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Effect of intrapulse stimulated Raman scattering on soliton-effect
pulse compression in optical fibers
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The effect of intrapulse stimulated Raman scattering (ISRS) on the quality of soliton-effect pulse compression is
analyzed by solving the generalized nonlinear Schr6dinger equation numerically. The results show that ISRS can
improve the performance of soliton-effect pulse compressors both qualitatively and quantitatively. The com-
pressed pulse is shorter with a higher peak power when ISRS is taken into account. Furthermore it is pedestal free
as it separates from the background. The separation is due to the soliton self-frequency shift initiated by the
process of ISRS. It can also be understood in terms of the soliton decay. The optimum fiber length is found to be
longer than that expected in the absence of ISRS.

The use of optical fibers for pulse compression has
become widespread in recent years.' Two distinct
compression schemes are used, depending on whether
the pulse experiences normal or anomalous group-ve-
locity dispersion (GVD) inside the fiber. In the case
of normal GVD the fiber imposes a nearly linear fre-
quency chirp across the pulse, which is subsequently
compressed by passing it through a grating pair.'-3 In
the case of anomalous GVD the pulse is chirped and
compressed by the same fiber, and the compression
mechanism is related to the evolution of high-order
solitons in optical fibers. Such solitons undergo an
initial pulse-narrowing state during their periodic evo-
lution. By a judicious choice of the fiber length, the
pulse can be made to exit from the fiber when it is
narrowest.4 This technique is referred to as the soli-
ton-effect compression technique to emphasize its ori-
gin. The optimum fiber lengths and the compression
factors have been obtained by solving the nonlinear
Schrodinger equation.4

The predictions of the nonlinear Schrodinger equa-
tion are accurate for picosecond pulses but need to be
modified for femtosecond input pulses, as several
higher-order nonlinear effects become important for
such short pulses. The most important among them
is intrapulse stimulated Raman scattering5 (ISRS), a
phenomenon responsible for the soliton self-frequency
shift6' 7 and soliton decay.8' 9 Dianov et al.

5 observed
ISRS (also called self-induced Raman scattering).
Mitschke and Mollenauer6 observed the soliton self-
frequency shift, and Gordon7 interpreted it as an ef-
fect caused by ISRS. Physically, when the spectral
width exceeds a few terahertz, the high-frequency
components of the pulse can pump the low-frequency
components of the same pulse through ISRS. Such
pumping results in a gradual shift of the pulse spec-
trum toward longer wavelengths as the pulse propa-
gates inside the fiber. It also destroys the periodic
evolution pattern of high-order optical solitons. One
would expect ISRS to affect the optimum fiber length
and the compression factor realized by using the soli-
ton-effect compression technique. Indeed, it was not-
ed in several experiments'0 that the optimum fiber

length did not agree with the prediction of the nonlin-
ear Schr-dinger equation for ultrashort pulses. The
objective of this Letter is to evaluate numerically the
effect of ISRS on the performance of soliton-effect
pulse compressors.

With the inclusion of the higher-order nonlinear
effects, pulse propagation in optical fibers is governed
by a generalized nonlinear Schrodinger equation.7-"
In the normalized coordinates commonly used for de-
scribing optical solitons, this equation takes the form12
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where U is the normalized complex amplitude of the
pulse envelope and
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In Eqs. (2) and (3) /32 is the GVD coefficient (assumed
to be negative), 33 is the third-order dispersion coeffi-
cient, vg is the group velocity, n2 is the nonlinearity
coefficient (n2 C 3.2 X 10-20 m 2 /W for silica fibers), ,w
is the optical frequency, c is the velocity of light, Aeff is
the effective core area, Po is the peak power of the
input pulse, and To is the pulse width.

