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Crosstalk Penalty in Multichannel ASK Heterodyne
Lightwave Systems

GOVIND P. AGRAWAL, SENIOR MEMBER, IEEE

Abstract—This paper addresses the issue of optimum channel spac-
ing in multichannel amplitude-shift-keying (ASK) heterodyne light-
wave systems by considering the bit-error-rate (BER) degradation re-
sulting from interchannel crosstalk. An expression for the BER of a
specific channel is obtained by considering the crosstalk from both of
its nearest neighbors. The general result is used to calculate the power
penalty as a function of the crosstalk level. The crosstalk is shown to
depend on a large number of system parameters such as the bit rates,
the received powers, the channel spacing, and the response function of
the bandpass filter (BPF). For the case of equal bit rates and equal
received powers in all channels, the crosstalk from each channel should
be below —12 dB to keep the power penalty below 1 dB. This require-
ment translates into a minimum channel spacing of about four or five
times the bit rate, depending on whether the filter bandwidth is two or
three times the bit rate. If the objective is to reduce the power penalty
below 0.1 dB, the interchannel crosstalk should be less than —18 dB.
This would require a minimum channel spacing of about ten times the
bit rates.

I. INTRODUCTION

NE OF THE attractions of coherent lightwave sys-

tems [1], [2] is that they offer the potential of simul-
taneously transmitting a large number of closely spaced
channels in the minimum-loss wavelength window of sin-
gle-mode fibers by using frequency-division multiplexing
techniques. An important issue for such multichannel co-
herent systems concerns the minimum channel spacing
that must be maintained before the interchannel crosstalk
degrades the system performance significantly. Although
this issue has recently been addressed both theoretically
and experimentally [3]-[8], the effect of crosstalk on the
system performance has not been studied in detail. Such
a study should be able to predict the dependence of the
power penalty resulting from interchannel crosstalk on
such various design parameters as the channel spacing,
the bit rates, the received channel powers, and the filter
bandwidth. The objective of this paper is to develop a
general crosstalk model, to study the extent of power pen-
alty, and to determine the optimum interchannel spacing
for multichannel coherent lightwave systems.

Coherent lightwave systems can be classified into two
broad categories, depending on whether synchronous
(phase-sensitive) or nonsynchronous (phase-insensitive)
demodulation techniques are employed at the receiver end
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[1]. Although synchronous demodulation results in an
overall higher receiver sensitivity, it generally imposes
stringent requirements on the laser linewidth. For this rea-
son, nonsynchronous demodulation techniques (such as
envelope detection) have attracted considerable attention
[91-[12]. In this paper, we focus on an envelope-detection
heterodyne receiver designed for the amplitude-shift-key-
ing (ASK) format. The analysis can be extended to the
case of the frequency-shift-keying (FSK) format.

The paper is organized as follows. In Section II, we
discuss how the received signal in a specific channel is
corrupted by interference from the neighboring channels.
Section III calculates the error probability in the presence
of crosstalk from two nearest neighbors. The special case
in which only a single neighbor contributes to the cross-
talk (two-channel experiments, for example) is consid-
ered in Section IV, where we discuss how the power pen-
alty depends on the bandwidth and the response function
of the bandpass filter (BPF). Section V extends the power-
penalty calculation to the general case of multichannel
systems. The minimum channel spacing needed to limit
the crosstalk penalty below a certain level is discussed in
Section VI, where we summarize our main conclusions.

II. RECEIVED SIGNAL

In the receiver configuration of Fig. 1, the multichannel
optical input is coherently mixed with the local-oscillator
field by using a 3-dB coupler. The resulting optical signal
is converted to the intermediate-frequency (IF) signal by
using a balanced heterodyne receiver whose output is
given by

M-1

1(1) = 2R 2 (PoPy)''my(0)

