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Effect of Gain and Index Nonlinearities on
Single-Mode Dynamics in
Semiconductor Lasers

GOVIND P. AGRAWAL, SENIOR MEMBER, IEEE

Abstract—The finite intraband relaxation time in semiconductor la-
sers leads to gain saturation at high laser powers. The nonperturbative
solution of the single-mode density-matrix equations shows that both
the optical gain and the refractive index become intensity dependent
as a result of intraband relaxation dynamics. We include the gain and
index nonlinearities in the rate equations and study how the modula-
tion response and noise characteristics of semiconductor lasers are
affected by such nonlinearities. The intensity dependence of the fre-
quency and the damping rate of relaxation oscillations leads to a fun-
damental limit imposed on the small-signal modulation bandwidth; our
analysis provides an expression for the ultimate modulation bandwidth
in terms of the material parameters. In the case of large-signal mod-
ulation the rise and fall times associated with the optical pulse increase
considerably because of gain nonlinearities while the frequency chirp
is affected by index nonlinearities. The intraband-relaxation effects also
lead to saturation and rebroadening of the laser linewidth at higher
operating powers.

I. INTRODUCTION

HE dynamic response of semiconductor lasers is gen-

erally studied by solving a set of rate equations which
describe the interaction between photons and charge car-
riers mediated by stimulated emission occurring inside the
active region of the laser cavity [1]. The modal gain in
these equations is often assumed to be intensity indepen-
dent. However, many dynamic features of semiconductor
lasers are properly accounted for only when the modal
gain g is assumed to decrease with an increase in the mode
intensity [2]-[11]. In a simple approach, the gain nonlin-
earities are included by adopting a phenomenological
functional form [3]-[7] g = g, (1 — €S ), where § is the
intracavity photon density and e is the nonlinear gain pa-
rameter (¢ ~ 1 - 1077 cm?). Such a form is clearly valid
at low power levels such that ¢S << 1. However, a dif-
ferent functional form is needed when the laser power is
large enough to violate this condition. The form g = g; (1
+ €5)7! has been used in some previous work [2], [8] in
direct analogy with a homogeneously broadened two-level
system. This form is not appropriate for semiconductor
lasers for the following reason. Even though the semicon-
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ductor gain medium is nearly homogeneously broadened
owing to a short intraband relaxation time ( ~0.1 ps), it
cannot generally be treated as a two-level system because
of a large spread in the transition frequencies.

A correct treatment of the nonlinear effects on the dy-
namic response of semiconductor lasers should start with
the density-matrix formalism [12]-[16] which includes the
intraband relaxation effects of charge carriers within the
conduction and valence bands. The complexity of the
problem often forces one to make use of third-order per-
turbation theory whereas a nonperturbative analysis is
needed to include the gain-saturation effects occurring be-
cause of intraband relaxation. Such a nonperturbative
analysis can be carried out for a semiconductor laser os-
cillating in a single-longitudinal mode [17]. The results
show that in general both the gain and the refractive index
become intensity dependent. The index nonlinearities
have not been considered before but must be included in
the rate equations since they can affect such laser char-
acteristics as the linewidth and the frequency chirp.

In this paper we use the exact functional form of the
gain and index nonlinearities in the rate equations and
study how their inclusion affects the modulation response
and the noise characteristics of semiconductor lasers. The
paper is organized as follows. Section II presents the
modified rate equations by including the intraband-relax-
ation contribution to the carrier-induced susceptibility.
Section III considers small-signal modulation response
with particular attention paid to the intensity dependence
of the relaxation oscillations and the modulation band-
width. Large-signal modulation is considered in Section
IV. Section V discusses how the laser linewidth is af-
fected by gain and index nonlinearities while Section VI
focuses on the relative intensity noise. Finally, the main
results are summarized in Section VIIL.