The parameters 6, s, and TR take into account, re-
spectively, the effects of higher-order dispersion, self-
steepening, and ISRS. For relatively wide pulses (To
>> 1 psec), these parameters are negligible, and Eq. (1)
reduces to the conventional nonlinear Schrodinger
equation that governs the evolution of optical solitons.
In particular, for input pulses having an amplitude

U(O, r) = N sech(r), (4)

with N as an integer, the evolution pattern is periodic
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Fig. 1. Evolution of the tenth-order soliton over the range t
= 0-0.1 showing pulse narrowing and splitting associated
with higher-order solitons. ISRS is neglected by setting rR
=0.

with the soliton period 40 = 7r/2. The fundamental
soliton corresponds to N = 1 and propagates without
change in its shape. The higher-order solitons (N > 1)
change their shape but recover periodically at multi-
ples of the soliton period. During each period they
pass through an initial pulse-narrowing stage that is
used for pulse compression.

For ultrashort optical pulses (To < 1 psec) the high-
er-order terms in Eq. (1) are not negligible and begin
to influence pulse evolution more and more as the
pulse becomes shorter and shorter. It turns out that
the ISRS, governed by the parameter TR, plays the
dominant role, while the effects of higher-order dis-
persion (the term containing 6) and self-steepening
(the term containing s) are important only for pulses
much shorter than 100 fsec. To provide an estimate of
the three parameters TR, 6, and s, we consider a 1.55-
,um hyperbolic-secant pulse with a FWHM of TFWHM
= 1 psec. The parameter TR is estimated from the
Raman gain spectrum7 to be approximately 6 fsec.
The parameter To is obtained using the general rela-
tion TFWHM 1.76To and is 570 fsec. The ratio TR =
TR/To is thus approximately 0.01. Using typical val-
ues of /2 and 03 for silica fibers near 1.55 Am, we have 6
c 1.5 X 10-3 and s = 2.6 X 10-3. The three parame-
ters scale inversely with the pulse width as seen in Eqs.
(3). Thus for a 100-fsec (FWHM) pulse these param-
eters become TR = 0.1,6 = 0.015, and s = 0.026. Clear-
ly the effects of ISRS are going to dominate in prac-
tice.

Equation (1) is solved numerically with initial con-
dition (4) by using the split-step Fourier method.13
For illustration, we consider a tenth-order soliton and
choose N = 10. The qualitative behavior discussed
below, however, remains the same for other values of
N. Before considering the general case, it is useful to
discuss the expected behavior when the higher-order
terms are neglected in Eq. (1) by setting 6 = s = TR = 0.
Figure 1 shows the evolution of the tenth-order soliton
over a range t = 0-0.1 for this specific case. The pulse
develops a narrow central spike near t = 0.07 and then
splits into several components. Since pulse evolution
is periodic in this case, the input pulse shape is recov-
ered at t = 7r/2 (not shown in Fig. 1). For the purpose
of pulse compression, the fiber length is chosen to

correspond to 0.07. The output then consists of a
narrow central spike riding on a broad pedestal. A
shortcoming of this compression technique is that a
large part of the input pulse energy is contained in the
broad pedestal surrounding the compressed pulse;
70% of the pulse energy remains in the pedestal for N
= 10.

We now consider how pulse evolution is affected
when ISRS is taken into consideration. To be specif-
ic, we choose TR = 0.01, 6 = 0, and s = 0. As discussed
above, this value of TR corresponds to an input pulse
width (FWHM) of approximately 1 psec. The param-
eters 3 and s for such a pulse are so small that their
effect on pulse evolution is negligible. With /2 -20
psec 2 /km, the dispersion length LD = T02/1/21 18 m.
The physical length is thus obtained by multiplying t

by 18 m.
Figure 2 shows pulse evolution under conditions

identical to those of Fig. 1 (N = 10) except that ISRS is
accounted for by taking TR = 0.01. The pulse shapes
are nearly identical in the two cases up to approxi-
mately t = 0.06 except for a slight asymmetry. ISRS,
however, leads to a drastic change in pulse shapes for t
2 0.07. The most notable feature is that the narrow
spike separates from the main pulse and moves toward
the right in Fig. 2. This spike corresponds to the
central spike in Fig. 1 seen at t = 0.07. Whereas the
central spike disintegrates into a multiple-peak pat-
tern for t > 0.07 when TR = 0, it remains intact and
shifts to the right in the case of TR = 0.01. Physically
the spike moves slower than the rest of the pulse and is
delayed with an increase in the propagation distance.

