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Wolf effect in homogeneous and inhomogeneous media
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We derive expressions for the spectrum of the field produced by planar, secondary Gaussian Schell-model'sources
after propagation in free-space, homogeneous dispersive media, and graded-index fibers. Our results show, for the
first time to our knowledge, the development of correlation-induced spectral changes (the Wolf effect) as a function
of the propagation distance from the source plane. An important result of our study is the prediction of the
enhancement of the Wolf effect for propagation in media of index of refraction larger than unity. In the case of
graded-index fibers having a parabolic index profile, the source spectrum is shown to reproduce periodically at
distances at which such fibers image the source.

1. INTRODUCTION

The changes occurring in the spectrum of light emitted from
partially coherent sources as a result of propagation have
been the subject of numerous recent investigations.1-6

Wolf first derived the conditions under which the spectrum
of light remains invariant on propagation.6 17",8 Further
work included the examination of spectral effects due to
spatial correlations in fluctuations of small sources, 7 as well
as in primary and secondary sources of various states of
coherence.810 The effect of correlation-induced spectral
changes, also known as the Wolf effect, has been verified
experimentally in acoustics12 and in several optical experi-
ments. 1",3 "16 The significance of this effect is just becoming
apparent in diverse fields such as astronomy, communica-
tions, and metrology.

Most of the previous work has focused on light propaga-
tion in free space or in a rarefied scattering medium. In this
paper we examine the changes in the spectrum of the field
occurring on propagation through homogeneous and inho-
mogeneous dispersive media. In particular, we investigate
the development of the spectrum as a function of the propa-
gation distance and its dependence on the state of coherence
of the source in both homogeneous and inhomogeneous me-
dia. The inhomogeneous medium considered here is a grad-
ed-index medium whose refractive index varies quadratical-
ly in the radial direction.'9 Such a medium is readily avail-
able for experiments in the form of so-called Selfoc fibers.

The changes in the coherence properties of light propagat-
ing through various types of waveguide have been investigat-
ed by many authors.2 0 -2 4 In most of the work encountered
in the literature, the state of coherence is characterized by
the mutual coherence function.2 5 This approach is not suit-
able for the examination of spectral changes. Agrawal et
al.

2 0 considered how the cross-spectral density of the inci-
dent light changes on propagation in graded-index fibers.
We use their analysis to derive a closed-form expression for
the spectrum of the field at an arbitrary distance from the
source.

The general expression of the field spectrum derived for a
graded-index medium in Section 2 can be used to analyze the
spectral changes occurring in a dispersive homogeneous me-
dium in the appropriate limit. The latter result reduces to

the well-known free-space result2 6 in the limit in which the
refractive index is set to unity. Our expression is, however,
valid for arbitrary propagation distances and allows us to
examine how the spectrum evolves from the near-field to the
far-field region. We illustrate our results for free-space
spectral evolution in Section 3 by using physical parameters
that apply in many practical cases. In particular, we show
how the spectrum of light can be shifted toward the shorter
or longer wavelength, depending on the propagation dis-
tance and the state of coherence of the source.

Spectral evolution in homogeneous media is considered in
Section 4. Our results indicate that the spectral shift occur-
ring in the far-zone region is considerably enhanced in a
homogeneous medium, with the enhancement factor de-
pending on the index of refraction of the medium. Section 5
is dedicated to the case of inhomogeneous media by consid-
ering spectral changes in a graded-index fiber. The main
results of the paper are summarized in Section 6.

2. PROPAGATION OF THE SPECTRUM IN
GRADED-INDEX FIBERS
The propagation of the cross-spectral density of the field in
graded-index fibers has been studied by Agrawal et al.

2 0 In
this section we summarize that derivation to establish our
notation and derive an expression for the field spectrum.

