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The effects of cross-phase modulation (XPM) on the evolution of copropagating ultrashort pulses
in an optical fiber are discussed theoretically by solving the coupled-amplitude equations which in-
clude the contributions of self-phase modulation, XPM, pulse walk-off, and group-velocity disper-
sion. A pump-probe configuration is studied to isolate the XPM effects. In the case of nondisper-
sive XPM, the probe shape remians nearly unchanged while the probe spectrum exhibits asym-
metric spectral broadening and a shift toward the red or the blue side depending on the initial
pump-probe delay. In the case of dispersive XPM, the combination of group-velocity dispersion
and XPM lead to both temporal and spectral changes. The new XPM-induced phenomena, optical
wave breaking, and pulse compression are discussed in detail.

I. INTRODUCTION

When two optical pulses overlap inside a nonlinear
medium, they can interact with each other through
cross-phase modulation (XPM), a phenomenon that is al-
ways accompanied by self-phase modulation (SPM). In
general, the two pulses can differ in their wavelengths as
well as in their states of polarization. The well-known
optical Kerr effect' 3 belongs to this latter category. Its
observation in optical fibers* may be considered the earli-
est manifestation of XPM. The case of two identically
polarized pulses at different wavelengths has attracted
considerable attention recently,’” 22 particularly from the
standpoint of the effect of XPM on the pulse spectrum.
Two cases must be distinguished here. In one case, the
second pulse is generated internally through the gain pro-
vided by stimulated Raman scattering (SRS). In the oth-
er case, two pulses at different wavelengths are incident
at the fiber input and interact through XPM without any
energy transfer between them. The objective of this pa-
per is to investigate this second case. More specifically,
we study how the XPM-induced interaction can affect the
pulse shapes and spectra in the presence of group-velocity
dispersion (GVD) in optical fibers.

The effects of XPM on the pulse spectrum have been
observed in bulk glasses® as well as in silica fibers.*!° In
the case of optical fibers, a pump-probe configuration is
often used”!* to isolate the XPM effects on the probe
spectrum. When the probe pulse is launched simultane-
ously with an intense pump pulse, the probe spectrum is
generally broadened and develops an oscillatory struc-
ture. This occurs because XPM imposes a frequency
chirp on the probe pulse in a manner similar to that in-
duced by SPM. In contrast with the SPM case, however,
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the probe spectrum can be symmetric or asymmetric de-
pending on the initial delay between the pump and probe
pulses. The origin of asymmetry can be understood by
using a nonlinear phase-shift model that includes the
walk-off effects.” Physically, the pump and probe pulses
walk off from each other as a result of their slightly
different group velocities. Such walk-off effects can lead
to an XPM-induced frequency shift'* of the probe spec-
trum.

In most of the pump-probe experiments in optical fiber
the XPM produced spectral changes without a significant
change in the pulse shape. These experiments were per-
formed in the so-called nondispersive-XPM regime where
the GVD effects were negligible during the XPM interac-
tion except for the group-velocity mismatch. When the
GVD effects are strong enough during the XPM interac-
tion, both the shape and the spectrum of probe pulses are
expected to be affected considerably by the presence of
the pump pulses. As discussed in this paper, the novel
nonlinear phenomena can take place in this dispersive-
XPM regime. The XPM-induced modulation instability
is one such phenomenon and has been discussed both
theoretically'! and experimentally.'>'® Two other non-
linear phenomena discussed here are XPM-induced opti-
cal wave breaking!® and XPM-induced pulse compres-
sion. 7719

The paper is organized as follows. In Sec. II we obtain
the coupled-amplitude equations which govern the XPM
interaction. Two length scales, known as the walk-off
length Ly and the dispersion length L, are introduced
to emphasize the relative importance of the walk-off and
GVD effects. Section III considers the case of nondisper-
sive XPM applicable when Ly <<L,. The coupled-
amplitude equations can be solved analytically in this
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case to obtain the frequency chirp imposed by the com-
bined effects of SPM and XPM. The case of dispersive
XPM, applicable when L, and L, are comparable, is
discussed in Sec. IV with particular emphasis on optical
wave breaking. Section V is devoted to the study of
XPM-induced pulse compression. Finally, the results are
summarized in Sec. V1.

II. COUPLED-AMPLITUDE EQUATIONS

In this section we obtain a set of two coupled-
amplitude equations by including the effects of GVD,
SPM, and XPM. Since details are available elsewhere, ??
we outline only the essential steps. We consider the case
in which two optical pulses with nonoverlapping spectra
are incident on a single-mode polarization-preserving
fiber. Both beams are assumed to be linearly polarized
along one of the principle axes of the fiber. The wave-
propagation problem is then considerably simplified and
can be solved by using the scalar wave equation

1 8% o

2 32 (A°E)=0,
where E is the total electric field, c is the velocity of light
in vacuum, and the refractive index 7 is given by

A=n(w)+n,|E'|*.

