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Abstract—We describe a numerical model that is capable of predict-
ing important laser characteristics such as the threshold gain and the
gain margin between the main and side modes for a distributed feed-
back (DFB) semiconductor laser of arbitrary complexity. The method
consists of solving the coupled-mode equatiens with axially-varying pa-
rameters iteratively until the boundary conditions at the two facets are
satisfied. We apply the numerical model to discuss two DFB laser
structures. In the case of a multiple-phase-shift DFB laser our results
show that such devices can have a more uniform axial distribution than
that of a conventional quarter-wave-shifted DFB laser while maintain-
ing sufficient gain margin between the main and side modes. In the case
of a dual-pitch DFB laser we show that the incorporation of a slightly
different grating period ( ~ 0.1 percent) over a small section can pro-
vide a gain margin that is comparable to that achieved in quarter-wave-
shifted DFB lasers.

I. INTRODUCTION

ISTRIBUTED feedback (DFB) semiconductor lasers
have attracted considerable attention recently [1]-[5]
because of their potential application in optical commu-
nication systems. Such lasers oscillate predominantly in a
single longitudinal mode by virtue of a built-in index grat-
ing that provides dominant distributed feedback only in
the vicinity of the Bragg wavelength determined by the
grating period. The theoretical analysis of DFB lasers is
generally based on the coupled-wave theory of Kogelnik
and Shank [6]. For an axially-uniform DFB laser, the
coupled-wave equations can be analytically solved to ob-
tain an eigenvalue equation whose solution provides the
threshold gains and the wavelengths of all the DFB modes
[6]. However, if DFB lasers have intentional or uninten-
tional variations in their parameters along the cavity
length, it becomes necessary to solve the coupled-wave
equations numerically in order to determine the DFB
modes.
The objective of this paper is twofold. First, we discuss
a numerical scheme that can determine the important de-
vice characteristics such as the threshold gain, the gain
margin for side modes, and the differential quantum effi-
ciency for a DFB laser with arbitrary axial variations.
Second, we use this scheme to analyze two novel DFB
structures. One structure is a generalization of the well-
known quarter-wave-shifted DFB laser [2], i.e., in place
of a single phase-shift region, it incorporates multiple
phase-shift regions distributed over the cavity length. Such
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multiple phase-shift DFB lasers allow one to achieve a
nearly-uniform axial intensity profile, thereby reducing
the effect of spatial hole burning on the device perfor-
mance. The other DFB structure is referred to as the dual-
pitch DFB laser. In this device the grating period is made
slightly different (~0.1 percent) over a section of the
laser cavity. The numerical results show that for a relative
section length of 0.25-0.35, the dual-pitch DFB laser can
have a gain margin comparable to that of a quarter-wave-
shifted DFB laser. Furthermore, when the laser cavity
consists of two sections of equal lengths but different grat-
ing periods, the dual-pitch DFB laser acts as a dual-wave-
length laser, i.e., the output from the two facets is dom-
inated by two different modes oscillating at wavelengths
whose difference is governed by the difference in the grat-
ing periods.

II. CouPLED-WAVE EQUATIONS

In DFB lasers, the use of a built-in grating leads to a
periodic modulation of the refractive index of the optical
mode propagating inside the active region (see Fig. 1).
The index grating couples the forward and backward
propagating waves through Bragg diffraction. In the cou-
pled-wave analysis [6], the intracavity field is written as

E(z) = A(z) exp (iBoz) + B(z) exp (—iBoz) (2.1)

where 4 and B are the amplitudes of the forward and
backward propagating waves and £, is the Bragg wave-
number defined by [3]

2y _ mm
)\B A'

In (2.2), A is the Bragg wavelength in vacuum, z is the
effective mode index, A is the grating period, and m is the
order of Bragg diffraction (m = 1 for a first-order grat-
ing). The use of (2.1) in the wave equation provides the
coupled-wave equations:

Bo = (2-2)

dA
e =(a +i6)A + ikB (2.3)
dB
— = —(a + i) B — ix*A (2.4)
dz
where « is the amplitude-gain coefficient given by
a = (g~ aw)/2 (2:5)
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Fig. 1. Schematic illustration of a DFB semiconductor laser. The built-in
grating couples the forward and backward waves propagating inside the
active region, resulting in distributed feedback. The bottom portion shows
the division of the cavity into subsections whose lengths depend on the
specific DFB structure. A phase shift at the boundary of each subsection
can also be incorporated in the numerical method used to model DFB
lasers.

