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Transverse modulation instability of copropagating optical
beams in nonlinear Kerr media
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Two optical beams, copropagating in a Kerr medium, interact with each other through cross-phase modulation.
Such nonlinear beam coupling leads to a transverse modulation instability that is evident as spatial modulation of
the beam profiles. A linear-stability analysis in the plane-wave approximation predicts the range of spatial
frequencies over which modulation can occur. The case of self-defocusing media is particularly interesting, since
modulation instability occurs only when both beams are present simultaneously. Numerical simulations are used
to study how modulation instability can occur for finite-size beams. In particular, the mutual coupling of two
copropagating Gaussian beams is studied in detail.

1. INTRODUCTION

Modulation instability generally refers to an instability of
wave propagation in nonlinear dispersive media such that
the steady state becomes unstable and evolves into a tempo-
rally modulated state.' In the context of nonlinear optics,
modulation instability has been observed 2 in optical fibers.
It generally leads to the breakup of a cw or quasi-cw beam
into a periodic pulse train. The concept of transverse mod-
ulation instability originates from a space-time analogy that
exists when dispersion is replaced by diffractions In this
case a cw optical beam is spatially modulated along the
transverse dimensions as a result of the combined effects of
nonlinearity and diffraction. Indeed, the well-known insta-
bility of a plane wave in a self-focusing Kerr medium4 is an
example of transverse modulation instability. Similarly,
self-trapping5 and filamentation6 of optical beams can be
interpreted in terms of the solitary-wave solutions of the
nonlinear wave equation.

Recently the phenomenon of cross-phase modulation
(XPM) has attracted considerable attention in the context
of optical fibers in which the XPM interaction between the
two copropagating optical pulses leads to interesting new
effects.7 8 Following the space-time analogy, one would ex-
pect the XPM interaction between the two copropagating
optical beams to give rise to novel transverse effects mani-
fested through spatial modifications of the beam profiles.
The objective of this paper is to study such XPM-induced
transverse modulation instabilities for the case in which two
optical beams at different wavelengths are launched into a
nonlinear Kerr medium. Similar transverse modulation in-
stabilities are predicted to occur in the case of counterpropa-
gating optical beams.9 In this paper the focus is on the case
of copropagating beams exclusively.

The paper is organized as follows. The coupled ampli-
tude equations are obtained in Section 2. These equations
include the effects of diffraction, self-phase modulation
(SPM), and XPM. The stability of the plane-wave solution
of these equations is examined in Section 3 by using a linear-
stability analysis. Section 4 extends the analysis beyond the
plane-wave approximation by solving the coupled amplitude

equations numerically for the Gaussian beams. One of the
beams is intense and the other much less intense in the
pump-probe configuration considered in Section 4. The
case of two intense beams is discussed in Section 5. The
results are summarized in Section 6.

2. COUPLED AMPLITUDE EQUATIONS

The refractive index of a nonlinear Kerr medium can be
written in the form

n = no + 2n2 1E12, (1)

where no is the linear part of the refractive index and n2 is the
Kerr coefficient responsible for the nonlinearity. If we as-
sume that the two copropagating beams at the frequencies
w1 and W2 are linearly polarized, then the electric field E(r, t)
can be written in the form

(2)E(r, t) = - x E Aj(r, t)exp[i(kjz - wit)] + c.c.,
j=1

where x is the polarization unit vector and the wave number
is

k = n0,w1/c = 27rno/x1- (3)

The linear refractive index [noj = no(wj)] is generally differ-
ent for the two beams because of the frequency dependence
of nj that results from chromatic dispersion. The frequency
dependence of n2 is ignored by assuming that it does not
change significantly in the frequency range IW1-X2. Its in-
clusion, if necessary, is straightforward.

The coupled amplitude equations describing propagation
of the two optical beams are obtained by substituting Eqs.
(1) and (2) into the wave equation. If we assume cw or
quasi-cw beams and make the paraxial approximation, the
coupled amplitude equations take the form

0A l i ( 2A,

Oz 2k1 dx2
+ _2 = n (IA1 + 21A 2

2)A1 , (4)
a2 no,
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0A 2 ( 82A2 92A2 ik2n2 12 12
az 2k aX2 + 2) n02

(5)

The two terms on the right-hand sides of these equations
account for SPM and XPM imposed on each beam by the
Kerr nonlinearity. These equations are similar to those
describing pulse propagation in optical fibers,7 in which the
transverse Laplacian (describing diffraction along x andy) is
replaced by a dispersion term containing a 2Aj/0t 2 for j = 1
and j = 2. This extra degree of freedom associated with
beam diffraction makes the numerical solution of Eqs. (4)
and (5) a more demanding task.