VE 2.1

(2.2)

The GVD effects result from the frequency dependence of
the linear part of the refractive index. The nonlinear
effects are included through the parameter n, in Eq. (2.2).
The frequency dependence of n, can generally be ig-
nored. We have introduced in Eq. (2.2) a quantity E’ re-
lated to E by E'=(€,c /2n)'/?E such that |E’|? represents
the intensity (units W/m?). For silica fibers the parame-
ter n,=3.2X107%* m?/W. We use mks units (SI)
throughout the paper.

The total electric field associated with the two pulses
can be written in the form

2
E'(x,y,z,t)=Re | 3 F;(x,y)A;(z,1)
j=1

Xexplik;z —w;t)] |, (2.3)

where w; is the optical frequency and k;=n;w;/c with

n;=n(w;). The complex amplitude A;(z,¢) is assumed
to be slowly-varying with respect to both z and ¢. The
quantity F;(x,y) represents the transverse distribution of
the fundamental fiber mode. It is generally different for
the two pulses even in a single-mode fiber because of the
difference in the center wavelengths A; =27c /o; (j=1or
2). By substituting Eqgs. (2.2) and (2.3) in Eq. (2.1), ex-
panding k; in a Taylor series around ®;, and making the
slowly-varying-envelope approximation, the amplitudes
A, and 4, are found to satisfy the following equation:?*

. 2
04; (@ 184, i, 34
oz 2 7w, ot 277 ar?
in2w<
=Tf(fjlej|2+2fjkak;2)Aj, (2.4)
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where j,k =1 or 2, j5k, the group velocity
Vo = flﬁ h (2.5)
g do |o=o,’ .
and the GVD coefficient
B;= 4’k (2.6)
J dw? Jo=o,
The overlap integrals f; are defined by
Fi= [ 1F,(x, ) PF(x,9)%dx dy .7

where F;(x,y) is assumed to be normalized such that
f |F;(x,y)|*dx dy =1. The second term in Eq. (2.4) is in-
troduced phenomenologically to account for the fiber
loss; a; is the power-attenuation coefficient. The dimen-
sion of the envelope amplitude 4; has been chosen such
that iAj|2 represents the power in the fiber mode. This
specific choice is made to facilitate comparison between
theory and experiment.

The propagation equation (2.4) is valid in the slowly-
varying-envelope approximation. This approximation
amounts to assuming that the spectral width of each
pulse remains much smaller than its central frequency
(Aw; <<wy). It holds well for pulse widths =1 ps. For
ultrashort pulses having width =100 fs it becomes neces-
sary to include the contributions of higher-order non-
linear and dispersive effects. The higher-order dispersive
effects can be included by adding a third-derivative term
on the left-hand side of Eq. (2.4). The higher-order non-
linear effects are included by adding two additional terms
resulting from self-steepening and nonlinearity relaxa-
tion. The latter is responsible for the soliton self-
frequency shift and includes the contribution of stimulat-
ed Raman scattering.?* 2% These higher-order nonlinear
effects are not considered in this paper.

Equation (2.4) can describe propagation in multimode
fibers for the case in which the two pulses propagate in
different fiber modes. In the case of single-mode fibers
the differences among various overlap integrals are small
and can be neglected in practice. With this approxima-
tion, the coupled-amplitude equations become

aAl ay 1 aA] i azAl
A+ — Lp,
dz 2 Vg at 2 o2
=iy,(|4,+2]4,1M4,, (2.38)
94, o 1 84, ; 34,
A —— T+
dz 2 72 Vg, ot ZB2 o2
=iy,(|4,1°+214,1H4,, 29
where the nonlinearity coefficient
nza)j
i = ’ 2.10
V! CAeff ( )

and the effective core area is introduced by using
Ag=1/f,. Typically 4.,4;=10-20 um? in the visible
region since the core diameter is 3—-4 pum to ensure
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single-mode operation. The corresponding values of y,
and 7, are in the range 20-30 W~! Km™' depending on
the wavelengths of the incident pulses. The GVD
coefficients B, and 3, in the visible region are in the range
40-60 ps’/km. In the infrared region extending from
1.3-1.6 um, B, and B, are negative for silica fibers as the
pulses experience anomalous GVD.