- cos (27f,t + ¥,) + N(7) (1)

where R is the detector responsivity, M is the number of
channels, P, is the local-oscillator power, P, is the re-
ceived power in the nth channel, m,(t) = 1 or 0 depend-
ing on whether a ‘“1”> or “‘0’’ is transmitted in the nth
channel, and v, is the optical phase. The frequency f, is
given by

fn=‘Vn_VLOl:{

where v, is the optical frequency of the nth channel, and
v10 is the local-oscillator frequency. The local oscillator

nDgy, + fip for v, > o
nD

(2)

opt ﬁF for v, < Vo
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Fig. 1. Schematic diagram of the heterodyne receiver used for multichan-
nel ASK lightwave systems.

is tuned to select a particular channel at fj». The optical-
channel spacing D, is taken to be the same for all chan-
nels. However, the electrical channel spacings are not
equal because the image-band channels (v, < v,,) inter-
leave with the channels having frequencies », > »,4. In
(1), N(t) accounts for the white noise (shot noise as well
as thermal noise) added to the signal during the detection
process.

A BPF centered at fir is used to filter the electrical sig-
nal. The filtered output is obtained from

v = |1 G fe) exp (-2mimya (3)

where H( f) is the amplitude response of the BPF, and
I( f) is the Fourier transform of I(¢) given by (1). The
envelope detector provides the envelope | Iz(7) | to the de-
cision circuit through a low-pass filter. Using (1)-(3), the
signal used by the decision circuit is given by

M-1
% myAy exp (id;) + (N + iN;)

r= |1F(‘)| =

(4)
where N, and N, are the quadrature components of the
narrow-band noise, and 4, is given by

1/2

An = 2R(PLOPn) Tn S_w H(f)

- sinc[7T,(f + f, — fir)] exp (2wift,) df}.
(5)

Here, sinc(x) = sin (x)/x, T, = B!, and B, is the bit
rate of channel n. The sin ¢ function results from our as-
sumption of a rectangular pulse; other pulse shapes can
be easily accounted for with only minor changes. We as-
sume for simplicity that the decision instant z; = 0 in (5).
This amounts to neglecting the effect of intersymbol in-
terference. In general, the phase of A4, can vary from bit
to bit. This is accounted for by assuming that the phase
Y/ in (4) consists of two parts: ¥, = ¥, + ¢Z, where y,
is the optical phase, and ¢2 is an additional phase shift.
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Equation (4) shows how the neighboring channels in-
terfere with the detection process of a single channel.
When the local oscillator is tuned to select a particular
channel, all channels on both sides of that channel con-
tribute to the sum in (4) and generate the crosstalk signal
that interferes with the detection process. In general, the
crosstalk signal is different for different channels, de-
pending on the relative position of the channel of interest.
In practice, however, the dominant contribution to the
crosstalk signal comes from the nearest channels located
at Dy, — 2fyr and D,, since the filter bandwidth W is
usually chosen to be a fraction of the channel spacing (W
< D,,,). In the following calculation of the error proba-
bility, we consider the crosstalk from the nearest neigh-
bors only. A distinction should be made for the boundary
channels since they have only one such neighbor.

The calculation of the error probability is quite in-
volved in the general case of arbitrary laser linewidths
[13] since ¥, can vary considerably over the duration of
a single bit in (4). To simplify the analysis, we make the
critical assumption that y;, is constant over one bit period.
This amounts to assuming that the laser linewidths Ap are
significantly smaller than the bit rates of interest (A»T,
<< 1). For simplicity, we neglect the effect of laser line-
widths on the error probability by assuming that the phases
¥, are constant.

For the calculation of the error probability, we consider
a specific channel n = 0 as the channel of interest and
write (4) in the following form:

r= {[moAO + N, + (my4; cos ¢, + my A4, cos ¢z)]2
. . 2y1/2
+ [N, + (m4, sin ¢, + myA, sin ¢,)] } (6)

where we have replaced the subscript —1 by 2 for nota-
tional convenience. The phases ¢, and ¢, are the relative
phases of the interfering channels

Using (2) and (5), the signal A, and the crosstalk signals
A, and 4, are given by