3. TRANSVERSE MODULATION INSTABILITY

The origin of transverse modulation instability is most clear-
ly seen when the incident waves are assumed to be plane
waves of constant intensities I, and I2, i.e.,

Aj(x, y, 0) = Clj, j = 1, 2. (6)

Equations (4) and (5) are readily solved in this specific
case, and the solution is

j( , z) = Cj exP[ ikjz 2 (Ij + 2I3.j) (7)

where j = 1 or j = 2. Thus a plane wave remains unchanged
on propagation except for acquiring an intensity-dependent
phase. The stability of the solution [Eq. (7)] is examined by
performing a linear-stability analysis. Since the procedure
is well known,' 0 - 2 it is described only briefly. Assume that
the steady state is perturbed such that

Aj = Aj

X {1 + uj(z)exp[i(px + qy)] + vj*(z)exp[-i(px + qy)]}, (8)

where p and q are the components of the spatial frequency S
(S2 = p2 + q2) associated with the transverse perturbation.
Substitute Eq. (8) into Eqs. (4) and (5) and linearize in u1, u2,
vj*, and v2*. The resulting set of equations has a nontrivial
solution of the form uj - exp(iKz), where K is the wave
number. The perturbation grows exponentially whenever
K has a negative imaginary part, and the corresponding
plane-wave solution [Eq. (7)] is then unstable. The wave
number K is determined by the dispersion relation"

(K2 - h 2
)(K

2 - h2
2
) = C

2
,

where

hj = (/2kj) [S 2 - sgn(n2 )Sj2]l/2,

C = ( Sc1 k 2

and Sj is a critical spatial frequency defined by

Sc = 2kj/n 21I/n0j) 2 , j = 1, 2

(9)

(10)

(11)

(12)

in terms of the nonlinear index change n2Ij induced by each
beam.

The dispersion relation [Eq. (9)] shows that K becomes
imaginary whenever C > hh 2 . This is the necessary condi-
tion for transverse modulation instability. By using Eqs.

(10) and (11) the instability condition can be written in the
form

[S 2
- sgn(n2 )Sc,2 ] [S2 - sgn(n2 )S 2

2 ] < 4S~,2S,2
2. (13)

Thus the plane-wave solution is unstable against perturba-
tions whose spatial frequency S satisfies Eq. (13). The
range of unstable S depends not only on the beam intensities
I, and I2 through Eq. (12) but also on the sign of the Kerr
coefficient n2. This is shown in Fig. 1, where the modula-
tion-instability gain g = 2 Im(K) is plotted as a function of S
for the case of two equal-intensity beams at wavelengths 0.53
and 0.6 Am. The beam intensities are such that the nonlin-
ear index change An = n2Il = 1 X 10-6. The linear refractive
index nL n 2 = 1.5. In general, both the gain and the
frequency range are smaller for a self-defocusing medium (n2
< 0). This is not surprising if we note that a plane wave,
when propagating alone, is stable in a self-defocusing medi-
um. However, the plane wave becomes unstable if it propa-
gates together with another plane wave of a different wave-
length. The origin of instability is related to the XPM-
induced coupling between the two waves.10 '12 This can be
seen clearly in Eq. (9) after noting that C = 0 in the absence
of XPM-induced coupling. Note also from Eq. (13) that
modulation instability would not occur in the defocusing
case if the XPM contribution in Eqs. (4) and (5) appeared
with a coefficient 1 rather than 2. Physically, nonlinear
nonreciprocity plays an essential role in destabilizing the
plane-wave propagation in self-defocusing media.

Figure 1 shows that the modulation-instability gain of 1
cm-' is possible at a spatial frequency -400 cm-' for a beam
intensity such that n2 1, = 10-6. Thus the two beams can
develop spatial modulation with a period 2r/S - 100 ,um
over a propagation length of -10 cm through noise amplifi-
cation. Both the modulation period and the needed propa-
gation length decrease for more intense input beams.

4. PUMP-PROBE CONFIGURATION

The preceding linear-stability analysis shows that when two
optical beams that are copropagating in a Kerr medium
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Fig. 1. Modulation instability gain versus spatial frequency S for
the self-focusing (n2 > 0) and self-defocusing (n2 < 0) cases when
two plane waves of equal intensities such that An = n21 = 10-6
copropagate inside the nonlinear medium.
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interact with each other through XPM they are likely to
develop spatial modulation as a result of transverse modula-
tion instability. The analysis is, however, performed in the
plane-wave approximation, whereas the optical beams, in
practice, are limited in their transverse extent. In this sec-
tion I consider the case of two copropagating Gaussian
beams in order to model the practical situation more realisti-
cally. In particular, I consider a pump-probe configuration
in which a low-intensity probe beam is copropagated with an
intense pump wave. The objective is to study how the near
and far fields of the probe beam are affected by the presence
of the copropagating pump wave.