Consider a graded-index fiber with the axis of symmetry
along the z axis (Fig. 1). The fiber is characterized by an
index of refraction having the parabolic profile

(n2(.o)[1 - a2(,W)(x2 + y2)]
h2(X, y; W) = ~for x2 + y2 •< R0

2

h2 (x, y;o,) = i n2(W) [l - a2(co)RO2]

for x 2 + y 2 > R 0
2

(la)

(lb)

where Ro is the core radius, n(w) is the index of refraction at
the center of the fiber, a is the radial gradient of the index,
and c = kc (c is the speed of light) is the frequency associat-
ed with the free-space wave number ko.

It is well known that the modes of a parabolic-index fiber
are Hermite-Gaussian functions if Eq. (la) is assumed to be
valid for all x and y.

27 If we also make the scalar and the
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S(r;cc) = (2 sin az )J JJ dtjd 2 dnjd? 2W(pl, P2; cc)

X exj ika Cos aZ (Q22 - 412 + l2 2
-

2)
%'tinazL 2

- X(42 - A 1 - 70)]}. (6)

Equation (6) can be used to obtain the field spectrum at
the observation point r for a given form of the cross-spectral
density at the source plane z = 0. We consider the following
specific form of the cross-spectral density of the field in the
source plane:

Fig. 1. Illustrating the geometry and the notation. A point in the
source plane z = 0 is denoted by (Q, n), and an observation point is
denoted by (x, y, z).

paraxial approximations, it can be shown that wave propa-
gation in such a fiber is governed by the formula20

T(r; c) = J K(r, p; c)'I'(p; c)d2p, (2)

W(p1, P2; cc) = S() () [I(pd)I(p2)] 12A(p2 - P) (7)

Evidently this form implies that the spectrum S()(c) of the
source is the same at all points in the source plane. In the
above equation I(p) is the intensity distribution and A(P2 -

pl) is the complex degree of spatial coherence. When both
I(p) and A(P2 - pi) are taken to be Gaussian functions, the
source is known as the secondary Gaussian Schell-model
source29 whose properties have been studied extensively.'0-3 9

Explicitly, the cross-spectral density of the Gaussian Schell-
model source has the form

_~pl, P2; ° = 5°s (,+2 22) + (12+ n2) ( 2 - 01)2 + (X2 - 1)2 (
W(P1, P2; cc) - S(w)(c)exp[ + 4o.,2 2(7g2 J, (8)

where '(r; c) is the optical field and the propagation kernel
K(r, p; a) is given by

K(r, p; c) = k eio( a
27ri-i \sin az 

ia co[ 2 ( + ) - (t + Yol)Jj, (3a)

¢O(r) = k[z + acot a (x2 + Y2) (3b)

Here k = n(cc)ko = n(c)c/c, p = (Q, t7) is a radius vector in the
source plane, r = (x, y, z) is a vector in the direction of
observation (Fig. 1), and n(c) is the index of refraction at the
core center.

The cross-spectral density of the field for any two observa-
tion points is given by20 '28

W(rj, r2 ; Cc) = JJ K*(rl, pj; cc)K(r2 , P2; c)

X W(p1, P2; cc)d2 pjd 2p2 , (4)

where W(p,, P2; c) is the cross-spectral density in the plane
z = 0 and the integration is taken twice over the source
domain. The spectrum of the field is obtained by setting r 1
= = r and is given by

S(r; cc) = JJ K*(r, pl; c)K(r, P2; ) W(p1, P2; co)d2pld2P2-

(5)

On substituting K(r, p; cc) from Eq. (3a) into Eq. (5) we
obtain the following expression for the spectrum of the field:

where trI is the rms width of the Gaussian intensity distribu-
tion (FWHM = 2.35 u-) and oUg is the rms width of the spatial
correlation. In general, the quantities a, and cig depend on
frequency. Although their frequency dependence is not
shown explicitly, our analysis allows us to incorporate any
frequency dependence of a, and o-g.

