 the evolution of mean photon densities of
the main and secondary modes is shown for the two cases of
curve (a) and (b), respectively, of Fig. 2. These curves have
been obtained by means of numerical simulations on 10 000
realizations of the process. Fig. 8 shows the same quantity of
Fig. 6 obtained by decreasing the value of x /S, down to 6.66.
We have already shown that ¢(s,) is practically independent of
the saturation photon density while, on the contrary, Figs. 6
and 8 show a strong dependence of the mean value of the side-
mode photon density on this quantity. In order to understand
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Fig. 8. The same as in Fig. 6, but with x /S, = 6.66.

this apparent contradiction let us look at the different meaning
of an increase of A or of x/S. The first case corresponds to an
increase of the probability of having the side mode larger than
the main one. The second one, on the contrary, corresponds to
an increase of the overshoot of both the main- and side-mode
intensity during the first relaxation peak. To verify this analy-
sis, we computed the side-mode suppression ratio (SMSR) at
the maximum of the overshoot of the side mode for three dif-
ferent values of x /S, namely 6.66, 20, and 100, and a con-
stant value of A = A, obtaining the almost constant values
12.46, 11.94, and 11.76, respectively. The same has been per-
formed for a constant x /S, = 20, and a larger value of differ-
ential gain A = 24, obtaining for the SMSR the smaller value
6.29.

In spite of their different effect on the laser dynamics, the two
parameters play a similar role in determining the performance
of digital transmission systems where an error is made once the
side mode exceeds a threshold value. This is evident if we cal-
culate the number of times the photon density of the side mode
reaches the value S,,/2 during 10 000 realizations. We have
obtained the frequencies 0.129, 0.292, and 0.033 for the case
of Figs. 6, 7, and 8, respectively.

Fig. 9 shows the correlation function between the main and
side modes for the case of Fig. 6. A strong negative correlation
between the two modes around the switching time is shown,
which vanishes for long times. This behavior of the correlation
function can be intuitively explained by considering that the
side mode rises when random fluctuations due to spontaneous
emission give rise to a delay of the main-mode switching. As a
consequence, a strong excitation of the side mode always cor-
responds to a negative fluctuation on the main mode, as usually
happens for mode-partition noise. For longer times, on the con-
trary, the large suppression ratio has the consequence to decou-
ple the fluctuations of the side mode from those of the main
mode [28]. An interesting feature of the correlation between the
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Fig. 9. Correlation function between the main and the side modes for the
conditions of curve a in Fig. 2.
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Fig. 10. The same as in Fig. 10, but with x /S, = 100.

two modes is shown in Fig. 10, which is the correlation func-
tion obtained by increasing the saturation photon density up to
one hundred the stationary photon density, and for 4 = A and
C — C, = C. The correlation function during the transient
switches from negative to positive values. This behavior, dif-
ferent from that of mode-partition noise in which negative cor-
relations are always present, can be explained by considering
the stochastic dynamics of the switching of a two mode laser.
The realizations which show an excitation of the side mode are
associated with a delay of the switching of the main mode,
which reaches its maximum later with respect to most of the
realizations. If the relaxation oscillations are undamped, this
maximum is larger than the mean value at the same time, so
that in this region positive fluctuations of the side mode are
associated to positive fluctuations of the main mode, which ex-
plains the positive correlations.

EXPERIMENT

The measurements of transients bimodal dynamics were per-
formed on several buried heterostructure DFB lasers, using an
experimental technique similar to that reported in [9] and [11].
The experimental setup shown in Fig. 11 allowed us to measure
the pulse shape, the output spectrum averaged on different re-
alizations of the process, and the statistical distribution of the
intensity in the main mode and the most intense side mode at
different time delays with respect to the laser excitation. In Fig.
11, the dashed portion was used only in a part of the measure-
ments. The risetime and the width of the electrical pulses were
100 ps and 2 ns, respectively, and the repetition frequency was
20 kHz. The bias current /, was varied between 0 and the
threshold current 7, and the pulse step had a maximum ampli-
tude I, = 50 mA. In all lasers the SMSR under CW operation
was better than 35 dB for currents larger than 1.5/;,. In spite of
this large value of SMSR, the gain difference between the main
mode and the most intense side mode, measured for currents
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Fig. 11. Experimental setup.

just below I, was quite different for various devices. A mini-
mum value of 4 cm ™' was found for one device, while for other
devices it was always larger than 8 cm™'. We were able to ob-
serve the transient bimodal operation only in one device, a Fu-
jitsu FLD 150 F1 laser operating at a wavelength of 1555.2 nm
and having a threshold current of 18 mA. This device was the
one with the minimum gain difference between main and side
modes, even though a SMSR of 34 dB at 20 mA and 44 dB at
60 mA was measured under CW operation.