The pump-probe interaction is governed by the coupled
amplitude equations (4) and (5) that were obtained in Sec-
tion 2. As mentioned there, numerical solution of these
equations require considerable computing resources when
both x and y derivatives are included. For simplicity, dif-
fractive transverse coupling is limited to one dimension by
setting AjlIy = 0 for j = 1 and j = 2. Although this
approximation is commonly made in treating transverse
modulation instabilities,9 one must be aware of its limita-
tions and interpret the results with caution. For the pur-
pose of numerical computations, the normalized variables

WO =D j (I (14)
Wo LD Ui ul~~(J) 1/2

are also introduced. Equations (4) and (5) then take the
form

a l id 2 = sgn(n 2)iN 2(lUl12 + 21U21) U,, (15)

aU2 i X2 U2 sgn(n2 ) -1 iN2( U212 + 21 Ul12) U2,
a~ 2 X, a 2

= sg

(16)

where X2/X1 is the probe-to-pump wavelength ratio and it is
assumed that n0 , nO2. The nonlinear interaction is de-
scribed in terms of a single parameter N, defined by

.o 8

~0. 6

0.4

1:40.2
0z

0
0

X/W0

N 2 = LD(k1/nol)n 2Il= k, 2w0
2(1n211/n0), (17)

where LD = klwo2 is the diffraction length (also known as the
Rayleigh length) and wo is related to the pump-beam spot
size. In the visible region (X, 0.5 Am), LD 10cm and N-
1 for wo = 100 Am and n21Ii - 10-6.

Equations (15) and (16) are solved numerically by using
the split-step Fourier method.' 3 The initial field distribu-
tion at t = 0 depends on the spatial profile of the two beams.
If we assume that the pump and the probe beams are Gauss-
ian with the 1/e half-widths wo and wo', respectively, we have

U,(0, X) = exp(-X 2 /2), (18)

1/2 F 1wf \2 x 21
U2(0, X) = (12/I,) exp[- ( 2 (19)

It is implicitly assumed that the beam centers coincide ex-
actly. This need not be the case in general. In the following
discussion it is assumed that wo = wo'. The pump intensity
is chosen such that the parameter N = 10 [see Eq. (17)]. The
probe intensity is chosen to be very small (I2/1I, = 10-4).
The only other parameter that needs to be specified is the
wavelength ratio, which is chosen to be X2/X1 = 0.9. The
numerical solution of Eqs. (15) and (16) provides the com-
plex field distributions U,(Q, X) and U2(Q, X). The near
field is given by I UjQ, X)12, while the Fourier transform of
UjQ(, X) provides the far field (i = 1 or j = 2). The far-field
intensity can be written as

2
I FF(p) = J Uj(L, X)exp(27ripX)dX (20)

where the Fourier variable p is related to the far-field angle 0
by p = (wo/Xl)sin 0 and L is the length of the Kerr medium.
Equation (20) can also be thought to provide the angular
spectrum or the Fourier spectrum with respect to the spatial
frequency S = 27rp/wo.

Let us first consider the case of a self-defocusing medium
by choosing sgn(n2) = -1 in Eqs. (15) and (16). This case in
interesting, since the transverse modulation instability does

Fig. 2. Evolution of the pump-beam profile in a self-defocusing medium (n2 < 0) over a propagation distance L/2 (Q = zILD). The input beam
is Gaussian with a peak intensity such that N = 10.
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Fig. 3. Probe-beam profiles at t = 0.1 and t = 0.2 in a self-focusing
medium (n2 < 0). The input Gaussian profile at t = 0 is also shown
for comparison. The probe beam is launched together with a
Gaussian pump beam whose peak intensity corresponds to N = 10.

not occur when each beam propagates by itself. Because the
probe beam is too weak to influence the pump beam, the
latter is expected to defocus as it propagates inside the Kerr
medium. This behavior is evident in Fig. 2, where the evolu-
tion of the pump-beam profile is shown over a range t equal
to 0-0.5. The probe beam, on the other hand, is strongly
affected by the presence of the pump beam. This is seen in
Fig. 3, where the probe-beam profiles are shown at t = 0.1
and = 0.2 and are compared with the input Gaussian
profile at t = 0. The probe beam defocuses, as one would
expect. However, its coupling with the pump beam through
XPM also leads to spatial modulation of the beam profile.
In the three-dimensional case the modulated profile would
correspond to a ring pattern. The number of rings increases
with further propagation. Figure 4 compares the beam pro-
file at t = 0.5 with the input Gaussian profile. The probe
beam has defocused considerably and exhibits three rings
near its edges.