& is a measure of the detuning of the laser mode from the
Bragg wavelength

8 =8 —Bo=2mu(l/N— 1/\p) (2.6)

and « is the coupling coefficient. The numerical value of
k depends on the fabrication details such as the layer
thicknesses and the grating depth [3]. Typical values of «
are in the range 40-80 cm™'. In (2.5), o, accounts for
the internal losses and g is the power gain. In the linear-
gain approximation, g is related to the carrier density n
inside the active region by [3]

(2.7)

where I' is the confinement factor, a is a proportionality
constant (typically a = 2 X 1071 cm?), and ny is the
carrier density required to overcome the intrinsic material
loss (ny = 1-1.5 X 10" cm™?). It should be stressed that
the index p is also a function of the carrier density n since
in semiconductor lasers both the gain and the index are
affected simultaneously by changes in the carrier density.
More specifically,

g =Ta(n — ng)

B.ah
4

ﬁ(") = ﬁ(nr) - (n - nr) (28)
where n, is a reference carrier density. 3. is often referred
to as the linewidth broadening parameter [7], [8] and has
values typically in the range 3-8 for InGaAsP lasers.
The carrier density n in (2.7) depends on the pumping
level and is obtained by solving [3]
dn 1 n

dl‘:q_V T,

g(n)

= |E|* + DV?n
w

(2.9)
where I is the current flowing through the active region
of volume V, 7. is the carrier lifetime, Aw is the photon
energy at the lasing wavelength, g is the electron charge,
and D is the diffusion coefficient. The solution of (2.9) is
generally difficult to obtain if carrier diffusion is included
through the last term. However, the main effect of diffu-
sion is to wash out spatial holes burnt by interference of
the counterpropagating forward and backward waves since
their spacing Az/2 is much smaller than the diffusion
length ( ~2-3 um). Thus, to a good degree of approxi-
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mation, we can ignore carrier diffusion by setting D = 0
provided we replace | E |* by the approximate form

E()[ = |4@)] + |B)[- (2.10)

The carrier density n is however still a function of z since
the total intensity is not axially uniform in DFB lasers.

In the steady state (dn/dt = 0), (2.9) is readily solved
with the result

n(z) = WD+ [EQ[/P)n

1+ |E()["/Ps

where P, = hw/(Tar,) is the saturation intensity (typi-
cally ~1 MW /cm?) and I, = gVn, /7, is the current re-
quired to achieve transparency. By using (2.5)-(2.8) we
note that both « and é are functions of z in the above-
threshold regime because of local variations of the total
optical intensity inside a DFB laser. This phenomenon is
often referred to as spatial hole burning since an increase
in the laser power results in a local reduction in the carrier
density at places where the intracavity intensity is maxi-
mum. Near the laser threshold such that | E(z) |* << P,,
(2.11) becomes n = (I/I) ny, and the carrier density n
can be treated as constant along the laser length. Note,
however, that n can still be z dependent if the current 7 is
not the same all across the cavity length. This is, for ex-
ample, the case for DFB lasers with segmented contacts.
The theoretical analysis of a DFB laser requires the so-
lution of the coupled-wave equations (2.3) and (2.4) sub-
ject to the two boundary conditions at the laser facets

(2.11)

A(0) = rB(0) B(L) = nrnA(L) (2.12)
where the amplitude reflection coefficients
r = \/Ejexp (i¢;) (j=1,2). (2.13)

In (2.13) R; is the facet reflectivity and ¢; is the phase.
The phases ¢, and ¢, take into account the phase shift
occurring at the last incomplete period of the grating near
the facets (see Fig. 1). In general, these phases can vary
from device-to-device in a random manner.

The solution of (2.3) and (2.4) is relatively straightfor-
ward if the parameters «, 6, and « are z independent, i.e.,
they do not vary along the cavity length. The use of
boundary conditions (2.12) then results in an eigenvalue
equation whose solution provides the threshold gain o and
the detuning 6 of various longitudinal modes supported by
the DFB laser. Kogelnik and Shank [6] followed this ap-
proach for the specific case of nonreflecting facets (R, =
R, = 0). Their method has been generalized to include
the effect of facet reflections on the modes of a DFB laser
[91, [10].

The assumption that «, 8, and « are constant along the
cavity length is not always justified. Equations (2.5)-(2.8)
show that « and 6 remain constant only if the carrier den-
sity n is axially uniform. Even if this is the case at thresh-
old, gain saturation [11]-[14] in the above-threshold re-
gime invariably leads to an axially-nonuniform carrier-
density profile [(2.11)] because of spatial hole burning
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[15]. As a result, both « and 6 vary along the laser cavity.
Such variations are continuous and depend on the axial
intensity profile for the forward and backward propagat-
ing waves.