On substituting Eq. (8) into Eq. (6) and performing the
integrations (see Appendix A), we can write the spectrum of
the field as

S(r; c) = S(°)(cc)M(r; k, a; c),

where the spectral modifier M is given by
1 /k crI\

2 [k 2 (X2 +y 2 )/Z2

M(r; k, ; ) - exp[-
z2 A / [ 2A2 J

Here

sin agz
A = 2abcI X

az

with the parameters a and b defined by

a 2 1 + 1
8crI2 2ag2'

b2 =' 1+ ( ka cos az 2
2co1

2 ( 2a sin az )

(9)

(10)

(11)

(12)

(13)

Equations (9) and (10) are the general expressions, valid
within the paraxial approximation, for the spectrum of the
field produced by planar secondary Gaussian Schell-model
sources. In particular, they are valid for any distance z from
the source and for any range of real values n(c) and a(c). It
can be easily verified that S(r; c) reduces to S(M)(c)I(p) in the

x

Source
plane

z
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limit z - 0, as one might expect. In the limit when a -> 0,
our formulation corresponds to the case of dispersive homo-
geneous media. The spectral modifier then becomes

Mh(r; k; ) = lim M(r; k, a; a)
a- 0

= 1 (k-) exp2 k 2 (x2 + Y 2 )/Z2 ] (14)
2 Ah1 xp 2Ah2'(4

where

Ah = 2 abhOcI (15)

and

bh2 = 12 + (2k (16)

Equation (14) is also applicable to paraxial free-space propa-
gation if we set n(cw) = 1 so that k = ko. Since spectral
changes occurring on free-space propagation have attracted
much attention, we consider this case first. We then consid-
er the general case in which n(cc) > 1 and a > 0. In order to
make our results readily available for experimental verifica-
tion, we assume that the source spectrum S)(c) corre-
sponds to that of a gallium phosphide (GaP) visible light
source40 and is well approximated by a Lorentzian line cen-
tered at 564 nm (vo = co/27r 532 THz) with a FWHM of 36
nm (_34 THz). All the numerical results in this paper
pertain to this source spectrum. The cross-spectral density
of such a GaP source may not necessarily be of the form
given by Eq. (8) on which our analysis is based. However, in
practice, it is possible to modify it in such a way that it is
approximates a Gaussian Schell-model source. The intensi-
ty distribution of GaP sources is often well approximated by
a Gaussian function. The spatial correlation can be made
Gaussian by passing the light through certain scatterers.4 1-43
We assume that crj and g are frequency independent for
simplicity. However, our formulation is general enough to
incorporate their frequency dependence when it is specified.

3. FREE-SPACE PROPAGATION

The changes in the spectrum of light on propagation through
free space have been investigated extensively. However, a
clear understanding of the spectral evolution with increasing
propagation distance from the source is still lacking and may
be due to the complexity of the computations involved.4 44

Our analysis provides a relatively simple way for under-
standing the transition from near to far field within the
paraxial approximation.4 5

In our notation the spectrum of the field after propagating
a distance z in free space is given by

Sf(r; c) = S(0)(cc)Mf(r; w) = S(°)(w)Mh(r; ko; w), (17)

where Mf is the spectral modifier for free-space propagation
that is obtained from Mh of Eq. (14) in the limit k = ko. The
far-zone behavior is obtained in the limit koz - (with fixed
direction of observation), and the spectrum of the field then
reduces to

Sf{-)(r; c) = S(0(t)(opa )2 exp[ k0
2 o.1

2 (x2 + y2)Z 2 ]

where the superscript () indicates the far-zone limit.
Equation (18) is in agreement, within the paraxial approxi-
mation, with a known result for far-zone radiant intensity of
Gaussian Schell-model sources.26

We now return to the general expression for the spectrum
of the field in free space [Eq. (17)] and evaluate the spectral
modifier Mf for sources with different states of coherence
governed by the values of ag and a,.