1I. MobIFIED RATE EQUATIONS

The response of the semiconductor active medium to
the intracavity optical field is governed by a set of den-
sity-matrix equations [12]-[17] which take into account
intraband relaxation of charge carriers within the conduc-
tion and valence bands through the relaxation times 7, and
7,. Relaxation of the induced polarization (governed by
the off-diagonal elements of the density matrix) is in-
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cluded through the relaxation time 7in- Since the three re-
laxation times are much shorter than the photon and car-
rier lifetimes, the medium is often assumed to respond
instantaneously to the intracavity field. The steady-state
solution of the density-matrix equations in that case can
be used to obtain the carrier-induced change Ax in the
susceptibility. Ax is found to consist of a linear part and
a nonlinear part such that

Ax = Axp + Axyg. (1)

The optical gain g and the index change An are related to
Ax by the general relation

Ax = 2n(An — ig/2ky) (2)

where 7 is the effective index, ky = w,/c = 27/ Ng, oy
is the angular optical frequency, and Ao is the optical
wavelength.

The general expressions for Ay, and Ax g are difficult
to obtain as they depend on details of the band structure,
among other things. Furthermore, the evaluation of A XNL
in the multimode case often requires the use of third-order
perturbation theory [12]-[16]. A nonperturbative analysis
can be carried out [17] for a laser oscillating predomi-
nantly in a single mode, such as a distributed feedback
(DFB) semiconductor laser. We make use of this nonper-
turbative analysis and restrict our attention to a single-
mode semiconductor laser. The approximate expressions
for Ax, and Ay y, are given by [17]

Axp = 2n(An, — 181./2ko) (3)
g, [8+1(1+p)""]p

ko 1+(l+p)]/2

Axyg = (4)

where p = |E,|*/1,, | Ey|* is the intracavity mode inten-
sity, and the saturation intensity 7, is related to the intra-
band relaxation times by the definition

L=n/[wr(r. + 7). (5)

The parameter 3 is related to the slope of the linear gain
& as

-1 fda)
b= 81 (wo) iy <d‘*’> © T (©)

The linear part of An, of the carrier-induced index change
is often related to the linear gain &: phenomenologically
by using the relation

(7)

where o is the so-called linewidth enhancement factor at
the mode frequency wy. In (5) and (6), u is the dipole
moment, and 7., 7,, and 7;, are the three intraband relax-
ation times.

The total carrier-induced change in the refractive index
and the gain can be obtained by substituting (3) and (4)
in (1) and expressing the result in the form (2). We then

An, = —OlogL/Zko
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obtain
8L Bp >
An=-SL(g o PP 8
ST <a0 1+ (1+p)7"7° ®)
g =g/ +p" (9)

Equation (9) shows that the functional form of the sat-
urated gain is different from a homogeneously broadened
two-level system for which g = g, /(1 + p). The intra-
band origin of gain saturation is evident from (5) which
shows that p = 0 for 7;, = 0. Note from (8) that a finite
intraband relaxation time makes the mode index also in-
tensity dependent.

The modified rate equations are obtained by substitut-
ing (8) and (9) in the conventional rate equations given
by [1]

P = Fvg(g - gth) + Rsp (10)
¢ = —Tuk(An — Any) (11)
N=1/q~-v,N - Tv,gP (12)

where T is the confinement factor, v, is the group veloc-
ity, Ry, is the rate of spontaneous emission into the lasing
mode, / is the current, P is the number of intracavity pho-
tons, N is the number of electrons, ¢ is the phase of the
optical field, and v, is the electron recombination rate in
the absence of stimulated emission. The dot on the vari-
ables P, ¢, and N denotes the time derivative. By using
(8) and (9) in (10)-(12) the modified rate equations take
the following form

P=(G/Vi+p~~)P+R, (13)
¢=%’(GL—Y)—§HG+\/PTP (14)
N=1/qg—~N~-GP/J1+p (15)

where
G, =Tr,8. = Gy(N — Np) (16)
v =Tv,84 = Gy (Ngy — Np). (17)

We have assumed that g; varies linearity with an in-
crease in the electron population, an approximation often
used in practice [1]. The parameter y represents the cavity
decay rate and is related to the photon lifetime by 7, =
1/7. Similarly, the carrier lifetime is given by, =1/y,.