Ao = 2R(ProPo) | | Hs) sine(asymo) af

(8)
A, = 2R(PL0P;,)1/2 % Sf H(f)
- sinc[x(f + D,)/B,] df (9)

where the electrical-domain channel spacings are related
to D, by
D] = Dopt - 2ﬁF; D2 = Dopt' (10)

It should be noted that the relative phases ¢, and ¢, in
(6) are not expected to remain constant from bit to bit
even when the laser phase fluctuations are neglected. In
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the following calculation of the error probability, we av-
erage over ¢; and ¢, with the assumption that they are
uniformally distributed. This procedure can be extended
to include the effect of laser linewidths if one assumes that
the optical phase does not fluctuate significantly over a
single bit period {11} and averages the error probability
over the appropriate distribution. We also note that the
effect of laser phase noise in ASK systems can be reduced
by increasing the BPF bandwidth [11}-[13]. In this paper,
we neglect the laser phase noise but consider the effect of
increasing the BPF bandwidth on the crosstalk penalty.

III. ERROR PROBABILITY

The system performance of a digital communication
system is measured through the bit-error rate (BER),
which is defined as the probability of incorrect identifi-
cation of a single bit. In this section, we calculate the
error probability P, when the received signal r given by
(6) is corrupted by white noise as well as by the crosstalk
from the neighboring channels. Since the crosstalk signal
that interferes with the decision process depends on the
bit pattern of the neighboring channels, it is necessary to
consider all possible combinations of m; and m,. Because
there are four such combinations, the error probability is
given by

1 1
Pe= .ZO.ZOPij:%(PH+P10+P01+P00) (11)
i=0j=

Al

where we assumed that ““1’° and ‘‘0’’ bits are equally
likely to occur. The error probability P;; for a specific bit
combination of the interfering channels is calculated by
using the standard communication theory [14]-[16]. If ry
is the decision threshold, P;; is given by

o

rr
PU:%SO P,]Yl(r)dr'i'%SrTPU,o(r)dr (12)

where Py ;(r) is the probability density function (PDF)
of r given by (6) with i, j, and k taking values O and 1.
For all eight combinations of i, j, and k, the PDF is given
by a Ricean distribution [14]. The explicit expressions for
PDF are

2 2
r r'+4qj A
P,-j’l(r) = ? exp <_—202 j>10<ﬁ> (13)

where o is the noise variance, I, is the zeroth-order mod-
ified Bessel function, and g;; is obtained using

(14)
(15)
(16)
(17)

gh = A5 + AL + 24045 cos (¢.5)
glo = A3 + A2 + 2444, cos (¢,)
g3 = A3 + A3 + 2494, cos (¢,)
950 = 45
In (14), A,y and ¢4 are given by
Ag = [ + A + 24,4, cos (¢, — )] (18)
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(19)

. = tan~! A, sin ¢; + A, sin ¢, !
& A, cos ¢, + A, cos ¢, /)

The expressions for P; o(r) can be obtained from (13)-
(17) by setting Ay = 0. The goal is to evaluate the inte-
grals in (12) using (13)-(19), average over the uniform
distribution of ¢, and ¢,, and then use (11) to obtain the
error probability. '

The evaluation of P, by following the above prescrip-
tion is fairly involved and requires a numerical approach.
In the following analysis, we obtain an approximate an-
alytic expression for P,. The approximation is based on
the observation that the contribution of the first integral
in (12) is smaller by more than a factor of 4,/ compared
with that of the second integral [15]. Since the signal-to-
noise ratio (SNR) 4y/0 >> 1 under typical operating
conditions, we can approximate (12) by

P‘}z%g P[j’()(r)dr

r

2 2
r 4 qh\, [ayr
Pyo(r) = 1 6xp <————202 1>Io<‘01—2>- (21)

As mentioned before, g; is obtained from (14)-(17) by
setting Ay = 0 and is given by

(20)

where

qoo =0
(22)
where A,4is given by (18). The physical meaning of these
coefficients is clear; g; represents the crosstalk signal
leaking through the BPF in the channel of interest.