The two terms on the right-hand side of Eqgs. (2.8) and
(2.9) result from the fiber nonlinearity. The first term
leads to SPM while the second term is responsible for
XPM. The XPM term couples the two pulses; in its ab-
sence the two overlapping pulses would have copropagat-
ed without affecting each other. However, the XPM-
induced mutual coupling may affect both the shape and
the spectrum of each pulse. The important point is that
such a coupling can occur irrespective of the wavelength
difference between the two pulses. GVD can influence
the XPM effects in two ways. First, it is responsible for a
mismatch between the group velocities associated with
the two pulses. As a result, the two pulses walk off from
each other as they propagate along the fiber. The XPM
interaction ceases to occur when the pulses are physically
separated from each other. For a pulse of width T, one
can introduce a walk-off length defined by

T,y

-1 _,—1] °

Ly =
|Ugy ng

(2.11)

XPM occurs only over distances ~ L, irrespective of the
actual fiber length. L, depends on the relative wave-
lengths and decreases as the wavelength difference AA in-
creases. Typically Ly ~1 m in the visible region for
T,=10 ps and AA=10-20 nm. The second effect of
GVD comes through the second-derivative term in Egs.
(2.8) and (2.9). Since different spectral components of a
pulse travel at slightly different speeds, the pulse shape
and the spectrum acquire new features when SPM and
XPM occur together with GVD. The relative impor-
tance of such GVD effects is governed by the dispersion
length defined by

Lp=T§/1B . 2.12)

For a 10-ps pulse L, * 1 km. If the fiber length L <<L,
the GVD effects are negligible. In the case of XPM, L,
governs the distance over which the two pulses interact
with each other. The GVD effects are most dominant
when Ly, and L, are comparable. This can occur for
Ty <1 ps.

To understand the qualitative features associated with
XPM, it is convenient to define

T=t—z/vgl, 7=T/T, . (2.13)

The time 7 is measured in a reference frame moving at
the group velocity of pulse 1 and is normalized to the
width T of that pulse. The coupled-amplitude equations
(2.8) and (2.9) then take the form

34, +.sgn(Bl) 3’4,
3z 2L, or

=iy, (| 4,1*+2| 4,14, ,

(2.14)
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94, ¢ 034, sgn(B)) B, 3’4,
9z Ly 0r 2L, By 97
=iyl 4,17 +21 4,4, , (2.15)
where €e=1 or —1 depending on the sign of Vg, TUg,» 1€,

e=sgn(vgl—v ). The fiber loss has been neglected for
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simplicity. This is not a limitation since the fiber lengths
commonly employed in the XPM experiments are such
that L ~ Ly, and the fiber loss is negligible (a;L <<1 for
j=1 and 2). Equations (2.14) and (2.15) are the basic
propagation equations for the study of the XPM effects.
In the next two sections we consider their solutions to see
how XPM influences the shape and the spectrum of two
copropagating optical pulses.

III. NONDISPERSIVE CROSS-PHASE MODULATION

In many experimental situations the dispersion length
L, is much larger compared with both L and Ly,. The
second-derivative terms in Eqs. (2.14) and (2.15) can then
be neglected. This simplifies the problem considerably,
and the resulting equations can be solved analytically.
Since this case also leads to considerable physical insight,
we consider it first. One can readily verify that the pulse
shape does not change in the limit of infinitely large L.
The general solution of Egs. (2.14) and (2.15) is then given
by

A(L,7)=4,(0,7)exp(id,) , 3.1)

AL(L,7)= A,(0,7—€L /Ly )explid,) , (3.2)
where os=sgn(vgl —ugz),
¢1(T):'}/1L 'A](O,T)!Z
+ 2 (140, 7—ez/Ly)dz |, (3.3)
LJo 727 w ’
¢o(T)=7,L || 4,(0,7)|?
+2 [ 4,0, 7+ez/Ly)dz | . (3.4
LJo 7V w

The physical interpretation is clear. The first term in
Egs. (3.3) and (3.4) is due to SPM. The second term has
its origin in XPM. The XPM contribution changes along
the fiber because of the group-velocity mismatch and is
obtained by integrating over the fiber length.’®

The integration in Egs. (3.3) and (3.4) can be performed
for specific pulse shapes. As an illustration consider the
case of two unchirped Gaussian pulses of the same width
T,. The initial amplitudes are given by

AI(O,T):\/;.]CXP( —72/2),
AZ(O,T):\/-I—)—ZCXP[—’(T"T[] 2/2],

(3.5)
(3.6)

where P, and P, are the incident peak powers and 7, is
the initial delay between the two pulses. By using Egs.
(3.3)-(3.7), the nonlinear phase ¢, is given by
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¢ (T)=y,{P,L exp(—7%)
+eP,LyVrlerf(r—1y)

—erflr—71,—€eL/Ly)]} . (3.7)

A similar expression is obtained for ¢,.