The modified rate equations include the effects of intra-
band relaxation through the p dependent terms. The modal
gain is reduced by a factor (1 + p)'/? as a result of gain
nonlinearities. The phase of the optical field is affected by
the index nonlinearities entering through the last term in
(14). The parameter B8 controls the nonlinear phase
change. We can estimate 8 by using (6) and assuming a
Gaussian spectral profile for the linear gain, i.e.,

g (w) = g (w,) exp [ (0 ~ w,)’/Aw2] (18)
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where w, is the gain-peak frequency and Aw, is the gain

bandwidth. The result is

_2((‘00 - wp)

B = (19)

TinAw§

To the first order, Aw, ~ 1/7, Thus, § ~
~2Aw/Aw,, where Aw = wy — w, is the detuning of the
laser mode from the gain peak. For a Fabry-Perot laser 3
= 0 since the lasing mode nearly coincides with the gain
peak. However, 8 # O for DFB lasers which can operate
at wavelengths away from the gain peak as a result of the
feedback provided by the built-in grating. It can be posi-
tive or negative depending on whether the DFB laser
opeates on the red or the blue side of the gain peak. Typ-
ical values of § are expected to be such that | 8| < 1.

The dimensionless parameter p in (13)-(15) takes into
account the effects of intraband carrier relaxation. It can
be related to the output power by using the relation

P Pnu(
p= = F = pout

s

(20)

where P; is the saturation photon number and P{" is the
saturation output power. The saturation photon number P,
is related to the saturation intensity /; by the linear rela-
tion

GoﬁngV

P, = I 21
= (21)

where n, is the group index, V is the active volume, and
I' is the confinement factor. The output saturation power
is related to P, by P3" = (9,hwy/7,) P, where 5, is the
differential quantum efficiency of the output facet. Even
though I, is linearly related to P, and P}, the proportion-
ality constant involves a large number of device parame-
ters such as the active-region dimensions, the confine-
ment factor, and the facet reflectivities. It also depends
on whether the semiconductor laser is Fabry-Perot or DFB
type. For this reason P{" is device dependent even though
I, depends only on material parameters.

We shall present our results in terms of the dimension-
less parameter p in order to make them device indepen-
dent. However, it is useful to provide an order-of-mag-
nitude estimate of P%*. We consider a 1.55 um buried-
heterostructure laser as the gain-saturation effects are
stronger at longer wavelengths. The parameter I is esti-
mated from (5) by using p = 9 - 107% mC, Tin = 0.1 ps,
7. =03 ps,and 7, = 0.07 ps. Itis givenby [, = 3.3 -
10" (V/m)>. The energy density is related to I, by
€onngl; and is estimated to be 3.8 mJ /cm® by using 77 =
3.3 and n, = 4. For 2 mode volume V/T =2 - 107"
cm’ , the saturation photon number P, = 5 - 10°. The out-
put saturation power can range from ~20-100 mW de-
pending on what fraction of the intracavity photons es-
capes from the output facet. It is generally smaller for
longer wavelength lasers as /, scales as N2, It is also ex-
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pected to be smaller for quantum-well semiconductor la-
sers for which I is reduced as a result of the quantum-
confinement effects [11].

III. SMALL-SIGNAL MODULATION

The small-signal modulation response is obtained by
solving the rate equations (13)-(15) with the injected cur-
rent

(22)

such that I,, << I, — I, where [ is the threshold cur-
rent, I, is the bias current, 7, is the modulation current,
and w,, is the modulation frequency. The dynamic vari-
ables follow the sinusoidal variation approximately and
have a solution of the form

P(t) = P + 6P exp (iwyt)

I=1,+1,exp (iwy,t)

