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We investigate the effects of a finite spectral width on the propagation characteristics of partially coherent gaussian beams. Our
results predict that quasi-monochromatic and broad band beams exhibit intensity profiles that are appreciably different from
those of monochromatic beams. As the beam propagates in free space, the width and the shape of the intensity profile depend not
only on the width and the shape of the spectral profile of the light in the source plane, but also on its coherence properties. We
illustrate the general phenomenon of spectrum-enhanced spreading of partially coherent beams for several spectral lineshapes.

1. Introduction

The spreading of optical beams is traditionally
studied in the context of coherent fields [1]. It has
been noted by several investigators that partially co-
herent gaussian beams spread faster than fully co-
herent beams of the same intensity profile (see, €.g.
refs. [2,3]). In previous investigations only effects
of spatial coherence were considered for gaussian
beams at a single frequency. In practice, optical
beams have a finite spectral width, which raises the
question whether diffractive spreading is affected by
the spectrum of the light on propagation in free space.
In this paper we study this problem by considering
the propagation of optical beams which are partially
coherent both spatially and temporally. This study is
motivated by the recent discussion of the so-called
Wolf effect, which describes the spectral changes oc-
curring on propagation of partially coherent fields as
a result of source correlations [4].

Our approach is based on considering the propa-
gation of the cross-spectral density within the par-
axial approximation. We find that the intensity pro-
file of an optical beam is affected by the spectrum of
the light associated with the beam. In general, beam
spreading is increased and the beam profile is dis-
torted. In particular we find that a gaussian beam
does not remain gaussian when spectral effects are
included. The effects are weak for quasi-monochro-
matic beams, for which the spectral width Awq is

much smaller than the mean frequency wy. Never-
theless, measurable effects are predicted to occur for
beams having a relatively broad spectrum (Awg/
wo~0.1). Spectrum-enhanced beam spreading also
depends on the shape of the spectral profile. We il-
lustrate our results by considering a lorentzian spec-
trum, a gaussian spectrum, and a spectrum consist-
ing of two narrow lorentzian lines. The spectral effects
are found to be strongest for the lorentzian spectrum.

2. Propagation of partially coherent beams

We consider the propagation of polychromatic
partially coherent beams in free space and in ho-
mogeneous non-dispersive media by investigating the
changes in the cross-spectral density W(r,, r,; @) on
propagation. The propagation in free space is gov-
erned by the formula [5]

Wirrsw)= [ K5, R ) K, Ros )
X W(Ry, Ry; w) d’R, d?R,, (1)

where the integration is performed twice over the
plane z=0 at which the cross-spectral density W(R,,
R,; w) is assumed to be known. In the angular spec-
trum representation the propagation kernel K(r, R;
w) has the form [6]
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k2
K(r, R; C()): 4—7Z2

XH exp{ik[p(x—X)+q(y—Y)+mz]} dpdg,

- (2)

where k=w/c is the wavenumber, ¢ is the speed of
light in vacuum, and

m= /1_p2_q2
=i/p*+q*—1 ifp*+g*>1. (3)

Propagation in homogeneous non-dispersive media
of constant refractive index » can be studied by re-
placing k by nk in eq. (2). The intensity of the field
at an arbitrary point r in the beam is obtained from
the formula

ifp?+¢?<i,

I(ry= J W(r, r,w)dw. 4)

— o0

Egs. (1)-(4) govern the propagation of partially
coherent fields in free space. When the field is beam
like, we may simplify expression (2) by using the
paraxial approximation. This amounts to assuming
that only waves for which p?+¢? <« 1 contribute sig-
nificantly to the field so that m can be approximated
by m=1— (p?+4?)/2. The propagation kernel then
takes the form ‘

K(r,R,w)= k_e);%(i‘izk_z)
xexp{(ik/2z) [ (x—X)*+ (y—Y)?]}. (5)

To carry out the integrations indicated in eq. (1), we
need to specify W(R,, R,; ») in the plane z=0 of the
secondary source. We choose as the source the so-
called gaussian Schell model [7] source. The cross-
spectral density of the field in the source plane is then
given by