A time dependence of the phase is equivalent to a fre-
quency chirp induced by SPM and XPM. Such a chirp
leads to spectral broadening of the pulses. An expression
for the frequency chirp is obtained by using the definition

A==t 20y oy (3.8)
v;(T 37Ty or J or2). .
By using Egs. (3.7) and (3.8) the chirp is given by
Y1 —
Av(1)= Ty [P,Lre Tz
*(T*rsz
_€P2Lw(e
o — 2
A PR X

The expression for Av,(7) is obtained by interchanging
the subscripts 1 and 2 and changing the sign of €.
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FIG. 1. Pulse spectra (left column) and XPM-induced phase
and chirp (right column) for a probe pulse copropagating with a
faster-moving pump pulse. The Gaussian pulse shape
| 4,(0,7)| is shown by a dashed line. The three rows corre-
spond to an initial time delay of the pump pulse such that
74=0, 2, and 4. Other parameters are y,P,L=40 and
L /Ly =4. The vertical scale is normalized to 1 in all cases.
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The XPM contribution to the frequency chirp depends
on the initial time delay 7, between the two pulses. As a
result, the pulse spectrum at the fiber output can exhibit
qualitatively different features depending on the value of
74. The left column of Fig. 1 shows the spectra of pulse 1
for 7;,=0, 2, and 4 whereas the right column shows the
phase ¢,(7) and the frequency chirp Av,(7). To isolate
the features associated with the XPM, the SPM contribu-
tion is neglected by assuming P; <<P,. This would be
the case in a pump-probe experimental configuration.
For definiteness the pump pulse is assumed to travel fas-
ter than the probe pulse (¢e=—1). In the normal-
dispersion regime this amounts to assuming that o, > w,.
The fiber length L =4L,, and the pump power is chosen
such that y,P,L =40 in Fig. 1.

The dependence of the probe spectra on the relative
time delay can be understood by considering the XPM-
induced chirp shown in the right column of Fig. 1. For
7, =0, the slow-moving probe pulse interacts mainly with
the trailing edge of the pump pulse. As a result, the
XPM-induced chirp is positive across the entire probe
pulse, and the probe spectrum has only blue-shifted com-
ponents. When 7,=4, the pump pulse just catches up
with the probe pulse at the fiber output. Since it is the
leading edge of the pump that interacts with the probe
pulse, the chirp is negative, and the probe spectrum has
only red-shifted components. When 7,=2, the pump
passes through the probe pulse in a symmetric manner.
As a result, the probe spectrum is symmetrically
broadened. As shown in Fig. 1, the XPM-induced chirp
is nearly linear across the probe pulse for 7, =2, a feature
similar to the case of SPM. However, the magnitude of
chirp is relatively small in the XPM case and depends on
the ratio L /Ly,.

The effect of initial time delay on the probe spectrum
were first observed in a pump-probe experiment’® where
the effective initial delay was varied using time-dispersion
tuning in a fiber-Raman laser. We have performed a
different experiment'* in which 1.06-um pump pulses and
0.53-um probe pulses are launched simultaneously in a
I-m-long fiber. The initial delay between the two pulses
was adjusted using a Mach-Zehnder-interferometer delay
line. The experiment allowed us to verify the nonlinear
chirp model dicussed above. Because of a relatively large
group-velocity mismatch (=80 ps/m) between the pump
and probe pulses, the walk-off length for pump pulses
(Ty =20 ps) was only about 25 cm. Because of a relative-
ly small interaction length, the probe spectrum was only
slightly broadened and its internal structure could not be
resolved. The peak of the spectrum was, however, shifted
by an amount that depended both on the pump power P,
and the relative delay 7,;. Such a shift can be referred to
as the XPM-induced wavelength shift.'* Figure 2 shows
the induced wavelength shift as a function of 7;. The
solid line is the theoretical fit to the data and was ob-
tained from Eq. (3.9) as follows. If we neglect the SPM
contribution (P, << P,), Eq. (3.9) becomes

Av(1)=—€Av, fexp[ —(1—71,)%]

—exp[ —(r—7,—€L/Ly)?*1}, (3.10)
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FIG. 2. XPM-induced wavelength shift of a 0.53-um probe
pulse as a function of the initial time delay of 1.06-um pump
pulse. Open circles shown the experimental data, while the
solid line shows the theoretical prediction.

where

AV =7 PyLy /(7T,) . (3.11)

The induced frequency shift for a given 7, is obtained by
maximizing |Av,(7)|. The maximum occurs near 7=0.
The theoretical fit in Fig. 2 is obtained from Eq. (3.10) by
setting 7=0, e=—1, L/Ly =4, and T,=20 ps. The
good agreement indicates the usefulness of the simple
model used to derive Eq. (3.9).

IV. DISPERSIVE CROSS-PHASE MODULATION

As discussed in Sec. III, when L, >>Ly,, the XPM
broadens the pulse spectrum asymmetrically but the
pulse shape remains unchanged. If L, becomes compa-
rable to Ly, the combined effects of XPM and GVD can
lead to qualitatively new temporal changes that accom-
pany the spectral changes. In this section we study these
changes by solving Egs. (2.14) and (2.15) numerically. It
is useful to introduce the normalized distance £ and the
normalized amplitudes U, and U, as

E=z/L,, U;=4;/V'P,,
where j=1 or 2. Equations (2.14) and (2.15) then take
the form
v, *U

i
aE + 2sgn(31) 372

4.1)

L=iN|U, P +2U, 1)U, , @4.2)

i B 32U2

L, 30, | i
2 |B]| ar?