(23)

with similar relations for N and ¢. The steady-state values
P, N, and ¢ correspond to the bias level ,. The modula-
tion response is obtained by linearizing (13)—-(15) in terms
of 8P, 6N, and 6¢. The result for 6 P is [1] (overbar over
the steady-state quantities is dropped for notational sim-

plicity)

GyP(L,/q) (1 +p) '

BP(UJm) = (QR +w, — IFR) (QR - W, + lFR)

(24)

where Q and Ty are the frequency and the damping rate
of relaxation oscillations and are given by

- 12
1+p/2 1 z]

Qp=|G.GyPp—5 ——(T,-T (25)

R LYN (1 +P)2 4( 14 N)

'y = (Ty + I‘p)/Z (26)
v, GyP

FN:Y?+N§V—++]/2 (27)

(1 +p)
R G

rp=—2'+ 2t P Ve (28)

(1+p)

The effect of gain nonlinearities is included through p =
F/P,. The nonlinear index affects only the modulated
phase that is given by
oP
2iw,, P

¢ = [ao(rp + iw,) — _567“7]/2] (29)
2(1 + p)

Equations (25)-(28) show that relaxation oscillations
are strongly affected by gain nonlinearities. By keeping
only the dominant term, the frequency and the damping
rate of relaxation oscillations are found to depend on the

mode intensity through

GyP (1 +p/2)p
o (L+p)

_1 p/4

o (1 + 1))3/2

0z

(30)

(it}

(31)



1904

where we used 7, = 1/G to express the results in terms
of the photon lifetime. Typically, 7, = 1-2 ps for semi-
conductor lasers while Gy P, ~ 101°ps". It is easy to ver-
ify that Q takes its maximum value for p = oo whereas
T'x peaks at p = 2. The maximum values of @ and T'y

are given by

0 GyP,\'"? ro_. 11

max 2Tp > max 6\/3 Tp.

By using GyP, = 1 - 10" s™"and 7, = 1 ps, we estimate
that @,,, /27 = 35 GHzand ', = 1 - 10"' s7".

It is interesting to compare (30) and (31) with the cor-
responding expressions obtained when (9) is replaced by

g =g&/(1+p). (33)

This form of the nonlinear gain has been used in some
previous work {2], [8] in analogy with a two-level system.
The relaxation-oscillation frequency @ and the damping
rate I'y are then given by

(32)

Q%E%_p__} (34)
» (1 +p)
1 2
FRE—LZ (35)
(1 + p)

and should be compared with (30) and (31). Figs. 1 and
2 show the variation of Qz/Q ., and 'z /Q .., with p for
the two different functional forms of the nonlinear gain.
Q varies linearly with v p for p << 1 in both cases. This
linear dependence has been observed in many experi-
ments [8], [10]. A sublinear increase with v/ p begins to
occur for p > 0.1 for both nonlinear-gain models. How-
ever, the sublinear behavior is more pronounced when the
phenomenological model (33) is used. In fact, @, peaks
at p = 0.5 and then begins to decrease according to this
model. By contrast, our model shows that Q5 continues
to increase sublinearly at all power levels and attains its
maximum value asymptotically for p >> 1. The maxi-
mum value is larger by about a factor of 2 than the peak
value predicted by (34).

The intensity dependence of the damping rate T' is also
quite different for the two models. Both models predict a
linear increase of T'g with p for p << 1, as also observed
experimentally [10]. However, the growth rate is smaller
by a factor of 2 when (9) is used for the nonlinear gain.
The peak value is also smaller by about 30% in this case.
These differences can be used to verify experimentally
which nonlinear-gain model is appropriate for semicon-
ductor lasers. Experimental verification would require
high-power DFB semiconductor lasers. In one experiment
[18] the relaxation oscillation frequency was measured as
a function of the output power for a 1.2 um DFB laser.
The data showed a linear increase of @z with Vp up to
about 20 mW and a slightly sublinear increase in the range
20-40 mW. The output saturation power for this laser is
estimated to be about 100 mW. The experimentally ob-
served behavior supports the use of (9) in place of (33)
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Fig. 1. Variation of the relaxation-oscillation frequency with (P/P\)”2

for(a) g = g,/¥1 + pand (b) g = g, /(1 + p) as the functional form
of the nonlinear gain. The parameter p = P/P,.