Figure 2 shows the variation of the spectral modifier Mf
with the frequency ( = /27r) for several choices of erg and cr
when the propagation distance is z = 1000Xo/27r (i.e., koz =

1000), and the observation angle is 10° from the z axis. It
follows from Eq. (17) that when the spectral modifier, con-
sidered as a function of v, has a positive slope at v = vo, the
resulting line is blue shifted, whereas a negative slope of the
spectral modifier at that frequency results in a red-shifted
spectrum. If the spectral modifier is not uniform through-
out the frequency range of the source spectrum, the nature
of the spectral changes may be more complicated. 4 4 The
examples shown in Fig. 2 correspond to a blue shift for kocg <

1.0
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Fig. 2. Normalized spectral modifier Mf for propagation distance
koz = 100 in free space. The spectral modifier is shown as a function
of frequency v for k0cr = 20 and four different values of the correla-
tion length: (a) koug = 1.0, (b) kocg = 8.0, (c) koug = 10, and (d) koag
= 20. The direction of the spectral shift is determined by the slope
of Mf at the center frequency of the source.
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Fig. 3. Normalized spectral modifier Mf for three different propa-
gation distances [(a) koz = 100, (b) koz = 250, and (c) koz = 600] in
free space for k0al = 20, kocg = 10. At vo = 532 THz a blue shift is
obtained for koz = 100 and a red shift for koz = 600.
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tance koz, for kocr = 20 and several values of hoag. We note
that when the source is relatively incoherent (koog < 1), the
spectral shift, which is toward the blue for this angle of
observation, develops rapidly with propagation distance.
When the source is relatively coherent (koog >> 1), an initial
blue shift turns into a red shift with increasing koz. For the
states of coherence considered in this paper, the transition
from the blue shift to red shift takes place for koz - 100. In
all cases, the frequency shift becomes constant in the far
zone. The constant value depends on koog. The frequency
shift for koorg = 25 [curve (d) in Fig. 5] is -10% of the source
spectral width (FWHM _ 34 THz).

400 450 500 550 600 650 4. HOMOGENEOUS MEDIA
Frequency v [THz]

Fig. 4. Normalized field spectrum for observation at an angle of
100 off axis and a propagation distance koz = 1000. The source is
characterized by koao- = 20 and kong = 20. The solid curve shows the
original source spectrum, and the dashed curve shows the red-
shifted field spectrum.

Av=O (a)

(b)

We showed in Section 3 that the changes in the spectrum on
propagation in free space depend on the state of coherence
and on the propagation distance from the source. In this
section we consider propagation through homogeneous me-
dia for which the index of refraction n() differs from unity
and is independent of position in space. It is, however,
frequency dependent, a feature that indicates the dispersive
nature of the homogeneous medium. The wave number is
then given by

k = n() .
c

(19)

On substituting Eq. (19) into Eqs. (14)-(16), we obtain the
expression for the spectral modifier for dispersive homoge-
neous media. It sometimes happens that the refractive in-

_ (c) dex n(c) is nearly constant over the source spectral width.
In that case, the medium acts as a nondispersive homoge-
neous medium of constant refractive index no = n(co), where
cco is the central frequency of the source spectrum. Let us
consider the nondispersive case first.

| I , | I It is evident from Eq. (14) that the spectral modifier Mh
0 1600 3200 4800 6400 8000 for a nondispersive homogeneous medium is identical to that

Propagation Distance k0z of free space if ko is replaced by noko. Thus, the free-space
Frequency shifts Av versus propagation distance for sources results for the spectral modifier shown in Figs. 2 and 3 apply
rized by the same value of k 0 a = 20 and different values of provided the scaling factor ko is appropriately modified.
kooag = 1, (b) kong = 10, (c) kong = 20, (d) koag = 25. The spectral changes can be quite different as a result of the

scaling. The comparison between the spectral changes oc-
curring on propagation through free space and on propaga-

red shift for koog > 10 for the GaP source for which vo tion through homogeneous nondispersive media must be
'Hz. considered separately for distances short and long in com-
given state of coherence, the spectral shift also de- parison with a length zo = k/v2_a (obtained by requiring
n the propagation distance. This is shown in Fig. 3, that the two terms in Eq. (16) contribute equally when z =
re compare the spectral modifier for different propa- zo). For a short propagation range (z << zo) the quantity
[istances when k0o 1 = 20 and koag = 10. We observe k/Ah is independent of no; hence we expect no difference
spectral shift would be toward higher frequencies between the spectral changes occurring in dispersive homo-