4
3% ‘L, or

w
=z‘N2w—2(|U2|2+2|U1|2)U2, 4.3)
1

where
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7’1P1T(2)
Bl

The parameter N is related to the soliton order in the
anomalous-GVD regime. It serves a useful purpose in
the normal-GVD regime also in as much as it is a mea-
sure of the relative importance of the nonlinear effects.
Equations (4.2) and (4.3) can be used to describe the

N*=yP\Lp= (4.4)

‘XPM interaction between two pulses of arbitrary peak

powers by including the effects of SPM, XPM, GVD, and
the pulse walk-off. To isolate the XPM effects, it is useful
to consider a pump-probe configuration. If the pulse 1 is
much more intense than pulse 2, one can neglect |U,|? on
the right-hand side of Egs. (4.2) and (4.3). Equation (4.2)
then reduces to the conventional nonlinear Schrodinger
equation. It governs the evolution of the pump pulse
which travels unaffected by the presence of the probe
pulse. Equation (4.3) describes probe evolution along the
fiber length in the presence of the XPM and GVD effects.
Figures 3 and 4 show the evolution of the shape and the
spectrum of the probe pulse for the case N=10,
L,/Ly =10, w,/w;=1.2, and B;=f,>0. The pump and
probe pulses are taken to be Gaussin of the same width
with no initial time delay (7, =0) at the fiber input. The
pump pulse is assumed to travel faster than the probe
pulse (e=1). Both pulses are assumed to propagate in the
normal-GVD regime of the fiber.

The most notable effect of GVD is related to the shape
of the probe pulse in Fig. 3. In the absence of GVD, the
pulse shape would remain unchanged. However, when
the GVD effects are important, the pulse broadens, be-
comes asymmetric, and develops considerable internal
structure. The origin of the asymmetry and the oscillato-
ry structure on the trailing side is related to the XPM-
induced chirp given by Eq. (3.9). As seen in the top row
of Fig. 1, the chirp is positive across the entire pulse with
the maximum occuring at the pulse center. As a result,
the blue-shifted peak of the probe pulse travels slower
than the wings as it propagates down the fiber. Since the
peak lags behind, it interferes with the trailing edge. The

INTENSITY
o
o

FIG. 3. Evolution of the probe pulse along the fiber for
N=10, Lp,/Ly =10, w,/®;=1.2, and 7,=0. The intensity
|U,(&,7)|? is plotted for £ in the range 0-0.5. Both pump and
probe pulses are taken to be Gaussian and propagate in the
normal-dispersion regime of the fiber. The peak intensity at
&=0is normalized to 1 (§=z/Lp).
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FIG. 4. Evolution of the probe spectrum corresponding to
the pulse shapes of Fig. 3. The spectral intensity | T, |? is plot-
ted, where U, is the Fourier transform of U,. The peak intensi-
ty at z=0 is normalized to 1.

rapid oscillations on the trailing side in Fig. 3 are due to
such an interference. This behavior is similar in nature
to the phenomenon of optical-wave breaking occuring as
a result of dispersive SPM when a single intense pulse
propagates in the normal-GVD regime of a fiber. It can
be rlegferred to as the XPM-induced optical-wave break-
ing.

In spite of the identical nature of the underlying physi-
Ttal mechanism, optical-wave breaking exhibits different
qualitative features in the case of XPM when compared
with the SPM case. The most striking difference is that
the pulse shape is asymmetric with only one edge devel-
oping oscillations. For the case shown in Fig. 3, oscilla-
tions occur near the trailing edge because of the faster-
moving pump pulse interacts mainly with the trailing
edge. If the probe and pump wvelengths were reversed,
oscillations would occur near the leading edge. This can
also be understood by noting that in that case the XPM-
induced chirp is negative. Consequently, the red-shifted
peak of the probe pulse travels faster than the wings and
interferes with the leading edge. In fact, the shape and
the spectrum of the probe pulse are just the mirror im-
ages of those shown in Fig. 3 if the wavelengths are inter-
changed while keeping all other parameters the same.