1.50 [
1.25

1.00

max

= 075}

FR

0.50 §

0.25

0-00 1 1 1 1
0 2 4 6 8 10

Fig. 2. Variation of the damping rate of relaxation oscillations with p =
P/P, for(a) g = g,/¥1 + pand (b) g = g,/1 + p) as the functional
form of the nonlinear gain.

since the saturation of Q z with v/ p is less pronounced than
predicted by (33) [curve (b) of Fig. 1].

The quantity of interest from a practical standpoint is
not the relaxation-oscillation frequency Q5 but the 3 dB
bandwidth A w;4p, defined as the modulation frequency at
which the modulation response drops by a factor of 2 from
its zero-frequency value, i.e.,

| 6P (Awsap) /6P, (0)] = 4. (36)

By using (24) and (36), Awsgg is found to be related to
the relaxation-oscillation parameters by the relation

Awlg = 0} — T} + 2[03(0} + T3) + T4
(37)
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Fig. 3. Variation of the 3 dB modulation bandwidth with (P/P,)'/? for
several values of Gy Ps. The photon lifetime 7, = 1 ps.

Fig. 3 shows the variation of Aw;4g/27 as a function of
Vp for several values of Gy P with 7, = 1 ps. For rela-
tively small values of GyPg, Aw;qp exhibits a shallow
maximum in the vicinity of p ~ 1. In most cases of prac-
tical interest, however, A w,4p is expected to saturate to a
limiting value. The limiting value is obtained from (37)

and is given by

e 3 GyP,\'"?
A"’~’3dB = \/ggmax = <§ _-:_/—>
P

(38)

where we used (32) and assumed that T << Q4. We can
write (38) in terms of the material parameters by using Gy
= T'v,a/V, where a is the differential gain (the derivative
of g, with respect to the carrier density). If we use P;
from (21), the result is

— 1/2
3egcnial\ !
max __ s
Aw3dB = <_ .

3
2hwoT, (39)

Except for the photon lifetime 7, and the photon energy
hwy, Aw3gs depends only on the material parameters. The
most crucial parameter is the differential gain coefficient
a that depends on the density of states and can be en-
hanced by using a quantum-well structure. Consider the
case of a 1.55 pm InGaAsP laser with a photon lifetime
7, = 1.5 ps. In the case of a conventional double-hetero-
structure design, @ = 2 -+ 107'® cm®. Using the value of
I, = 3 - 10" (V/m)? estimated in Section II, the 3 dB
bandwidth is found to be limited to about 32 GHz. This
value increases to 40 GHz if the photon lifetime reduces
to 1 ps. Similarly, it can increase considerably if the dif-
ferential gain a is enhanced. For a quantum-well design,
a is expected to be enhanced by a factor 2-3. The satu-
ration intensity I; also depends on the density of states
through the dipole moment p, and is generally reduced
[11] for a quantum well by a factor in the range 1-2. Thus,
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the limiting 3 dB bandwidth is expected to be larger for
quantum-well lasers but by not more than 50% of that of
the conventional lasers.

IV. LARGE-SIGNAL MODULATION

In the case of large-signal modulation the semiconduc-
tor laser is biased close to threshold and modulated with
nearly rectangular pulses of large amplitude. The optical
pulse is obtained by solving numerically the modified rate
equations (13)-(15) with the injected current

I(t) =1, + 1, f(1) (40)

where [, is the bias current, i, is the modulation current,
and f(r) governs the shape of the current pulse. We use
a super-Gaussian model to represent a nearly rectangular
current pulse and choose

o-en| (2"

where T, is the rise time and T, is the pulse duration or
the bit slot at the bit rate B = 1/T,. We use 7, = 0.2 7T,
as a representative value.