= 100 (positive slope at v = v0) and toward lower geneous media and free space. For a long propagation dis-
cies for koz = 600 (negative slope at v = vo). Figure 4 tance (z >> zo), the quantity k/Ah appearing in Eq. (14) is

he spectra of the GaP source in the near zone (koz = larger by a factor n(c) compared with free-space propaga-
in the far zone (koz = 1000) for koaj = 20 and kong = tion. The extent of the spectral changes taking place under
e source spectrum exhibits a red shift in the far zone these circumstances depends on the value of no. In Fig. 6 we
ight blue shift that may be difficult to detect in the show a comparison of the spectral shifts for free space [curve
ae. Note also that the spectrum becomes asymmet- (a)] and for two nondispersive homogeneous media with
result of propagation. These changes should be easy indices of refraction no = 1.5 and no = 2 [curves (b) and (c)]
'ye experimentally. when koou = 20 and kong = 10. The most notable feature is
uantify the magnitude of the spectral shift by defin- that the far-zone value of the spectral shift increases with
arameter Av that corresponds to the shift of the the increase in the refractive index no. This is an important
peak from the source spectrum. In Fig. 5 we show feature. It shows that the Wolf effect is enhanced in a

Atral shift Av as a function of the propagation dis- homogeneous medium.
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various thicknesses. The source parameters are koo-I = 20
and koug = 10. The frequency dependence of n(cc) was
obtained by using the well-known Sellmeier equation46

n2() =1+Z cc2 cc2 -

j=l Wi

(20)

For pure silica, the parameters are given by B1 = 0.696 166 3,
B2 = 0.407 942 6, B 3 = 0.897 479 4, = 0.068 404 3, X2 =
0.116 241 4, and X3 = 9.896 161 um, where Xj = 27rc/cj.

The effect of dopants on the spectral shift can be easily
included in our analysis. For example, the refractive index
n() of silica glass can be increased by doping it with germa-

-I , , , , nia (GeO2). The refractive index n(cc) is still given by the
0 1600 3200 4800 6400 8000 Sellmeier formula, but the parameters Bj and ccj are different

Propagation Distance and depend on the amount of the dopant.4 7 As an example,
Comparison of frequency shifts for propagation in nondis- we consider silica glass doped with 7.9% GeO 2, for which the
mogeneous media. The frequency shifts for a fixed angle parameters are B = 0.713 682 4, B2 = 0.425 480 7, B 3 =

ation (10°) are shown for propagation in free space (a), for 0.896 422 6, X' = 0.061 716 7, X2 = 0.127 081 4, and X =

.on in a homogeneous medium of an index of refraction n =
id for propagation in a medium of index of refraction n = 9.896 161 m. Figure 7 shows the expected change (dashed
'he observation angle is 10°, and the source parameters are curve) in the frequency shift. The shift is slightly larger for
and kong = 10. doped silica since the dopant increases the refractive index

by a small amount. In both cases (i.e., pure silica and slight-
ly doped silica), the frequency shifts in the far zone are much
larger than those that would be produced in free space.

The main conclusion of this section is that the Wolf effect
is enhanced in a homogeneous medium of refractive index n
> 1. The frequency dependence of the refractive index n(c)
is not critical for enhancement, since enhancement is found
to occur even when n is frequency independent. The origin
of the enhancement factor can be understood by referring to
Eq. (14) and using k = cn(cc)/c. The Gaussian factor in Eq.
(14), plotted as a function of c, is narrower for a homoge-

~ (b) neous medium than for free space. It is this feature of the
spectral modifier that is responsible for a larger spectral

(c) ~ shift when n > 1.