The results shown in Fig. 3 correspond to the case in

INTENSITY

FIG. 5. Evolution of the probe shape for parameter values
indentical to those used in Fig. 3 except that 7, = —2.
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FIG. 6. Evolution of the probe spectrum corresponding to
the pulse shapes shown in Fig. 5.

which the pump and probe pulses are launched without
any initial delay between them (r;=0). Similar to the
case of nondispersive XPM shown in Fig. 1, the probe
evolution can exhibit a qualitatively different behavior
when 7,70. Figure 5 shows evolution of the probe pulse
under conditions identical to those of Fig. 3 except that
T74=—2, i.e.,, the probe pulse is initally advanced by 2T,
The corresponding
probe spectra are shown in Fig. 6. It is evident that evo-
lution of the probe pulse is influenced considerably by the
initial time delay. In particular, in contrast to the 7,=0
case where the probe pulse experiences broadening, the
probe pulse is compressed during the early stages of
propagation. The maximum compression (by about a
factor of 4) occurs near £=0.2 or z=2Ly,. The probe
pulse starts to rebroaden with further propagation.

The probe evolution can be understood by considering
the XPM-induced chirp. Strictly speaking, the chirp
model of Sec. III is not applicable since the shape of the
pump pulse changes considerably along the fiber length.
Nonetheless, it can be used for the early stages of pulse
evolution. For £<0.2, the pump pulse interacts mainly
with the trailing edge of the probe pulse and generates a
negative chirp. The trailing edge of the probe pulse then
consists of red-shifted spectral components which travel
faster than the leading edge in the presence of positive
GVD. This leads to a compression of the trailing edge of
the probe pulse seen clearly in Fig. 5. In the mean time
the pump pulse broadens considerably. Since the pump
power becomes relatively constant over the entire probe
pulse, the XPM-induced frequency chirp is reduced. The
probe pulse then starts to broaden beyond £=>0.2, as one
would expect in'the normal-GVD regime of the fiber.
However, it travels faster than the group velocity associ-
ated with it at the fiber input. This increase in the group
velocity is due to the XPM-induced spectral shift ap-
parent in Fig. 6. Since the probe spectrum is shifted to-
ward red, the effective group velocity becomes larger in
the case of normal GVD. The opposite would happen if
the probe pulse were to experience anomalous GVD.

V. PULSE COMPRESSION

An important application of the fiber nonlinearity is
for pulse compression.?’” When a single optical pulse
propagates through a fiber, the nonlinear phenomenon of
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SPM imposes a nearly linear positive chirp (frequency in-
creases with time) on it, and the pulse can be compressed
by passing it through a dispersive delay with anomalous
(or negatve) GVD. A grating pair is generally used for
this purpose in the visible and near-infrared regions
whereas a fiber can be used for wavelengths exceeding
1.3um. In the latter case, the same piece of fiber can pro-
vide the chirp and the compression. Such a scheme is
sometimes referred to as the soliton-effect compression
scheme since it takes advantage of the periodic evolution
of the higher-order solitons.?’ Both the fiber-grating and
soliton-effect compression techniques require that the en-
ergy of the input pulses be relatively large (R 100 pJ) and
cannot be used to compress weak optical pulses.

The nonlinear phenomenon of XPM has the potential
for compressing weak-picosecond and -femtosecond
pulses since an intense pump pulse can be used to impose
the chirp on the weak probe pulse.!””!° As seen in Fig.
1, the XPM-induced chirp is affected by pulse walk-off
and depends critically on the initial relative pump-probe
delay. Clearly the use of XPM for pulse compression
would require a careful control of the pump-pulse param-
eters such as its width, peak power, wavelength, and
synchronization with the probe pulse.

Two cases must be distinguished depending on the rel-
ative magnitudes of the walk-off length L, and the
dispersion length L,. If L, >>L, throughout the prop-
agation, the GVD effects are negligible. In that case the
fiber is used to impose a chirp on the probe pulse through
XPM, and an external grating pair is needed to compress
it. The results of Sec. II can be used to analyze the mag-
nitude and the form of the chirp in this case of nondisper-
sive XPM. The results show!” that a nearly linear posi-
tive chirp can be imposed across the probe pulse when
the pump pulse is much wider than the probe pulse. The
case in which L and L, are comparable (L, S10Ly,) is
of considerable interest since the same piece of fiber can
be used to impose the chirp and to compress the pulse.
Furthermore, in contrast with the SPM case where such
single-stage compression occurs only in the anomalous-
GVD region (A> 1.3 um), the XPM offers the possibility
of single-stage compression even in the visible region
without the need of a grating pair. In the following, we
discuss XPM-induced pulse compression in the normal
and anomalous GVD regimes separately.

Consider first the case in which both the pump and
probe pulses propagate in the normal-GVD regime of the
fiber. Figure 5 shows the probe-pulse evolution for a
specific set of pump-pulse parameters, namely, N=10,
L,/Ly=10, A/A,=1.2, Tq=T,=T,, and 7,=—2.
The probe pulse is compressed by about a factor of 4 at
z=2Ly. In general, the compression quality, the
compression factor, and the optimum fiber length depend
on several input parameters such as the pump-probe
wavelength difference, the pump-probe width ratio, the
pump peak power, and the initial pump-probe delay 7,.
The dependence on the last parameter is particulary im-
portant since 7, can be adjusted in practice to optimize
the compressor performance. To understand this depen-
dence, we have performed numerical simulations for a
wide range of 7, while keeping the other parameters the
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same. The maximum compression occurs at a distance.