The integral in (20) can be expressed in terms of the
Marcum’s Q function [16]-[19] with the result

1 qij rr
P. = - —_, —
Y 2Q(0' a)
where

® 2 2
O(a, B) = S X €Xp <_x Rl >Io(ax) de. (24)

qn =Ag, G =41, qu = Ay,

(23)

8 2

The Q function can be evaluated by using the series (see
Appendix)

Q(a, B) = exp (—“ - >ZO <§> L(aB) (25)

where I, is the nth order modified Bessel function.

The decision threshold r; = Ay/2 when the channel
operates by itself without interference from the neighbor-
ing channels. In multichannel systems, r; may be differ-
ent if the performance is optimized for the desired chan-
nel. Although r; must be optimized when comparing
theory with the experiments, this is not essential for the
purpose of estimating the channel spacings. For the fol-
lowing discussion, we therefore set ry = Ao/2. Using
(11), (22), and (23), the error probability in the presence
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of crosstalk is given by
1 Aeﬁ Ao A] Ao
P=_l0(=,2)+0l 2,2
¢ 8|:Q<a’20> Q<a’20
4, Ao 4y
+0o(=,2) + =)
Q(o 20) 'Q<0 20>] (26)

Equation (26) is our main result. The four terms in this
equation can be identified as the contribution to the error
probability when a) both interfering channels receive bit
““1’’, b) channel 1 receives bit ““1’* with bit *‘0’’ in chan-
nel 2, ¢) channel 2 receives bit <1’ with bit ‘“0’’ in chan-
nel 2, and d) both interfering channels receive bit ““0”’.

IV. SINGLE-NEIGHBOR CROSSTALK

Equation (26) gives the error probability for the general
case when the nearest neighbors on each side of the de-
sired channel contribute to the crosstalk. The special case
of a single neighbor is also of considerable interest. Since
this case is relatively simple and useful for understanding
several important concepts, we concentrate on it in this
section. The results obtained here are applicable to a) the
experiments in which only two channels are used to study
the effect of interchannel crosstalk [3], [7], b) the bound-
ary channels of a multichannel system, and c) the inter-
mediate channel of a multichannel system whose nearest
neighbor is inactive (not used for data transmission).

The error probability for the case of a single-neighbor
crosstalk can be easily obtained using the results of Sec-
tion III. The only difference is that there are only two
combinations that should be considered in (11), i.e.

P, = J(Py + Py). (27)
If we use the general result (23) to obtain Py and Py, the
error probability is given by

oot 8) o) oo

where A is the signal and A4, is the interference signal due
to crosstalk from the neighboring channel. 4, and A4, can
be obtained by using (8) and (9), and they depend on the
system parameters such as the received powers, the bit
rates, the channel separation, and the BPF bandwidth.
Their explicit expression are, however, not needed to un-
derstand the effect of crosstalk on system performance if
we note that A(z)/ 0% and A3 /a? represent, respectively,
SNR and the interference-to-noise ratio (INR).

Fig. 2 shows the bit-error rate (BER) calculated by
using (28) as a function of A,/ ¢ for three values of 4, /0.
The Marcum’s Q function Q(a, B) was evaluated using
the series (25). Because of the relatively large values of
SNR, only one or two terms are generally needed to ob-
tain Q(«, B) to the desired accuracy. For the special case
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Fig. 2. Calculated dependence of the BER of a specific channel on the
Ao/ o for three values of the 4, /o. Only a single neighboring channel is
assumed to contribute to the crosstalk signal 4,.

of A; = 0 (no crosstalk), we obtain the simple analytic
expression

1 A 1 A3
P, = 5 Q<0, 20> = 5 exp < 802>' (29)
This is the well-known result [14]-[16] for the error prob-
ability of a single isolated ASK-modulated channel (under
the assumption that the contribution of the first integral in
(12) is negligible).