0 200 400 600 800 1000

Propagation Distance kz

Fig. 7. Comparison of frequency shifts for dispersive homogeneous
media. A is shown as a function of koz for (a) propagation in free
space, (b) propagation in pure silica, and (c) propagation in silica
doped with 7.9% GeO 2. The observation angle is 100, and the source
parameters are k0oj = 20 and koog = 10.

We now consider the case of dispersive homogeneous me-
dia. As in the case of nondispersive media, we must consid-
er the changes in the spectrum for short and long propaga-
tion distances separately. For a short propagation distance
(z << z0), the quantity k/Ah is again independent of the index
of refraction, and the spectral effects are identical to those
encountered on free-space propagation. For a long propa-
gation distance (z >> z0), the quantity k/Ah depends on n(c);
as a result, the changes of the spectral effects in this medium
from those generated in free space depend on the variation
of n(c) in the frequency range covered by the source spec-
trum. To consider a realistic case, we illustrate our results
by using a slab of silica glass as an example of a dispersive
homogeneous medium.

Figure 7 shows the frequency shift AP' obtained after light
from a GaP source propagates through a slab of silica glass of

5. INHOMOGENEOUS MEDIA

In this section we return to the general expression for the
spectrum of light in a graded-index fiber [Eqs. (9)-(13)]. In
this case the parameter a is nonzero; its value depends on the
fiber design. We consider a specific fiber whose core is made
of doped silica (7.9% GeO2 at the core center) and a cladding
made of pure SiO2. For illustration, we use the same param-
eters for the core used in Section 4 for bulk silica. In prac-
tice, these parameters may be different for graded-index
fibers, but such differences are easy to include in our formu-
lation. If n1(c) is the refractive index at the core center (p =
0) and n2(c) is the refractive index at the boundary (p = Ro),
the parameter a is given by

a (cc) = k-1- 2 (21)

Since ni(c) and n2(c) can be obtained by using Eq. (20), the
frequency dependence of a(c) is readily determined. In the
following calculations, the core radius is Ro = 25 m.

Figure 8 shows the frequency shift as a function of the
propagation distance for a # 0 [curve (a)] and compares it
with those obtained for free space [curve (c)] and for a
homogeneous medium of refractive index nj [curve (b)]. We
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Fig. 8. Frequency shift AP versus the propagation distance koz in a
dispersive graded-index medium [curve (a)]. Curve (b) shows Av
when the inhomogeneous nature of the medium is ignored by setting
a = 0. Curve (c) shows, for comparison, the free-space result. The
observation angle is 100, and the source parameters are k0 ac = 20
and koag = 10.
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Fig. 9. Frequency shift AP' as a function of propagation distance in
a graded-index fiber (solid curve). The frequency shifts are calcu-
lated for observation at a fixed distance 10/ko from the center of the
fiber and koai = 20 and kong = 10. The dashed curve shows the
frequency shifts when the frequency dependence of a is ignored by
setting [a(wo)/ko = 0.000 481.

note that in the range of propagation distances shown in the
figure, the frequency shift is larger for the graded-index
medium compared with the homogeneous medium. This
enhancement of the frequency shift is strictly due to the
inhomogeneous nature of the medium and will clearly de-
pend on the functional form of the inhomogeneity.

Although the frequency shift AP tends to a constant far-
zone value in a homogeneous medium, no such limit exists in
the graded-index medium considered here. This feature is
due to the imaging property of a medium with a quadratic
variation of the refractive index. Such a medium repro-
duces the incident field periodically with a period given by z
= 2-ir/a, a feature that is due to the periodic nature of the
propagation kernel, Eq. (3). One would thus expect that the
spectrum S(r; cc) given by Eq. (5) also reduces to the source
spectrum for z = 2m-r/a, where m is a positive integer. We

show in Appendix B that this is indeed the case. Further-
more, we find that the source spectrum is reproduced not
only at z = 2m7r/a, but also at z = (2m + 1)7r/a except for a
spatial inversion of the intensity distribution. For a sym-
metric intensity profile such as a Gaussian, S(r; cc) is repro-
duced periodically with a period zP = r/a.