T,

log, ' —vg,

Zmax:|7d|LW: (5.1)

It corresponds to a distance at which the two pulses
would catch up in the absence of the GVD effects. The
maximum compression may, however, not be desirable
from the standpoint of the compression quality. This is
apparent in Fig. 5 where the compressed pulse has an os-
cillatory structure (ringing) near the leading edge and a
broad pedestal near the trailing edge at z =z_,, (§=0.2);
these features are undesirable from the quality stand-
point. In fact, the pulse at £=0.1 appears to be of higher
quality even though the compression factor is lower than
that at £=0.2. The main point is that a tradeoff exists
between the magnitude and the quality of compression
and that the fiber length can be chosen to meet the partic-
ular need.

The relative pump-probe delay 7, affects the compres-
sion quality in a subtle way. For |7,| <2, the maximally
compressed pulse has less riging near the leading edge but
contains more energy in the trailing-edge pedestal. For
|74 22, the pedestal nearly disappears while the ringing
becomes more dominant. For the parameters of Fig. 5,
|74] in the 2—2.5 range appears to be optimum. Figure 7
shows the input pulse and the compressed pulse at £=0.2
for 7;,=—2.5, while other parameters are indentical to
those of Fig. 5. The pulse is compressed by about a fac-
tor of 4 and does not have a pedestal on the trailing side.
Except for some ringing on the leading side, the
compressed pulse is of high quality. Even this ringing
can be removed if the pump pulse is initially wider than
the probe pulse, although only at the expense of reduc-
tion in the amount of compression achievable at a given
pump power. The main conclusion is that XPM and
GVD can be used to compress weak probe pulses in
normal-dispersion region of the optical fiber by optimiz-
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FIG. 7. Compressed probe pulse at §=0.2 (z =2Ly) for the
case 7= —2.5. The input probe pulse at §=0 is also shown for
comparison.
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ing the width and the initial delay of the pump pulse.
The compression factor is in the 3—5 range for N=10 but
can be increased by increasing the pump-peak power (so
that N is larger). We also investigated the case in which
the pump pulse travels slower than the probe pulse and is
advanced initially (A; <A,, 7, >0). The qualitative behav-
ior remains the same. .

When both the pump and probe pulses propagate in
the normal-dispersion regime, the compressed pulse is
necessarily asymmetric because of the group-velocity
mismatch and the associated walk-off effects. The walk-
off effects can be considerably reduced if the pump and
probe wavelengths are chosen to be on the opposite sides
of the zero-dispersion wavelength of the fiber (A, ~1.3
pm). One posibility consists of using the 1.06-um pump
pulses for compressing the probe pulses near 1.55 um (ob-
tained, for example, from a mode-locked semiconductor
laser). The probe pulse by itself is too weak to propagate
as a fundamental or higher-order soliton. However, the
XPM-induced chirp imposed on it by the copropagating
pump pulse may be strong enough that the probe pulse
goes through an initial compression phase associated
with the higher-order solitons. This case has recently
been considered.!'® Here we focues on the optimization
issues.

Figures 8 and 9 show the evolution of the shape and
the spectrum of 1.55-um probe pulses launched together
with the 1.06-um pump pulses whose peak power is such
that the parameter N=10. For simplicity, the group ve-
locity for the pump and probe pulses is assumed to be the
same. Furthermore, the two pulses are launched without
initial time delay so that they overlap initially and contin-
ue to do so during their passage through the fiber. The
inclusion of walk-off effects does not affect the qualitative
behavior as long as the walk-off length is much larger
than the dispersion length (L, >>Lp).

The most notable feature of Fig. 8 is the initial
compression of the probe pulse before the pulse broadens
and splits into several components. At £=0.1 the probe
pulse is compressed by about a factor of 4. The compres-
sion factor increases to 6 at £=0.2 but the pulse develops
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FIG. 8. Evolution of the probe shape for the case in which
the pump and probe pulses experience normal and anomalous
GVD, respectively, are launched without any initial time delay
(r4=0), have the same width (T, =T,=T,), and propagate in-
side the fiber with the same group velocity. The parameter
N=10.
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FIG. 9. Evolution of the probe spectrum under conditions
identical to those of Fig. 8.

side lobes in the wings. With further propagation, the
probe pulse splits into three components which broaden
rapidly with the propagated distance. This behavior can
be understood by considering the XPM-induced chirp.
During the initial stages of probe evolution, the pump
pulse induces a chirp on the probe pulse through XPM.
The chirp features are similar to that induced by SPM.
In particular, the chirp is nearly linear over the central
part of the probe pulse. The anomalous GVD
compresses the central part, as seen in Fig. 8 for £=0.1.
In the mean time, the pump pulse broadens considerably
as a result of normal GVD experienced by it. The XPM-
induced chirp then nearly vanishes across the entire
probe pulse. This is evident in Fig. 9 where the probe
spectrum ceases to change beyond £20.3. The probe
pulse then evolves as if the pump pulse did not exist.
However, the spectral changes produced by the pump
during the early stages modify the probe shape consider-
ably. In particular, the energy in the red-shifted and the
blue-shifted components separates from the central peak
as a result of their slightly different group velocities. This
results in the three-peak shape seen in Fig. 8 beyond
£20.4.