The optical spectra, averaged for different realizations and
for different time delays ¢, measured from the turn-on instant
(defined as the instant at which the optical intensity reaches 10%
of its stationary value in the on state), is shown in Fig. 12(a)
and (b) for [, = 0.01 and 12 mA, respectively, and for I, = 50
mA. The broadening of the optical spectrum is due to frequency
chirping occurring during the integration time of our photo-
diode (=30 ps). The spectral structure is due to relaxation os-
cillations of the laser. The statistical distribution of intensity at
the side-mode wavelength, obtained under the same driving
conditions of Fig. 12(b), is shown in Fig. 13 for two values of
t;. The small dots refer to the instrumental noise measured at
zero output intensity. Defining the dynamical SMSR as the ratio
between the powers emitted in the two most intense modes in a
time interval centered at 7, and of length equal to the integration
time of the photodiode, it is interesting to note that in Fig. 12(b)
it has a minimum value of 13 dB for #;, = 40 ps (this quantity
cannot be measured at 7, = 0) and a value >20 dB for 7, = 200
ps. In spite of the large values of SMSR, a tail of the side-mode
intensity distribution towards the larger values of the intensity
is evident. This underlines the nature of transient bimodality
that shows up as rare but intense events which, though being
unnoticed in the average spectrum, can introduce errors in high
bit rate systems.

A quantitative agreement between theory and the experimen-
tal results is hard to establish because of the noise of our ex-
perimental apparatus that leads to a broadening of the intensity
distribution which partially masks the structure of the investi-
gated phenomenon. One can, however, extract the following
conclusions:

1) The average amplitude of the side mode increases with an
increase in the pulse amplitude. This is evident from Fig. 14
where the average output spectrum is shown for the same bias
of Fig. 12(b) but for I, = 25 mA.
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Fig. 12. Optical spectra averaged on different realizations of laser swtich
on. The driving conditions are: [, = 0.0l mA, I, = 50 mA (a); I, = 12
mA, I, = 50 mA (b). t, is the time delay measured from the instant at
which the output intensity reaches 10% of its steady-state on-state value.
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Fig. 13. Experimental statistical distribution of side-mode intensity. The
driving conditions are: [, = 12 mA, I, = 50 mA, while the time delay is
t; = 100 ps (a) and 1; = 200 ps (b). The small dots represent the instru-
mental zero.
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Fig. 14. Optical spectra averaged for different realizations of laser switch-
ing. The driving conditions are: /, = 12 mA, I, = 25 mA.

2) The value of SMSR increases for increasing ¢, as shown
in Fig. 15 where the dynamical SMSR is shown for I, = 6 mA
and I, = 50 mA. This increase is due to the gain difference
between the two modes which, for increasing values of 7., tends
to promote the main mode even in those realizations in which
it starts later than the side mode. This is in agreement with the
dependence of ¢(0) on the value of Sy.

3) SMSR increases by increasing /, for a constant value of
I, as shown in Fig. 16 where the dynamical SMSR is shown as
a function of I, for I, = 50 mA at 7, = 40 ps.

Our theoretical results showed that the side-mode excitation
is independent of the bias conditions and depends only on the
total current, when the bias is sufficiently below threshold [see
(15.A)]. If the current step is constant in the experiment, the
bias increase is equivalent to an increase of the excitation in the
on state and, from the theory, it should correspond to a decrease
in the dynamical SMSR. Experimentally SMSR increased with
an increase in the bias current (Fig. 16). This contradiction be-
tween theoretical and experimental results could be explained
by taking into account a different mechanism which determines
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ig. 17. Optical spectra averaged for different realizations of laser switch-
ing and obtained for I, = 0.1 mA, I, = 50 mA, and ¢, < 0 ps.