It would appear from the above discussion that the spec-
tral shift should follow a periodic evolution pattern with the
period zp. However, this is not the case, as is evident from
the solid curve in Fig. 9, where the spectral shift is plotted as
a function of koz for propagation distances covering three
periods (kozp 6600) for koao- = 20, koug = 10, and a obtained
by using Eq. (21). Figure 9 is drawn for a fixed radial
distance from the fiber axis (ko(x2 + y

2
)1/

2
= 10) rather than

for a fixed observation angle. This choice is made since the
radial distance would exceed the fiber dimensions for such
large propagation distances if the observation angle is kept
fixed. Figure 9 shows that the frequency shift indeed be-
comes zero for zP = r/ao[ao = a(cco)], but its maximum and
minimum values become larger for successive periods.

The physical origin of the nonperiodic nature of the fre-
quency shift can be traced back to the dispersive nature of
the graded-index medium that makes a frequency depen-
dent. Indeed, if a is replaced by ao, we obtain the behavior
indicated by the dashed curve in Fig. 9. It is clear from this
curve that the frequency shift Av shows periodic behavior
with period r/ao when the frequency dependence of a is
ignored. When a is allowed to vary with frequency, A'
becomes nonperiodic. We can understand this feature by
noting that the period zp = r/a itself becomes frequency
dependent. Since the argument az of the trigonometric
functions appearing in Eqs. (11) and (13) is frequency de-
pendent, we can expect z-dependent changes in the frequen-
cy shift. To conclude, the spectral shifts occurring in an
inhomogeneous medium are strongly affected by the disper-
sive nature of the medium.

6. CONCLUSION

The changes in the spectrum of partially coherent light on
propagation through homogeneous and inhomogeneous me-
dia were studied by using expressions derived for graded-
index fibers. The results show, for the first time to our
knowledge, the development of the spectral shift as a func-
tion of the propagation distance. They also show the depen-
dence of the spectral shift on the index of refraction and the
dispersion of the medium.

The development of the spectral shifts on propagation
through an homogeneous medium depends on the spatial
coherence of the source. When the source is relatively inco-
herent, the spectrum shifts toward the blue with increasing
distance. On the other hand, when the spatial correlation is
on the order of the source size, the spectrum develops a blue
shift close to the source and gradually changes into a red
shift with increasing propagation distance. The index of
refraction and the dispersion of the medium are found to
enhance the far-zone red shift. Our results for graded-index
fibers show that the source spectrum is recovered periodical-
ly at distances at which such fibers image the source. The
spectral shift, however, does not follow a strictly periodic
pattern when the medium dispersion is taken into account.

We have presented our results by using the parameters

~~ ~~~~~ ~A = 0

a.~~~~~~(

I I I I I.

A. Gamliel and G. P. Agrawal



2190 J. Opt. Soc. Am. A/Vol. 7, No. 12/December 1990

corresponding to a common visible GaP source. Since
ed-index fibers are also readily available, it should be 
ble to verify our theoretical predictions experimentall)
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APPENDIX A: DERIVATION OF EQS. (9)-(13

The spectrum of the field at any point r is given by

S(r; ) = JJ K*(r, Pl; c)K(r, P2; ) W(p 1, P2; cc)d2pld2

Here K(r, p; ) is the propagator given by Eq. (2), and I
P2; W) is the cross-spectral density in the source plane 
by Eq. (6). On substituting from Eq. (6) into Eq. (Al
find that

S(r; ) = S(°)(w) k I(x; )I(y; ),
2ir sin az

where

I(x; ) = a exp-x2( ka )2]a L 2a si az
i. r 2 1 +Ika cosa ct\211]X d exp - +yj2 1+ a 1 s aZ 

2 2a sin azij]
Xex1 2yx az( ka )]

l4' co \a sin az/

Next we define

b2 = 12+ ka cs az)2
2oa' a sin cz 

(A9)