It is easy to see from Fig. 2 how much the BER of a
lightwave system is degraded even by small amounts of
crosstalk from a neighboring channel. In the absence of
crosstalk (4; = 0), a BER of 1 X 107° can be obtained
for Ag/0 = 12.65 or 11 dB. However, the BER degrades
to 4 X 107® for A, /o = 2, i.e., when the crosstalk-in-
duced interfering signal is only twice the noise level. From
the system standpoint, the relevant issue is not the extent
of BER degradation but the increase in the SNR needed
to offset the effect of crosstalk in order to maintain the
same BER. Fig. 2 shows that when A4,/¢ = 2, the re-
quired 4g/0 = 12 dB instead of the 11 dB that would
have been sufficient in the absence of crosstalk.

For a given receiver noise o, the SNR can be increased
only by increasing the signal 4,. If we use (8), we may
conclude that the SNR or 4, can be increased simply by
increasing the local-oscillator power P;,. However, it is
evident from (9) that this approach will also increase 4,
or the INR by the same amount, resulting in no improve-
ment in the system performance. Therefore, the only way
to counteract the effect of interchannel crosstalk is to in-
crease the received signal power. The required increase is
generally quantified as the power penalty defined (in deci-
bels) by the expression

A = 10 log (Py/Py) = 20 log (4y/4y)  (30)

where A, is the received signal in the absence of crosstalk
(Ay = 12.65 ¢ for a BER of 1 X 107°). In a similar
manner, the level of crosstalk can be quantified by using
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the definition

C = 10 log (4,/Ay) (31)
where 4, is the interfering signal leaked through the BPF
and can be obtained from (9). Note that the crosstalk in
(31) is defined using the ratio of optical powers. In terms
of the electrical powers, | C| should be multiplied by a
factor of two.

Fig. 3 shows the power penalty A as a function of the
crosstalk C at a BER of 1 X 107°. To ensure a power
penalty below 1 dB, the crosstalk should be < —10 dB.
However, if the system is designed to permit a crosstalk
penalty A < 0.1 dB, it is necessary to reduce C below
—17 dB. The curve shown in Fig. 3 is universal in the
sense that the power penalty depends on a single param-
eter C. Of course, the value of C depends on a large num-
ber of system parameters. We now turn to study this de-
pendence. By using (8), (9), and (31), the explicit
expression for C is

P\ B
C = 10 log <F1> B—"
0 1

S_m H(f)sinc[x(f+ D)/B,] df

SAW H(f) sinc(nf/By) df

(32)

As expected, C depends on the received powers, channel
bit rates, and the electrical channel spacing D. It also de-
pends on the BPF response function H( f). Since the
choice of a BPF is somewhat arbitrary, it is difficult to
present the results in a general manner. In practice, the
crosstalk C will depend not only on the BPF bandwidth
but also on the filter type.

To illustrate the dependence of the crosstalk C on the
filter parameters, we consider two specific kinds of filters,
known as the Butterworth and the Chebyshev filters. In
general, each type of filter can be further specified by its
order n that takes integer values n = 1, 2, -+ . The
response functions H( f) for various values of n are well
known for both Butterworth and Chebyshev filters. For
illustration purposes, we consider second-order filters (n
= 2) with the response functions [18]

(33)
(34)

Hy(f) = (1 + 1.414s + s7)7
He(f) = (3314 + 23725 + s7) 7'

where s = (if/f.), and f, is the cutoff frequency. In the
case of the Chebyshev filter, the response function He( f)
corresponds to a filter with a 0.1-dB ripple. To compare
the performance of Butterworth and Chebyshev filters,
both filters should have the same 3-dB bandwidth W de-
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Fig. 3. Calculated power penalty as a function of the crosstalk level at a
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Using (33)-(35), we find that W = 2f, for the Butterworth
filter, whereas W = 3.926f, for the Chebyshev filter (n
= 2, in both cases).