It is evident from Fig. 8 that the probe pulse can be
compressed considerably if the fiber length is suitably
chosen. Similar to the case of Fig. 5, a tradeoff exists be-
tween the compression quality and the amount of
compression for a given pump power. For the case

INTENSITY

FIG. 10. Probe evolution under conditions identical to those
of Fig. 8 except that N=30.
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FIG. 11. Probe evolution under conditions identical to those
of Fig. 10 except that the probe pulse is shorter than the pump
pulse by a factor of 3.

N=10 shown in Fig. 8, the probe pulse can be
compressed by a factor of about 4 at z/L;,=0.1 with a
high quality. Higher compression factors can be ob-
tained by increasing the pump power. Figure 10 shows
the probe evolution under identical conditions except
that the pump power has been increased by a factor of 9
(N=30). Good quality compression by a factor of about
10 occurs for z/Lj in the vicinity of 0.04. Compression
by a factor of more than 15 is possible for z /L =~0.05
but the quality is not as good.

The above results were obtained by assuming that the
input widths of the pump and probe pulses are the same
(Ty\=T,=T,). We have carried out extensive numerical
calculations for various pump-probe width ratios to un-
derstand the role of different pulse widths. When the
pump pulse is shorter than the probe pulse, the compres-
sion factor is larger but the pulse quality is poorer as the
pulse rides on a broad pedestal. This can be understood
by noting that for short pump pulses the XPM-induced
chirp is linear only over a small central part of the probe
pulse. By the same token, the compression quality can be
improved when the pump pulse is broader than the probe
pulse, but only at the expense of a reduction in the
amount of compression realized at a given pump power.
Figure 11 illustrates this situation for the case T,=T,/3
i.e., the pump pulse is broader by a factor of 3. All other
parameters are identical to those of Fig. 10. The main
conclusion is that the pump-probe width ratio is a criti-
cally important parameter that determines the quality
and the amount of compression that can be realized for a
given pump power.

VI. CONCLUSIONS

This paper has focused on the temporal and spectral
changes that a probe pulse can experience when it is
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launched into an optical fiber together with an intense
pump pulse. The changes occur as a result of the fiber
nonlinearity which couples the two pulses through the
nonlinear phenomenon of XPM. The XPM-induced cou-
pling occurs irrespective of the wavelength difference be-
tween the two pulses. The fiber length over which such a
coupling occurs, however, depends on the walk-off length
which in turn depends on the respective wavelengths and
their relation to the zero-dispersion wavelength of the
fiber.

The XPM effects can be divided into two categories de-
pending on whether the GVD effects are important or
not during the XPM interaction. If the dispersion length
is much larger than the walk-off length, the pulse shape
remains nearly unchanged while the XPM-induced chirp
can broaden and distort the probe spectrum. The initial
time delay between the pump and probe plays an impor-
tant role in determining the spectral changes. If the
dispersion length and the walk-off length become compa-
rable, the pulse shape also changes during the XPM in-
teraction. The temporal changes also depend on the ini-
tial delay between the pump and probe pulses. When the
two pulses are launched simultaneously, XPM can induce
optical wave breaking that manifests as rapid oscillations
near the leading or the trailing edge of the probe pulse.
Physically, the peak of the probe pulse travels either fas-
ter or slower than the wings by an amount that depends
on the peak intensity of the pump pulse.

XPM can be used to compress a weak probe pulse by
copropagating it together with an intense pump pulse.
We have discussed two modes of operation in which the
combination of XPM and GVD can compress weak
probe pulses. For visible and near-infrared probe pulses,
the initial pump-probe delay need to optimized whereas
the pump and probe wavelengths should not be too
different to increase the interaction length. For probe
pulses at wavelengths exceeding 1.3 um, the pump-pulse
wavelength is chosen in the normal-dispersion regime to
match the group velocities of the two pulses approxi-
mately. Furthermore, the two pulses are launched in a
synchronized manner. The latter technique has the po-
tential for practical applications since it can be used to
enhance the peak power of pulses obtained from mode-
locked semiconductor lasers. In particular, the 1.55-um
probe pulses can be compressed by using 1.06-um pump
pulses.
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