To understand the delay of the spike from the rest of
the pulse, it is useful to consider how the pulse spec-
trum changes in the presence of ISRS. Figure 3 shows
the pulse spectrum at t = 0.08. As expected, ISRS
transfers pulse energy to the red side, resulting in an
asymmetric pulse spectrum. The red-shifted spectral
peak centered at Av -9/To is due the soliton self-
frequency shift initiated by ISRS.5-7 The narrow
spike seen in Fig. 2 is associated with this red-shifted
spectral peak. The delay of the spike results from a
combination of the self-frequency shift and anoma-
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Fig. 2. Same as in Fig. 1 except that ISRS is included by
choosing TR = 0.01. This value of TR is appropriate for a 1-
psec input pulse. The propagation distance is t = zILD,
where LD is estimated to be 18 m for a 1-psec pulse propagat-
ing in a fiber with /2 = -20 psec2/km.
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Fig. 3. Pulse spectrum at = 0.08 for TBR 0.01 showing the
development of a red-shifted spectral peak as a result of
ISRS.
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Fig. 4. Pulse shapes at t = 0.08,0.09, and 0.1 showing sepa-
ration of the compressed spike from the rest of the pulse.

lous GVD. In the presence of anomalous GVD the
red-shifted components travel slower than the rest of
the pulse and take longer to arrive. This is precisely
what is seen in Fig. 2, where the spike is delayed and
breaks away from the rest of the pulse. Figure 4 com-
pares the pulse shapes t = 0.08, 0.09, and 0.1. The
spike is completely separated from the rest of the
pulse at t = 0.1. The spike width is reduced by more
than a factor of 90 compared with the input pulse
width. The peak power is largest near t = 0.09.

From a practical standpoint the narrow spike corre-
sponds to the compressed pulse. The results show
that higher-order solitons provide a pulse-compres-
sion mechanism even when the input pulses are so
short that the periodic evolution of such solitons along
the fiber ceases to occur because of ISRS. In fact,
ISRS is beneficial to the overall quality of pulse com-
pression. This can be seen by comparing Figs. 1 and 2.
The compression factor and the peak power are con-
siderably larger for TR = 0.01 than for TR = 0. More

importantly, the compressed pulse no longer rides on a
broad pedestal but is physically separated from the
background as a result of the soliton self-frequency
shift. The optimum fiber length for maximum com-
pression is longer than that expected when ISRS is
neglected by setting TR = 0. This is in agreement with
recent experiments.' 0

This Letter has discussed the role of ISRS on the
quality of pulse compression occurring in the anoma-
lous GVD regime of optical fibers. In the absence of
ISRS, the input pulse evolves toward a higher-order
soliton and passes through an initial stage in which a
narrow central spike develops over a broad pedestal.
The spike corresponds to the compressed pulse, but
the quality of pulse compression is poor as a large
fraction of the input energy appears in the form a
broad pedestal. These results show that ISRS can
improve the performance of soliton-effect pulse com-
pressors both qualitatively and quantitatively. In
particular, the compressed pulse separates from the
background as it travels slower than the rest of the
pulse. The separation is due to the soliton self-fre-
quency shift initiated by the process of ISRS.5-7 It
can also be understood in terms of the soliton decay.8'9
The bound state of a higher-order soliton no longer
remains stable in the presence of ISRS, and the multi-
soliton pulse decays into its individual components.
Although the numerical results for a specific value of
TR have been presented, the qualitative behavior is
found to be the same over a large range of TR. In
particular, soliton decay occurs for a value of TR as
small as 0.001, a value that is appropriate for a 10-psec
input pulse.
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