(A10)

and use Eq. (A8) again to yield

I -x c) -t kae t| kae cos azz )2]}.
ab f 2a sin az/L \ 2ab sin az

(Al

We note that

[ 1 ka cos az )2]
L \ 2ab sin az 

21 [(2ab sin az)2 _ (ka cos az)2]
(2ab sin az)

(A2) which can be simplified, using Eq. (A10), to

I 1 ka cos az\21 1
t2ab sinaz= iJ2 2 - 2-

(A12)

(A13)

I(x; ) = + dtjdt 2 exp 42 2 1 2a 
2

ika [cos az (Q22 - t )]}

sin az 2 JJ

Substituting Eqs. (All) and (A13) into Eq. (A2) and using a
similar expression for I(y; cc), we obtain the expression

S(r; cc) = S(0)(cc)( ka )2

~k2ab sin az(A3)

To perform the two-dimensional integration we introduce
the average and difference variables

Lyi = /2(%2 + 01

71 = 42 - 1-

(A4)

(A5)

Equation (A3) then takes the form

X exp[(x2+y2) 1 k boi )2
L ~2 \2aboa/ sin az/ 

which can be expressed in the form

S(r;cc) = k ( 2exp - k(x2 +y2)/Z2P
Sz2(c (AY) 2 x 2 J2

with

A = 2ab., sin az
az

I(X; d) = dy ( exp - 2 2)

X d2 exp[-172 28 1 + 2 2 + ikay ( COS az -
sin az

If we define the parameter a by

2 =1 1
8a 1

2 2 6,g2'

and use the relation4 8

J exp(-p 2 x2 qx)dx E expLy

--11

(A16)

APPENDIX B: PROOF OF THE PERIODIC
REPRODUCTION OF THE SOURCE SPECTRUM

- xl* When the propagation distance satisfies the condition az =
J' mr for a positive integer m, some of the factors in Eq. (6)

(A6) become singular. However, the spectrum of the field at such
propagation distances remains well defined. In this appen-
dix we use the method of stationary phase to evaluate the

(A7) spectrum in the limit z = m7r/a. We start with Eq. (6) and
rewrite it as

S(r; c) = (kaA) 2 JJJJ d d22d' fli2WQ I 42, '1, f72; )
X e P i a A E c s a z(2 -7 r1 2 2

(A8)

Eq. (A6) may be written as

X ex {katA CS 2 2 412 +n \2 12)
2

- X(Q2 - W1 - A772 - n70]}1 (Bi)

(A14)

(A15)
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where A is defined by

A l (B2)
sin az

Since A -X as z - m7-/a, we can evaluate the integral by
using the method of stationary phase.49 According to this
method, if

I(A) J f(t)exp[iAO(t)]dt, (B3)

then

lim I(A) = exp[iAO(d)]f(d) f 2,, 1/2

X exp( i) + O(A-3/2). (B4)

Here d is a zero of 0' and tt = sgn[0`(d)]. 5 0 Applying this
formalism to Eq. (Bi) with the definitions

0 ) k ac az 2 - 2 (B5)

and

O= W(Q1, 2' 771' 772) (B6)

we find that

/2r \1/2 iiriA r x ika 2 1 1 \
I(A9) = (A ) exp(i )expi X2(- )]

X w( 1 X ,771, 772) + O(X-3/2). (B)

We repeat the same procedure for the integration over the
variables 41, i%, and 772 and take the limit A - a. All the
phase factors cancel, and the final result is

S(r; c) X x x y c (B8)
S W; c = 'cos az' cos az' cos az cos az /

Since cos az = +1, we see from Eq. (B8) that the spectrum of
the source is completely reproduced at propagation dis-
tances z = 2m7r/a, whereas for propagation distances z =
(2m + 1)7r/a the spectrum of the source is again reproduced,
aside from spatial inversion. For a symmetric intensity
profile such as a Gaussian, the source spectrum and the
intensity distribution are both reproduced at z = m7r/a. We
emphasize that Eq. (B8) is exact at z = m7r/a in spite of our
use of the method of stationary phase for evaluating the
integrals in Eq. (Bi).
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