Fig. 4 shows the simulated optical pulse shapes for a
1.55 um semiconductor laser biased at threshold (1, =
1) and modulated at 2 Gb/s (T, = 0.5 ns) with I, =
51, to provide about 12 mW of on-state output power P,,.
The effect of gain nonlinearity is demonstrated by chang-
ing the output saturation power P in the range 10-30
mW. In terms of the dimensionless parameter p =
P,,/P™, for p < 0.5 the main effect of nonlinear gain is
to suppress relaxation oscillations. However, for larger
values of p the rise and fall times associated with the op-
tical pulse increase considerably. The increase in rise time
reduces the modulation efficiency since the peak power
never reaches its on-state value expected in the absence
of gain nonlinearities. The increase in fall time results in
a long trailing edge. In an actual communication system
the energy in the trailing edge would appear in the neigh-
boring bits and would affect the system performance
through intersymbol interference. The fall-time effects
become more severe at higher bit rates. This is shown in
Fig. 5 where optical pulse shapes are shown for B = 5
Gb /s (T, = 0.2 ns) while keeping other parameters iden-
tical to those of Fig. 4. The trailing edge begins to extend
to the third neighboring bit for p ~ 1. The main conclu-
sion is that gain nonlinearities limit the on-state power
well below the saturation-power level to avoid the detri-
mental effect of long fall times.

Index nonlinearities affect only the frequency chirp im-
posed on the optical pulse as a result of the time-varying
optical phase. Fig. 6 shows the frequency chirp for § =
—1,0and 1 forag = 5, B =2 Gb/s and P = 20 mW.
The other parameters are the same as in Fig. 4. For § =
0, the chirp is solely due to carrier-induced index changes.
For B # 0, index nonlinearities [the last term in (14)]
increase the chirp for negative 8 and decrease it for pos-
itive B. The contribution of the nonlinear index to the fre-

(41)
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Fig. 4. Simulated pulse shapes for several values of the saturation output
power under strong-signal modulation at 2 Gb/s. The semiconductor
laser is biased at threshold and modulated five times above threshold.
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Fig. 5. Same as for Fig. 4 except that the bit rate B = 5 Gb/s.

quency chirp is generally small as 8 << 1 under typical
operating conditions. In particular, this contribution is ab-
sent for Fabry-Perot lasers operating at the gain peak. For
DFB lasers the index contribution depends on the detun-
ing of the laser wavelength from the gain peak. Note,
however, that the linewidth enhancement factor « itself
depends on the detuning Aw = wy — w,. It is well known
[19] that o increases for Aw < 0 and decreases for Aw
> 0. Thus, the frequency chirp can be reduced by detun-
ing a DFB laser toward the high-frequency side of the
gain peak. Since {8 is negative under those conditions, the
nonlinear index contribution to the frequency chirp is pos-
itive. As a result, the chirp would be enhanced from its
low-power value. This result can be understood from (8)
by noting that the two contributions to the index change
are opposite in sign.
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Fig. 6. Frequency chirp profiles for three values of 8 with oy = 5 and
P = 20 mW showing the effect of index nonlinearities.
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V. LASER LINEWIDTH

The gain and index nonlinearities resulting from intra-
band relaxation of charge carriers also affect the noise
characteristics of semiconductor lasers. In this section we
show how such nonlinearities can lead to saturation and
rebroadening of the laser linewidth with an increase in the
optical power and give rise to the linewidth floor, a phe-
nomenon that has attracted considerable attention recently
[20]-[25].