The crosstalk C is calculated by substituting (33) and
(34) in (32) and evaluating the integrals numerically. Fig.
4 shows the variation of crosstalk C with the channel
spacing D for the two kinds of filters. For simplicity, we
assume equal bit rates (By = B; = B) and equal received
powers (Py = P; = P) for the two channels. The perfor-
mance of the Butterworth and Chebyshev filters is com-
pared in Fig. 4 for two different bandwidths W = 2B and
W = 3B. The crosstalk C is, generally speaking, com-
parable for the two filters, the difference being —1 dB or
so in the range of interest. Interestingly enough, the cross-
talk is lower for the Butterworth filter when W = 2B, even
though it is lower for the Chebyshev filter when W = 3B.
This suggests that if a wider bandwidth of the BPF is em-
ployed to reduce the effect of laser phase noise [11]-[13],
a Chebyshev filter is expected to produce less crosstalk
penalty than a Butterworth filter.

Figs. 3 and 4 can be used to estimate the minimum
channel spacing required to keep the crosstalk penalty be-
low a certain level. Consider first the case of A < 1 dB.
Fig. 3 then shows that the crosstalk C should be < —10
dB. If we now use Fig. 4, we find that D = 3.5B is re-
quired for W = 2B, whereas D should exceed 4.5B for a
wider BPF bandwidth W = 3B. The required channel
spacing increases significantly when either the filter band-
width W is increased or the amount of tolerable crosstalk
penalty is reduced. For example, C should be below —15
dB for A < 0.2 dB. For W = 3B, this level of crosstalk
can be achieved with a Chebyshev filter by choosing D =
6B. Some reduction in the minimum channel spacing is
possible by choosing higher order filters. The qualitative
behavior, however, remains the same.
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Fig. 4. Variation of the crosstalk with the channel spacing for second-or-
der Butterworth and Chebyshev filters with a 3-dB bandwidth W chosen
to be two and three times the bit rate B.

V. MULTIPLE-NEIGHBOR CROSSTALK

The preceding calculation of the crosstalk penalty is for
the case when a single neighbor contributes to the cross-
talk signal. We now consider the general case when two
nearest neighbors on each side of the desired channel in-
terface with the received signal. The error probability is
given by (25) and depends not only on the received sig-
nals A, and 4, in the interfering channels but also on the
relative phase ¢; — ¢, through (18). Since the relative
phase is likely to fluctuate from bit to bit, we average the
error probability by assuming that the relative phase is
uniformly distributed over its entire range 0-27. For sim-
plicity, we also assume equal received powers in the two
interfering channels and set A, = A,. The results can be
easily extended for the case of unequal received powers.
With these simplifications, and by using (18) and (25),
the error probability becomes

_1 2A,cos ¢ Ay
Pe=3% [<Q< 20>>
Ay A Ao
+ 2Q< 20) + Q<0, 5;)] (36)

where ¢ = (¢; — ¢,)/2 and angle brackets denote the
averaging operation with respect to ¢. In the absence of
the interfering signal (4; = 0), (36) reduces to the error
probability for a single-channel detection given by (29).

As in the single-neighbor case of Section IV, the error
probability or BER depends on the INR. Fig. 5 shows the
BER calculated by using (36) as a function of Ay/c for
several values of 4, /¢. Fig. 5 should be compared with
Fig. 2 to see how the presence of a second neighboring
channel affects the system performance. For a given
amount of INR, the increase in SNR to maintain a certain
BER is larger compared with the single-neighbor case.
This translates into a larger power penalty for the two-
neighbor case.

To calculate the power penalty, we follow a procedure
identical to that of Section IV. In particular, the power
penalty A and the crosstalk C are defined by (30) and (31),
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Fig. 6. Calculated power penalty as a function of the crosstalk level at a
BER of 10~ when both neighboring channels contribute to the crosstalk.
Dashed curve compares the smaller penalty (Fig. 3) occurring when a
single channel contributes to the crosstalk.

respectively. Fig. 6 shows the calculated power penalty
A as a function of the crosstalk C at a BER of 107°.
Dashed curve shows, for comparison, the power penalty
for the single-neighbor case discussed in Section IV (see
Fig. 3). As expected, A is larger for the two-neighbor
case for a given value of C. For example, A increases
from 1 to 2 dB for C = —10 dB. Note that the crosstalk
C defined by (32) governs the contribution of a single in-
terfering signal.