the bias dependence of the dynamical SMSR. The presence of
this different mechanism can be inferred by looking at Fig. 17
in which the dynamical spectrum obtained at I, = 0.1 mA and
I, = 50 mA for t, slightly below 0 is reported (under these
driving conditions the main mode is always dominant for 7, >
0). The figure shows that the side mode can be larger than the
mode that becomes the main mode under stationary conditions.
This behavior is clearly not allowed in the framework of the
theory developed in this paper and can be explained by only
supposing that the gain of the side mode overcomes the gain of
the main mode during switching. It has to be noted that a larger
value of the spontaneous-emission rate on the side mode cannot
explain a larger excitation of the side mode due to a weak de-
pendence of the side-mode excitation on this parameter [see
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(37)]. An inhomogeneous distribution of the carrier density,
which modifies the longitudinal properties of the grating during
switching and induces a larger gain on the side mode, can ex-
plain this phenomenon. After switching, diffusion can make the
carrier density more homogeneous along the cavity, thus raising
the gain of the main mode in the expected way.

SUMMARY

This paper has discussed how often a side mode may be ex-
cited transiently in nearly single-mode semiconductor lasers de-
signed such that the average side-mode amplitude remains neg-
ligible (SMSR > 30 dB). The problem is of considerable
practical interest for optical communication systems whose BER
depends on such transient excitation of side modes. Starting
from the Langevin rate equations we obtain a FPE by consid-
ering the main mode and the most intense side mode. We have
solved this FPE analytically under the assumption that the laser
is biased below threshold. The resulting solution is used to cal-
culate the side-mode excitation probability. The validity of the
approximate solution is verified through Monte Carlo simula-
tions of the transient laser dynamics. Our results show the rel-
evance of the carrier-density overshoot during laser turn-on in
determining the side-mode excitation probability. They also
confirm that a much larger value of the gain margin is required
to ensure side-mode suppression under transient conditions
compared with the value that would ensure a high SMSR on an
average basis. We have performed experiments by using the
DFB lasers and have found qualitative agreement with theory.
The experiments on the bias dependence of the dynamical SMSR
indicate that the inhomogeneous nature of the carrier-density
distribution along the cavity axis may be important for under-
standing the transient multimode dynamics in DFB lasers.

APPENDIX A

In this Appendix, an analytical expression for m,(¢), the mean
value of the photon density of the two modes, is found when
the simplified stochastic differential equations (14)-(15) hold.

From (15), we find m,(¢) as the solution of the following dif-
ferential equation:

dm—"t(t) = () + g,[n(] m,),

P m,(0) = (5,0)).

(1.A)

The integration of (1.A) from 0 to 7 gives

4

m(t) = (5,0)) exp [G,(0; 1)] + So m(t) - exp [G,(t'; 0] dt’

= {( S,(0)) exp [G,(0; D] + So m(t")

- exp {G(t; 1] dz'} x exp [G,(7; D] 2.A)

where

12

Gt n) = S. &ln() dt (3.A)

and 7 is any fixed time between 0 and oo. By using (16) and
(3.A), we have

ny = & {—i Gt 7) + ang + Ag,} @A)

a t!
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and (2.A) becomes
m() = {< 5,(0)) exp [G,(0; 7] + 2 [exp [G,(0; 1]

— exp [-G(7; DIl + ;’(anm + Ag,)

) S exp [G,(t); D] dr } exp [G(7; 1) (5.A)

0

where we have used the property G,(1;, ) = —G,(t,, ;). In
order to give an explicit expression for G,, it is convenient to
write [see (24) and (25)]

2.n®) = alr(C — C.m{l ~ exp (— ’;—'“)} - Ag,
sp

(6.A)
where
C - C(]
C - Cy

th =750 (7.A)

is the time at which the threshold is reached. From the defini-
tion (3.A), we then obtain

G5 1) = a[14,(C — Cy)]

L~y
. (t—t)+'rs|:exp<~— )
{ 2 1 o ™
L~ In
— exp <_ —>]} —Ag(n, — ). (8.A)
Top

It is difficult to integrate (5.A) when (8.A) is inserted into it. In
order to get to an analytical expression for m, (1), let us note that
the quantity between braces has the meaning of an effective ini-
tial condition at time 7, so that it is convenient to chose 7 = #,.
Furthermore, exp [G,(t;, t,)] has a sharp maximum for a fixed
t, when the gain g,, which is the derivative of G,, change sign,
i.e., for ¢, equal to