W(R,, Ry; 0)=5(w)
xexp[— (R}+R3)/40f— (R,—R,)?*/20%], (6)

where oy is the root-mean-square (rms) width of the
intensity profile and o, is the effective spatial co-
herence length of the light in the source plane. Tem-
poral coherence depends on the source spectrum
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S® (w), which we assume to be the same at all
source points. We take the spectrum to be normal-
ized so that

j SO () do=A , (7)

—oo

where A is a positive constant. It is easy to verify by
using eqs. (4) and (6) that the intensity profile in
the source plane z=0 corresponds to that of a gaus-
sian beam, i.e., that in the source plane

I(R)=A exp(—R2/20%) . (8)

The commonly used spot size [8] wy is equal to 20y,
Other beam profiles can be considered by appropri-
ately modifying eq. (6).

In what follows we focus our attention on gaussian
beams propagation. To obtain an expression for the
intensity of the beam, we substitute from egs. (1),
(5),and (6) ineq. (4). The integration over R; and
R, can be performed analytically and one then finds
that

I(r)= f dw S (w)

—co

x2+y? 1 >, 9)

1
“T¥e exp(' 207 148
where

¢=z./1+40}/02/2kat . (10)

We see from eq. (9) that the intensity /(r) depends
on the frequency w not only through the source spec-
trum S© (w) but also through the parameter & which
depends on the wavenumber k=w/c. For a mono-
chromatic source S (w)=A45(w—wy,), and eq. (9)
then gives

A
Itr)= 1+ (Z/Zeff)2
x2+y? 1
% exp(‘ 207 1¥ (z/zeﬁ)2> ’ (b
where
Zgr=2zr/\/1+a?, (12)
with



Volume 78, number 3,4

zp =2Wo01 /¢, @=0,/20;. (13)

The parameter zg is the Rayleigh range [8] or dif-
fraction length defined for a monochromatic beam
of frequency @y, and « is a measure of the spatial
coherence of the light in the source plane. For a spa-
tially incoherent source a—0. The physical meaning
of z. is evident: it is the effective diffraction length
of a gaussian beam that is spatially partially coher-
ent. It follows from eq. (12) that the effective dif-
fraction length decreases as the beam becomes more
and more incoherent. Eq. (11) is in agreement with
previous investigations on fully coherent [8] and
partially (spatially) coherent [3] gaussian beams.

3. Spectrum-enhanced beam spreading

It is evident from eq. (9) that the beam profile de-
pends on the parameter £ and on the shape and the
width of the source spectrum S (w). To illustrate
this dependence, we assume that the source spec-
trum consists of a single lorentzian line of width Awg
centered at w,, Viz.,

A Aw
0) e U 14
$T@) 7 (w—wo)*+ Awj (14)

Other spectral profiles will be considered later. We
substitute $(® (w) from eq. (14) into eq. (9) and
evaluate the integral numerically. It is convenient to
define the relative linewidth through the parameter
d=Awy/wo. In the limit as -0, SO (w)-
Ad(w—wy), and the gaussian beam becomes mon-
ochromatic. For quasi-monochromatic beams d < 1.

Fig. 1 presents a comparison of the intensity pro-
files for the case when z/z.g=2 and 6=0 and §=0.1.
The intensity profile is significantly distorted as a re-
sult of the finite spectral width. In particular, the in-
tensity profile does not remain gaussian. This ob-
servation is significant because within the accuracy
of the paraxial approximation [9] coherent gaussian
beams are known to retain their gaussian intensity
profile on propagation [1,8]. The beams retain the
gaussian intensity profile even when they are spa-
tially partially coherent. However, the profiles de-
part from the gaussian shape when spectral effects
are incorporated. The extent of the beam distortion
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Fig. 1. Intensity profiles of partially coherent gaussian beams at
a propagation distance z/z.x=2. The radial distance is normal-
ized so that p=p/ \/501. The intensity is normalized to the peak
intensity at z=0. The parameter 6= Awy/ @, is a measure of the
relative linewidth of the lorentzian spectrum.
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Fig. 2. Intensity deviation d(p) defined by eq. (15) for two val-
ues of J and for a propagation distances z =2z

and its dependence on J is shown in fig. 2, where the
intensity deviation

d(p)=11(p)—1(p)]/1(0), (15)

is plotted as a function of the radial distance p for
6=0.05 and 5= 1. Here Iy(p) is the intensity profile
of a monochromatic beam (5=0).