For the discussion of the laser linewidth the modified
rate equations (13)-(15) are supplemented with the Lan-
gevin noise sources and take the form

P=(G/V1 +p—=v)P + Ry + Fp(t)  (42)
6= G- -5 R @)

N=1/q—yN—GP/J1 +p+ Fy1) (44)

where the random noise variables F,, Fy, and Fy are as-
sumed to have zero mean and taken to be delta-correlated
in the Markoffian approximation, i.e.,

(F()F()) =2D;8(~ 1), (45)

The diffusion coefficients D fori, j = P, ¢, N are given
by [1], [26]

Dpp = R,P, 0 (46)

~R,P, Dy, =0. (47)

The spectrum of the emitted light is obtained by follow-
ing a standard procedure [1], [26]. Although straightfor-
ward in its implementation, the calculation is lengthy and
requires a numerical approach in the general case in which
the effect of relaxation oscillations is included. Relaxation
oscillations are known to give rise to a number of weak
satellites at the multiples of the relaxation-oscillation fre-

deb = Rsp/4P’ DPaS
DNN = RspP + ‘YeNs DPN =
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Fig. 7. Variation of the laser linewidth with normalized output power P /P
for three values of 8. Dashed line shows the expected behavior in the
absence of gain and index nonlinearities. The case 8 = 0 corresponds to
a laser oscillating at the gain peak for which index nonlinearities are
absent.
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quency [26]. The laser linewidth is usually defined as the
fullwidth at half maximum (FWHM) of the central peak.
When the contribution of weak satellites to the spectrum
is ignored, the central peak is found to be Lorentzian with
a FWHM given by [1]

Ay = 5,(0)/27 (48)

where

Si(@) = (|wbsd(w)|) (49)

and 8¢ (w) is the Fourier transform of the phase fluctua-
tion 6¢(r) obtained by solving (42)-(44). When (42)-
(44) are linearized around the steady state and the short-
noise contribution is neglected by setting Fy = 0,
3é(w) is found to be given by

G Gy(2 + p)/(1 + p) + BG, (Ty + iw)/P
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was assumed to be much larger than I'p. Equation (52)
differs from the corresponding expression in [25] where a
complete Langevin analysis was not carried out [27]. The
two results agree only for 3 = 0.

The physical meaning of (51) is clear. Since oy is itself
power dependent, the inverse dependence of Av on the
output power occurs only for lower power levels such that
P << P,;. When the output power exceeds the saturation
level, the linewidth A is also expected to saturate and
may even exhibit rebroadening depending on the value of
the parameter 3. In order to show these features quanti-
tatively, we define Ay, as the expected linewidth at P =
P in the absence of gain and index nonlinearities, i.e.,

R
Av, = —2 (1 + o} 53
b= g (1 d) (53)
and plot the ratio
2
Ar _ 1+ oyl (54)

AVS— 1+adp

in Fig. 7 as a function of p = P /P, for oy = 5 and three
different values of 3. Consider first the case 3 = 0 cor-
responding to a laser oscillating at the gain peak. As ev-
ident in Fig. 7, the linewidth A v saturates to a value ap-
proximately given by Ay, for p >> 1. In other words,
Ay represents the power-independent contribution to the
linewidth. Note that this power-independent contribution
is solely due to gain saturation induced by a finite intra-
band relaxation time of charge carriers in semiconductor
lasers. Indeed, A v, can be written in terms of the material
parameters by using (5) and (21) in the form

Rsp‘*’OP‘zTin(Tt + Tz') (1 + O‘(z))

Ay =
b dmeohiing(V/T)

(55)

This equation clearly shows that Ay, = 0 if 7;, = 0. Note
also that A v, can be reduced by increasing the mode vol-
ume V/T. Typical values of A, are in the range ~ 1-10

53(6) = 1 | Fo(e) -

where F, and F, are the Fourier transforms of F, and F),,
respectively. Equation (50) shows that gain and index
nonlinearities appear only in the second term that repre-
sents the contribution to the phase fluctuations occurring
as a result of fluctuations in the refractive index. By using
(45)~(50), the linewidth is found to be given by

A Ry
v= 47 P

(1 + al)

(s1)
where the effective linewidth enhancement factor is given
by

o = V1 +p + Bp(1 +p)/(2 +p). (52)

Two approximations were made in obtaining (51): I'y was
assumed to be dominated by the last term in (27) and Q5

4V1 + p(Qp + @ — iTg) (Qg — w + iTy)

ﬁp(w)J (50)

MHz and agree with the experimentally observed values
[20], [23].