T, = 74 In

(9.A)
ary

Thus, one can approximate the integral into (5.A) with the
steepest descent method [29] (it has to be noted that 7, for » =
1, i.e., for the main mode, corresponds to ). With this aim,
let us perform a second order expansion of G,(t', t4) around 7,
and write

G(t', tw) = G/, 1) — B(t' — 1,)° (10.A)

where

a,Tsp

1 8 1 Ag,
Bv = 5 F [Gy(t'; tth)]r':n = 5 ll,,(C - Cth - >
(11.A)

Inserting (10.A) into (5.A), we obtain

m/(1) = R(®) exp [G,(tm, D)] (12.A)
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where

R, = (5(0)) exp [G,(0, )] + 2 {exp [G0; 1w)]

— exp [ Gyltai D1} + (@ + Ag)

< exp [Gy(r,; tw)] L))
1/2
Lo = <{E> {erf [(B,)'/*7,] + erf [(B,)'/*(t — 7,)]}.
(14.A)

In the special case in which the bias current is sufficiently below
threshold (C,/Cy, < 0.95 (see [8] and [9]), (13.A) tends to

(15.A)

v

1/2
R(@) =~ (@ny + Ag) (Bl> .

APPENDIX B

In order to derive (29), let us substitute (26)-(28) into (6) and
(13) and obtain

&)

V2 SO dt SO dn J'(S,; Sy — S,; n; e

S dr {[m(t) + g[Sy — m(@) 2 Sl:l
o AT

* pi(Sys D) pa(S2; 1) + [m(t) + g[n(11S;

F
- m() — Sz]m(sl; ) p(Sa; t)}

as, (1.B)

where S, = S; — S,. Integrating (27) from O to S, and consid
ering that (as can be easily checked by direct differentiation)

{[M(t) + g(n(H))S, — () 2 S,] pS,; t)z =0
S,

as, »
(2.B)
one obtains
[’"(') + &lnOIS, — () % s,] PAS,; 1)
a [~
= Tu SO pAS; 0 dS (3.B)
and, hence
el d Si
. ST—Si
+ [—3—t SO pAS; ) ds}p.(s.; t)} dt. (@4.B)

From (28) one finally obtains (29).

APPENDIX C

Here an analytical expression for ¢(0) is derived for the case
of a laser switched with constant gains. From (35), when

(13.A).
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{5,0)) = 0, m(¢) is given by

R, {[82 jr‘/gz }
m@) =— 3| m@ +1 -1y (1.0)
81 R,

With the substitution
Sr
= 2.0)
Y my(f)

and considering that, from (35), t = 0 = y = oo that7 =
= y = 0, and substituting into (29)-(30), we obtain

« g1/82 g1/82
Sr8 <R2Y> |:< Rz)’>
¢(0) = S dy—\|=— 1+
0 Y R, \Sr& S8
2i1/g2—1
_ <M> } o
S78>

The quantity R,/Srg, in (3.C) is much less than one for mac-
roscopic values of Sy for typical values of the physical param-
eters.

The quantity between square brackets into (3.C) is different
from one only for values of y such that

-1
R,
= | =%
Y <Srgz>

that is for values which do not contribute to the integral because
of the term exp (—y). For this reason, we can substitute the
quantity between square brackets into (3.C) with one, in so ob-

taining
81/82
dy Sr8 Rz)’> e
Ry \Sr&
The integral can be now performed analytically, and the result

is
81/82
S8 [ Ra > <g| >
&0 = ——— | — r{=+1
© R, <Srgz 82

where T is the Euler gamma function [21]. Defining Ag = g,
— g,, we finally obtain (37).

3.0

#©0) = 50 4.0

(5.0)

APPENDIX D

In this Appendix the analytical expression of Pr (S, > 7S;)
is given. Equation (30) can be written as

(s) = S: dt [A(t)s, + B()] exp [-C()s, — D®] (1.D)
where

e i) I

B = m Zz—g; (3.D)

o= s’[ﬁ B mzl(t)] @D

D) = mi(Tt). (5.D)
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Pr (5, > 15,) can be easily obtained by integration of (1.D):
/(1 +7)

S é(s,) ds;
0

” —D(n &
St So dre {[C(t)z e

*[1 —exp [-CO/Q + I}

n

Pr (8) > 25)

i

A()
T Coa 9 [-Co/a + n)]}-
(6.D)
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