January 15,1989 / Vol. 14, No. 2 / OPTICS LETTERS 137

Optical wave breaking and pulse compression due to cross-
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When a probe pulse copropagates with a pump pulse inside an optical fiber, the two can interact through cross-phase -
modulation. It is shown that an interplay between the effects of group-velomty dispersion and cross-phase
modulation can lead to optical wave breaking that manifests as rapid oscillations near the leading or the trailing side
of the probe pulse. Qualitative features of this new kind of optical wave breaking are discussed, as well as the
conditions under which it can be observed experimentally. The probe pulse can be compressed significantly by
optimizing the initial delay between the pump and probe pulses even when the two pulses experience normal

dispersion in the fiber.

When an ultrashort light pulse propagates through an
optical fiber, its shape and spectrum change consider-
ably as a result of the combined effects of group-veloe-
ity dispersion (GVD) and self- phase modulation
(SPM). In the normal-dispersion regime of the fiber
()\ s13 um), the pulse can develop rapid oscillations
in the wings together with spectral side lobes as a
result of a phenomenon known as optical wave break-
ing.! In this Letter we show that a similar phenome-
non can lead to rapid oscillatiens near one edge of a
weak probe pulse that copropagdtes with a strong
pump pulse. In this case the origin of optical wave
breaking is related to the combined effects of GVD
and cross-phase modulation?0 (XPM). The basic
mechanism is the same in both cases. Different parts
of the pulse propagate at different speeds because of
the frequency chirp imposed on the pulse by SPM or
XPM. If two parts with different instaritaneous fre-
quencies overlap temporally, interference between
them creates an oscillatory structure in the pulse
shape. Despite the identical nature of the underlying
physical mechanism, optical wave breaking can exhib-
it quahtatlvely dlfferent features because of differ-
ences in the frequency chirp induced by SPM and
XPM. We discuss these differences and the condi-
tions under which XPM-induced optical wave break-
ing may be observable experimentally.

Let us consider two optical pulses having nonover-
lapping frequency spectra centered at wavelengths A\;
and Ag. After considering the frequency dependence
and the intensity dependence of the modal refractive
index and making the slowly varying envelope approx-
imation, we find that the complex amplitudes A; and
A, of the pulse envelopes satisfy!!

L LT PR
2 vy ot 27 a2 2 .
= iv(1AP + 214, P4, (1)

0146-9592/89/020137-03$2.00/0

where j = 1 or.2, v, is the group velocity, 8; is the GVD
coefficient, and «; is the attenuation coefficient. The
nonlmearlty parameter v; is related to the nonhnear-
index coefficient ny by the equation
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where A is the effective core area. A four-wave
mixing term has been neglected in Eq. (1) after assum-
mg that phase matching does not occur. Thelast term
in Eq. (1) is due to XPM and is responsible for the
mutual coupling between the two pulses It is this |
XPM-induced coupllng that gives rise to the optical
wave breaking discussed below.

It is useful to introduce the normalized variables by
using the definitions

(@
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and to write the coupled amplitude equations from
Eq. (1) in the form of
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Fig. 1. Shape and spectrum of the probe pulse (left-hand
side) and the pump pulse (right-hand side) at z/Lp = 0.4
when the two pulses copropagate in the normal-dispersion
regime of a single-mode fiber. The parameters are N = 10,
Lw/Lp = 0.1, \i//As = 1.2, and 74 = 0. Oscillations near the
trailing edge (7 > 0) of the probe pulse are due to XPM-
induced optical wave breaking. '
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Here Ty is the pulse width and P; is the peak power of
pulse 1. The dispersion length Lp provides a length
scale over which the GVD effects become important.
The walk-off length Ly is another length scale result-
ing from the group-velocity mismatch. -Since the two
. pulses generally travel at different speeds, they sepa-
rate from each other over a distance of a few walk-off
lengths and cease to interact through XPM. The
choice of sign in Eq. (5) depends on the sign of v, —
Ugo; the positive sign corresponds to vg > Uge. The
parameter N measures the relative importance of the
nonlinear effects. Although N has physical signifi-
cance only in the anomalous-dispersion regime of the
fiber, where its integer values correspond to funda-
mental and higher-order solitons, it is a useful dimen-
sionless parameter in the case of normal dispersion.
For simplicity, we have neglected the loss term in Eqgs.
(4) and (5). This is not a limitation since the fiber loss
is generally negligible for fiber lengths commonly used
in the XPM experiments. : ‘

To isolate the effects of XPM from those of SPM, a
pump-probe configuration is generally used in the ex-
periments.46 We assume that |Usl? « |Uil? so that
pulse 1 plays the role of the pump pulse and propa-
gates without being affected by the copropagating
probe pulse. The probe pulse, however, interacts with
the pump pulse through XPM. To study how XPM
affects the probe evolution along the fiber, we have
solved Eqs. (4) and (5) numerically using a generaliza-
tion of the beam-propagation or the split-step Fourier
method.l! The numerical results depend strongly on
the relative magnitudes of the length scales Lp and

Lw. If Lw <« Lp, the pulses walk off from each other
before GVD has an opportunity to influence the pulse
evolution. However, if Ly and Lp become compara-
ble (Lw/Lp 2 0.1), both XPM and GVD can act to-
gether and modify the pulse shape and spectrum with
new features. - To show these features, we consider a
specific case in which Ly/Lp = 0.1 and \/Ag = 1.2.
Both pulses are assumed to propagate in the normal
GVD regime with §; =~ 82 > 0. The positive sign is
chosen in Eq. (5) to ensure that the pump pulse travels
faster than the probe pulse (vg > Ug). At the fiber
input both pulses are taken to be a Gaussian of the
same width Ty (FWHM =~ 1.66TY), i.e.,

UI(O, T) = eXp("Tz/zjy
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where 74 accounts for an initial delay between the two
pulses. The peak-power ratio P3/P; = 10~*in order to
simulate a pump-probe configuration.