The minimum channel spacing for the multichannel case
can be estimated with the help of Figs. 4 and 6. Let us
assume that the system design restricts the crosstalk pen-
alty below 1 dB. From Fig. 6, A < 1 dB requires that C
< —12 dB. If we now use Fig. 4, we find that the mini-
mum channel spacing D = 3.8B for W = 2B but in-
creases to D = 5B if the filter bandwidth is increased to

= 3B. For comparison, the corresponding channel
spacings for the single-neighbor case are D = 3.5B and
D = 4.2B, respectively. The optical-domain channel
spacing D,,, = D + 2fir if fyr is selected to be closest to
the desired channel.
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VI. CoNcLUSION

This paper has addressed the issue of optimum channel
spacing in multichannel ASK heterodyne lightwave sys-
tems. We obtained an expression for the error probability
or the BER in one of the channels of such a multichannel
system after considering the crosstalk from the two near-
est neighbors. The general result was used to calculate the
power penalty as a function of the crosstalk level from
each neighbor. The level of crosstalk is shown to depend
on a large number of system parameters such as the bit
rates, received channel powers, the channel separation,
and the BPF response. In particular, the crosstalk depends
on the filter bandwidth as well as the filter type. This de-
pendence is illustrated by considering the Butterworth and
Chebyshev filters.

The main results of the paper can be summarized as
follows. For the case of equal bit rates and equal received
powers in all channels, the crosstalk from each channel
should be below —12 dB to keep the power penalty below
1 dB (Fig. 6). If the filter bandwidth is kept at W = 2B,
a minimum channel spacing of about four times the bit
rate B is required (Fig. 4). If the filter bandwidth is in-
creased to three times the bit rate, the minimum channel
spacing increases to about five times the bit rate. These
results are in agreement with a recent time-domain anal-
ysis [6] where a minimum channel spacing D = 4B is
found to be necessary to keep the power penalty below 1
dB. This work also found that D increases rapidly if the
design objective is to keep the power penalty to a negli-
gible level: for example D = 10B for A < 0.1 dB. This
is again in agreement with our results. A detailed com-
parison is not possible since it is not clear what assump-
tions were made regarding the BPF response in [6]. Our
analysis shows that the system performance depends on
the bandwidth and the type of BPF used for demodulating
the channel of interest.

APPENDIX
SERIES EXPANSION FOR MARCUM’s @ FUNCTION

The calculation of the error probability for many com-
munication systems [14]-[16] requires an evaluation of
the integral defined by

® 2 2
Q(Ot, B) = Sﬁ' X €Xp <-—J%>Io(ax) dx. (Al)

The function Q («, B8) is known as the Marcum’s Q func-
tion [17]. Some of its properties are listed in Appendix A
of [16] and [18]. One way to evaluate Q(«a, 8) numeri-
cally is to make use of the series expansion (25). Since
the derivation of (25) is not readily available, a brief de-
rivation is given here. By expanding Ip(«x) in a power
series [21], (A1) can be written as

® Y . 2k
Qa, B) = kZJ e {~er/2) SB <°‘7x> xe ™2 gx.

=0 (k)
(A2)
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By making the substitution x2/2 = y, the integral in (A2)
can be expressed in terms of the incomplete gamma func-

tion [21]
® _o? o k
0. 8)= 2 %)—@—) <7> D(k + 1, 8/2).

(A3)

Since 8 >> 1 in most applications of the Q functions, it
is beneficial to use the asymptotic expansion [21] of the
incomplete gamma function in (A3) and obtain

2 2\ © o
Q(a,a>=exp<——°‘ ‘2”*> >3

n=0 k=0

' (a6/2)2k 1 n
Kk —n)\8)/)"
The sum over k can be carried out by using the series

expansion of nth-order modified Bessel function I,(c83).
The result is

2 2\ = "
0(at, B) = exp <—#> z <§> (o). (A3)

This series expansion is particularly useful for o << 8,
a condition satisfied for all Q functions appearing in the
error-probability expression (26). As a result, only a few
terms in (A5) are needed to evaluate Q(c, 3) to an ac-
curacy ~107°.

(A4)
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