In many experimental situations the probe beam is char-
acterized through far-field measurements. The far field
contains information about the phase front associated with
the near-field profile and can be obtained by taking the
Fourier transform indicated in Eq. (20). Figure 5 shows the
far field that corresponds to the near field shown in Fig. 4. A
ring pattern is predicted, with the two outermost rings to be
the most intense. The changes seen in both the near and far
fields are a consequence of XPM-induced coupling between
the pump and the probe beams.

The self-focusing case, in which the pump and the probe
beams interact with each other in a medium with positive n2,
is briefly considered. The parameter values are identical to
those used before. In particular, N = 10, I2/Il = 10-4, and
X2/X1 = 0.9. The probe intensity is below the self-focusing
threshold. Thus the probe is expected to diffract in the
absence of the pump. However, the XPM interaction with
the pump can induce focusing of the probe. 4 15 This behav-

ior is shown in Fig. 6, where the probe-beam profile at t =
0.05 is shown and compared with the input Gaussian profile.
Both the pump and the probe beams develop high-frequency
spatial modulation beyond > 0.1. These modulations re-
sult from self-focusing and filamentation of the pump beam
that are expected to occur even in the absence of the probe
beam. Although Fig. 6 was obtained by considering only
one transverse dimension, induced focusing has been pre-
dicted to occur when both transverse dimensions are includ-
ed.14 It has also been observed in an experiments in which
Stokes radiation from stimulated Raman scattering that
occurred in a multimode fiber was found to be focused as a
result of the pump-induced XPM.
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Fig. 4. Same as in Fig. 3 except that the probe-beam profile at t =
0.5 is compared with the input Gaussian profile.
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Fig. 5. Far-field intensity versus diffraction angle 0. The corre-
sponding near field is shown in Fig. 4 at t = 0.5.
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Fig. 6. Induced focusing of a probe beam copropagated with an
intense pump beam (N = 10) in a self-focusing medium (n, > 0).
The probe-beam profile at t = 0.05 is compared with the input
Gaussian profile. The probe peak intensity is much below the self-
focusing threshold.
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Fig. 7. Probe beams profiles showing pump-induced focusing in a
self-defocusing medium (n2 < 0). The input profile at t = 0 peaks at
x = wo, whereas the pump-beam profile peaks at x = 0. Other
parameters are identical to those used for Fig. 6.

Induced focusing of the probe beam can occur even in self-
defocusing media. Although counterintuitive, this phe-
nomenon is possible when the pump and probe profiles are
displaced with respect to each other so that they overlap
only partially. Figure 7 shows the probe profiles obtained
by using parameter values identical to those of Fig. 6 except
that n2 is assumed to be negative (self-defocusing medium)
and that the probe intensity peaks at x = wo while the pump
intensity peaks at x = 0. The pump beam defocuses and
follows the pattern of evolution shown in Fig. 2. By con-
trast, the probe beam evolves in the manner shown in Fig. 7.
A part of the probe power (contained in the region x < wo)
defocuses, whereas the other part contained in the region x >
w0 begins to focus and forms a narrow peak centered near x =
2wo. The full width at half-maximum of the narrow peak is
smaller than the input-beam width by approximately a fac-

tor of 8 for t in the range 0.1-0.15. For larger values of t the
probe-beam profile splits into two components whose widths
increase with . The physical mechanism behind induced
focusing for t < 0.15 is XPM. In particular, the pump
contribution to the probe phase produces a locally converg-
ing phase front. It is important to note that this behavior is
quite different from that shown in Fig. 6, where the whole
beam appears to be focusing.' 4

5. INTENSE BEAMS

In the pump-probe configuration discussed in Section 4, the
spatial frequency of probe modulation is rather small. This
can be understood from Eq. (9) by noting that the coupling
parameter C depends on (I2)1/2. In this section the case of
two intense copropagating beams is considered, and the de-
velopment of transverse modulation instability is studied.
As before, Eqs. (15) and (16) are solved with the initial
conditions of Eqs. (18) and (19), except that the input beam
intensities are now taken to be equal (I, = I2). For compari-
son we assume a self-defocusing medium (n2 < 0) and still
use the same parameter values N = 10 and X2/X 1 = 0.9.
Figures 8 and 9 show the near- and far-field profiles for beam
1 and beam 2, respectively, at = 0.1 (top) and = 0.2
(bottom). Differences in the Figs. 8 and 9 are entirely due to
different wavelengths of the otherwise identical input
beams. Input profiles for both beams are Gaussian. At t =
0.1 the beam profiles, although far from Gaussian, are still
nearly smooth. The beam profiles develop rapid modula-
tions at t = 0.2 as a result of transverse modulation instabil-
ity.