We now discuss the effect of index nonlinearities on the
linewidth for 8 # 0. Fig. 7 shows that the linewidth A»
is reduced below Av, for negative values of 8 while re-
broadening of the linewidth occurs for positive values of
$3. Equation (19) shows that 8 is positive for DFB lasers
operating on the low-frequency (red) side of the gain peak.
Thus, DFB lasers detuned on the red side of the gain peak
are expected to exhibit a slight rebroadening of the line-
width. By contrast, DFB lasers detuned on the blue side
can have a line width Ay < Avwg. It should be noted that
the parameter o itself depends on detuning of the laser
wavelength from the gain peak; it is generally lower for
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lasers detuned on the blue side [19]. It is clear from the
above discussion that high-power DFB lasers should be
detuned on the blue side of the gain peak for the purpose
of reducing the laser linewidth.

VI. RELATIVE INTENSITY NOISE

In this section we briefly consider how the RIN of sin-
gle-mode semiconductor lasers is affected by the gain and
index nonlinearities. The RIN is defined by [11
RIN = ([6P(w)|*) /P (56)
where P is the average power and § P(w) is the Fourier
transform of the power fluctuation 6 P(#). Equations (42)-
(44) can be used to obtain 6 P(w) by linearizing them

around the steady state and the result is

55 (Ty + iw)F, + GyP(1 + p)fl/zF,\,
(@) = (Qg + w — iTR) (Rp — @ + iTR)

(57)

By using (45)-(47) and (57) in (56), we obtain the follow-
ing result
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Fig. 8. Variation of RIN with output power for three values of the satu-
ration output power P§".

RIN =

For p << 1, the above expression reduces to the well-
known expression of the RIN obtained by ignoring intra-
band gain saturation [1]. For larger values of p, the power
dependence of RIN is quite different since 'y, Q¢, and T'g
also depend on p through (25)-(27). Fig. 8 shows the
power dependence of RIN for three different values of P,
by using typical parameter values of semiconductor la-
sers. The RIN nearly saturates when the output power ex-
ceeds the saturation power level. The limiting value is
larger for lasers with a smaller output saturation power
indicating that gain nonlinearities increase the RIN. It
should be emphasized that index nonlinearities have no
effect on RIN as they affect only the phase of the optical
field.

VII. SUMMARY

This paper has addressed how the intraband relaxation
time 7;,, although small (7, = 0.1 ps) but finite, affects
the performance of semiconductor lasers. At high laser
powers when the rate of stimulated emission becomes
comparable to 7;;', the optical gain begins to saturate as
charged carriers cannot relax as fast as required by laser
dynamics. This intraband gain saturation is accompanied
by a change in the modal refractive index when the laser
is operating at a wavelength detuned from the gain peak.
The gain and index nonlinearities, occurring as a result of
a finite intraband relaxation time, affect a large number
of laser characteristics. We have studied the effect of gain
and index nonlinearities by deriving a set of modified rate
equations. These equations are used to discuss the mod-
ulation response and noise characteristics of semiconduc-
tor lasers.

2R, [(T2 + 0?) + GAPY(1 + p) ' (1 + v.N/R,P)
P P

P[(2} — w?)’ + (20T)] (58)

Intraband gain saturation affects both the frequency and
the decay rate of relaxation oscillations. In particular, the
3 dB small-signal modulation bandwidth is limited to a
maximum value determined by the material parameters.
The laser linewidth is also found to have a power-inde-
pendent part as a result of intraband gain saturation that
manifests as linewidth saturation at high operating pow-
ers. Linewidth rebroadening can occur when the laser op-
erates on the red side of the gain peak so that index non-
linearities increase the effective linewidth enhancement
factor. It should be remarked that many other physical
factors can contribute to linewidth saturation [21]-[24].
We also note that the effect of gain nonlinearities is par-
ticularly important for quantum-well lasers for which the
intraband saturation intensity is reduced as a result of
quantum confinement [11].
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