Consider first the case 74 = 0 so that the two pulses
overlap completely at z = 0. Figure 1 shows the
shapes and spectra of the pump and probe pulses at £
= (.4 obtained by solving Egs. (4) and (5) numerically
with N = 10. Itis evident that GVD can substantially
affect the evolution features expected from SPM or
XPM alone. The XPM effects are absent for the
pump pulse. The pump shape and the spectrum
shown on the right-hand side exhibit features expect-
ed from dispersive SPM for N = 10. The left-hand
side shows the shape and the spectrum of the probe
pulse whose evolution is governed by dispersive XPM.
In the absence of GVD, the probe shape would be a
narrow Gaussian centered at 7 = 4 (the relative delay
at the fiber output because of group-velocity mis-
match). The GVD effects not only broaden the pulse
considerably but also induce rapid oscillations near
the trailing edge of the probe pulse. These oscilla-
tions are due to XPM-induced optical wave breaking.

To understand the origin of XPM-induced optical
wave breaking, it is useful to consider the frequency
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Fig. 2. XPM-induced phase shift and frequency chirp for
the probe pulse whose shape is shown by the dashed curve.
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Fig.3. Evolution of the probe pulse for 74 = —3. The other
parameters are identical to those of Fig. 1.

chirp imposed on the probe pulse by the copropagat-
ing pump pulse. In the absence of GVD, we can use
the phase-shift model of Ref. 6. For the case of a
Gaussian pulse, the XPM-induced phase shift of the
probe pulse can be expressed in terms of an error
function.l® The result can be used to obtain the
XPM-induced frequency chirp given by

Av = Ay, fexp[—(7 + 74 — 2/Ly)?
— exp[—(7 + 7%}, ’ 9)

where
Avmax = 'YQPILW/(WTO)' (10)

Figure 2 shows the phase shift and the chirp Av/Avgax
as a function of time for 74 = 0 and z/Lw = 4, the values
used in Fig. 1. The location of the probe pulse is
shown by the dashed curve; the pump pulse is located
at 7 = 0. The maximum chirp occurs at the center of
the probe pulse. Since the chirp is positive, the blue-
shifted components are generated by XPM near the
pulse center. As aresult of the normal GVD, the peak
of the probe pulse moves slower than its tails. Since
the peak lags behind as the probe pulse propagates, it
interferes with the trailing edge. Oscillations seen
near the trailing edge of the probe pulse in Fig. 1 result
from such an interference. Since the basic mecha-
nism is analogous to the optical-wave-breaking phe-
nomenon occurring in the case of dispersive SPM, we
call it XPM-induced optical wave breaking.

In spite of the identical nature of the underlying
physical mechanism, optical wave breaking exhibits
different qualitative features in the XPM case com-
pared with the SPM case. The most striking differ-
ence is that the pulse shape is asymmetric, with only
one edge developing oscillations. For the case shown
in Fig. 1, oscillations occur near the trailing edge be-
cause the faster-moving pump pulse interacts mainly
with the trailing edge. If the probe and pump wave-
lengths were reversed so that the pump pulse moved
slower than the probe pulse, oscillations would occur
near the leading edge since the pump pulse would
interact mainly with that edge.

We discuss briefly the effect of initial relative time
delay between the two pulses on optical wave break-
ing. Figure 3 shows probe evolution for 74 = —3, i.e.,
the probe is advanced by 3T, with respect to the fast-
er-moving pump pulse. The other parameters are
identical to those of Fig. 1, where 74 = 0. In contrast
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with the 74 = 0 case, where GVD led to a large broad-
ening of the probe, the probe pulse goes through an
initial stage of compression. We have carried out nu-
merical simulations over large ranges of 74 and N to
quantify the extent of XPM-induced pulse compres-
sion. For N = 10, the probe pulse can be compressed
by a factor of ~3-6 when |74/ is in the range of 1-4.
The compression factor can be increased by increasing
the pump power or the parameter N. The optimum
fiber length for maximum compression is well approxi-
mated by zop; = |7glLw. The physical mechanism
behind pulse compression is the pump-induced fre-
quency chirp given by Eq. (9). For 74 = =3, the chirp
isnearly linear and negative (frequency decreases with
time) over the trailing part of the probe pulse. The
normal GVD compresses the trailing part, as seen
clearly in Fig. 3. This compression technique is dif-
ferent from that of Ref. 12, where an external grating
pair is needed. It is analogous to the soliton-effect
compression technique except that XPM-induced
compression can occur even in the normal-GVD re-
gime of the fiber.

The experimental observation of XPM-induced op-
tical wave breaking would require the use of femtosec-
ond pulses. This can be seen by noting that for pico-
second pulses with T = 5-10 psec, typically Lp ~1km
while Ly ~ 1 m, even if the pump-probe wavelengths
differ by as little as 10 mm. By contrast, if Ty = 100
fsec, Lp and Lw become comparable (~10 ¢cm) and the
temporal changes in the probe shape discussed here
can occur in a fiber less than a meter long. Pulses
much shorter than 100 fsec should also not be used
since the higher-order nonlinear effects such as self-
steepening and a delayed nonlinear response then be-
come increasingly more important. Finally, XPM
may be useful for compressing weak femtosecond
pulses by launching them together with the intense
pump pulses and by optimizing the initial delay be-
tween the two.
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