The plane-wave theory of Section 3 can be used to under-
stand the main features qualitatively. The XPM-induced
coupling between the two waves implies that perturbations
with spatial frequencies S < Scj are unstable and would
amplify exponentially (j = 1, 2). The far-field patterns or
the angular spectra shown on the right-hand sides of Figs. 8
and 9 show the range of spatial frequencies associated with
each beam. At t = 0.1 the angular spectrum is considerably
broader than the input spectrum as a result of the combined
effects of SPM and XPM and exhibits a characteristic mul-
tipeak profile. Its frequency range, however, is not large
enough to initiate modulation instability. For > 0.1 the
angular spectrum becomes smoother as diffraction becomes
more and more important and mixes various peaks. The
spectrum also becomes wider as SPM and XPM continue to
broaden it. When the spectral width becomes comparable
to Sj, modulation instability begins to amplify spatial fre-
quencies in the vicinity of Sq. As a result, the beam profile
becomes modulated at such frequencies. The fact that spa-
tial modulation is accompanied by the growth of spatial
frequencies in the vicinity of Scj is evident in Fig. 9. In fact,
the location of the side peaks in the far-field profile agrees
approximately with the prediction of Eq. (12). These nu-
merical results show that the instability predicted by the
plane-wave analysis can be observed even by using Gaussian
beams as long as the input beam radius is much larger than
the modulation period. It should be stressed that no initial
modulation was imposed on the input Gaussian beams. The
instability gain is high enough that modulation can grow
within a relatively short propagation distance from amplifi-
cation of the unstable spatial-frequency component generat-
ed by SPM and XPM.
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Fig. 8. Near- and far-field profiles of an optical beam copropagating with another equally intense beam in a self-defocusing medium. The top
and bottom rows correspond to t = 0.1 and t = 0.2, respectively. High-frequency modulation of the near-field profile at t = 0.2 is due to the on-
set of the transverse modulation instability.

NEAR FIELD

I........

7~{a

. . . ~ ~ I . . - ~~~ I . . ~~ ~ f . . ~~ .

0.06

0.04

0.02

0

.0 -5 0 5 10

1- .. , ... I.

0.04

0.02

0

FAR FIELD
. - - I . I I , .

I

L0 -5 0 5 1

. .... . I I I

-10 -5 0 5 10 -10 -5 0 5 1

X/WO (wo/AI)sinO
Fig. 9. Same as in Fig. 8 except that the near- and far-field profiles of the second beam are shown. The differences in Figs. 8 and 9 are entirely
due to the lower wavelength (X2/X1 = 0.9) of the second beam. The side peaks in the far-field profile at t = 0.2 are due to the onset of the trans-
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6. DISCUSSION AND CONCLUSION

In this paper mutual coupling of two copropagating optical
beams (at different wavelengths), occurring as a result of
XPM in nonlinear Kerr media, was discussed. Such a cou-
pling leads to an instability, referred to here as a transverse
modulation instability, that is evident through spatial mod-
ulations of the beam profiles. In the case of a self-focusing
medium with positive n2, the instability exists even when
each beam propagates alone in the medium; the role of
XPM-induced coupling is to enhance the gain and the fre-
quency range over which the instability can occur. By con-
trast, when the beams propagate in a self-defocusing medi-
um with negative n2, the instability is due solely to XPM-
induced coupling, since each beam is stable in isolation.
The origin and the main features of transverse modulation
instability have been discussed in the plane-wave approxi-
mation by performing a linear-stability analysis.

The case of finite-size beams is considered by solving the
coupled-amplitude equations numerically. The spatial pro-
file of each beam is found to be modulated as a result of
transverse modulation instability. These transverse effects
should be observable experimentally. An order-of-magni-
tude estimate shows a modulation period of -100 gm for the
beam intensities such that the nonlinear index change is 1n21I
- 10-6. In general, XPM provides a way through which a
weak probe beam can be manipulated in a Kerr medium by
copropagating it with a strong pump beam. As an example,
it was shown in Section 4 that the probe beam can exhibit
induced focusing in a medium with positive n2 even though
its intensity is well below the critical power for self-trapping.
It was also found that under certain conditions induced
focusing of the probe can occur even in a self-defocusing
medium.
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