The beam distortion depends of course, also on the
spectral lineshape. Fig. 3 compares the extent of beam
distortion by plotting the deviation d(p) for a lor-
entzian spectrum, a gaussian spectrum, and a two-
peak spectrum consisting of two narrow lorentzian
lines (6=0.01) located at w, ,=we(110.1).
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Fig. 3. Comparison of the intensity deviation d(p) for different
spectral lineshapes at a propagation distance z=2z.; The pa-
rameter 6=0.1 for lorentzian and gaussian lineshapes. The two
lines in the case of the doublet are separated by @, —w,=0.1 and
are relatively narrow (6=0.01).

To quantify the effect of the spectrum on the in-
tensity profile, one should consider how the beam
width is affected by the finite linewidth. Since the
beam does not remain gaussian, the conventional
measures of the beam width such as the full width at
half maximum (fwhm) may not be appropriate for
this purpose. In fact, the fwhm may be reduced (see
fig. 1) even though the beam spreads over a larger
region. For this reason we consider the rms width
o(0) associated with the beam and defined by

Ip*1(p, 5)d?p

=00

(16)

where the integration is carried over the entire p-
plane. In fig. 4 we show a comparison of the spread-
ing factor, defined as o(d)/g;, for monochromatic
(6=0) and quasi-monochromatic (6=0.1) beams,
as a function of the propagation distance for the case
when the source spectrum consists of a single lor-
entzian line. The effect of partial coherence is illus-
trated by considering two different values of a. The
curves for a =100 correspond to the case of spatially
coherent beam whereas the curves for =1 corre-
spond to the case of a relatively incoherent beam.

propagation distance z/ z,, for partially coherent gaussian beams
of two states of spatial coherence. In each case solid and dashed
lines correspond to a spectrum of finite width (6=0.1) and a
sharp-line spectrum (6=0).

4. Discussion

The conventional theory of gaussian beam prop-
agation [8] is based on the assumption that the ra-
diation is monochromatic and hence, in a sense, fully
coherent. Although effects of partial spatial coher-
ence on gaussian-beam propagation have recently
been studied, the temporal coherence aspects have
been ignored up to now. In this note we showed that
when the spectrum of the beam is taken into ac-
count, appreciable changes appear in the intensity
profile of the beams. In particular, the spreading of
the beam on propagation is enhanced, and the shape
of the intensity profile does not remain gaussian for
beams whose spectrum is broad. This phenomenon
is related to the Wolf effect [4], namely the change
in the spectrum of emitted light arising from spatial
coherence of the source. In the case that we have
considered, it is the temporal coherence of the source,
manifested through a finite spectral width, that af-
fects the intensity profile of the beam.

According to the analysis presented in this paper,
the width and the shape of the intensity profile are
affected by the width and the shape of the spectral
profile associated with the beam. We illustrated our
results by comparing a lorentzian spectrum, a gaus-
sian spectrum, and a spectrum consisting of two sharp
spectral lines. Eq. (9) can, however, be used to cal-
culate the intensity profile for an arbitrary spectral
profile. Similarly, although we have considered beams
with a gaussian profile, other beam profiles can be
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analyzed by suitably modifying eq. (6). Different
functional forms of the source correlations can also
be studied by modifying eq. (6).

The general conclusion is that when a beam gen-
erated by a partially coherent source propagates in
free space or in a homogeneous non-dispersive me-
dium its intensity profile is affected both by the co-
herence properties of the source and by its spectrum.
The spectral enhancements are negligible for a rel-
atively narrow spectral line such that J << 1, but be-
come significant for quasi-monochromatic light for
which 62 0.1.
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