The parameters «, 6, and k may not be constant along
the cavity length even at threshold because of axial vari-
ations introduced intentionally to modify the device per-
formance. Many specific structures have been studied
[16]-[24] where at least one of the laser parameters is a
function of z in (2.3) and (2.4). A particular structure that
has attracted considerable attention recently [19]-[22] is
the quarter-wave-shifted DFB laser in which a 7 /2 phase-
shift is introduced in the middle of the laser cavity to force
the laser to oscillate exactly at the Bragg wavelength [17].
Although this structure can be analyzed by considering
two sections separately such that «, 8, and « are constants
in each section, a numerical approach becomes necessary
when either the number of sections becomes large [24] or
when the axial variations are truly continuous such as in
the case of a chirped grating [18].

III. NUMERICAL PROCEDURE

We consider the most general case in which all three
parameters ¢, 8, and « can be z dependent in the coupled-
wave equations (2.3) and (2.4). The objective is to find
the mode gain « and the mode detuning § defined by

51 SO 8(z)dz  (3.1)

1t
a == d.
« So o(z) dz L

L
for various longitudinal modes of the laser cavity. The
mode for which & is smallest becomes the main mode
since it reaches the threshold first. The mode with the sec-
ond smallest value of & plays the role of the dominant side
mode. The main-mode threshold gain g, and the gain
margin A« are defined by

&n = 2oy + iy (3.2a)

where agy is the amplitude gain of the dominant side
mode and @y, is the amplitude gain of the main mode. The
magnitude of A« determines the extent to which the side
mode is suppressed relative to the main mode [3]. _
We follow an iterative approach to obtain « and 6 for
several DFB modes. The starting values of A and B at
= 0 in (2.3) and (2.4) are chosen to satisfy the boundary
condition A(0) = r;B(0). The choice of B(0) is arbi-
trary since it determines the intensity scale; we generally
use B(0) = 1. An initial guess for o and ¢ is used to solve
the coupled-wave equations and obtain the fields A(L)
and B(L). These fields do not satisfy the boundary con-
dition B(L) = r,A(L) unless « and 6 correspond to the

actual values of the DFB mode. The mismatch
¢ = B(L) — rnA(L) (3.3)

can however be used to estimate the corrections Aa and
Ad to the initial guess « and 6. Noting that the change Ae
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should be just large enough to cancel €, we obtain Ae =
—€, Or
Oe de

P Ao + % Ad = —e (3.4)
where we used the fact that e is a function of & and 6. The
real and imaginary parts of (3.4) provide two equations
whose solution determines Ao and Ad. The process is re-
peated with the new values of o and 6 until the boundary
condition at z = L is satisfied to the desired accuracy. In
our simulations, the iteration process was assumed to con-
verge when |e| < 107%.

The actual number of iterations required for conver-
gence depends on the initial guess as well as on details of
the laser structure. We have found it useful to take for the
initial guess the values of « and 6 expected for k = 0. For
the case of constant o and 6, the solution of (2.3) and
(2.4) with the boundary condition (2.9) gives the thresh-
old condition (similar to the case of a Fabry—Perot laser)

rryexp [2(@ + i) L] = 1. (3.5)
Equating the real and imaginary parts, we obtain
1 1
a=-—In|— 3.6
“Ta <R1Rz> (6
< 1
6= 2L (2mr — ¢ — &) (3.7)

where m is an integer. We have used (3.6) and (3.7) as
an initial guess for « and 6. The iteration procedure de-
scribed above can refine the initial guess to an accuracy
of about 10™* in typically 3-5 interactions. Different DFB
modes can be obtained by changing the value of m in
(3.7). We vary m from —2 to 2 to obtain 5 DFB modes
in the vicinity of the Bragg wavelength. The resulting val-
ues of & and 6 for these DFB modes can be used to obtain
the threshold gain and the location of the main mode as
well as the gain margin A« [see (3.2)].

The above scheme requires numerical integration of the
coupled-mode equations (2.3) and (2.4) a large number
of times. Although the well-known methods such as the
Runge-Kutta algorithm [25] can be used for this purpose,
we have found it better to use a matrix method [26] in
which the cavity is divided into several subsections (see
Fig. 1). In each subsection the parameters «, 8, and « are
treated as constants. Since (2.3) and (2.4) can then be
solved analytically, the propagation through a subsection
is carried out by using the prescription

<A> _ (sA,. SAB> <Ain>
Bout SBA SBB Bin
where Sis a2 X 2 matrix with complex coefficients given
by

(3.8)

Sua = ﬁ [exp (igh) — r* exp (—igh)] ~ (3.9)
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1
Spp = g [exp (—igh) — r* exp (igh)]  (3.10)

r

Spa = —Sus = 1 — 2 [exp (igh) — exp (—iqh)].
(3.11)
In (3.9)-(3.11), h is the subsection length,
g = +i[(a + i)’ + K2]1/2 (3.12)
and
g+ i(a + i) —kK
= = . .1
’ K q — i(a + id) (3.13)

The parameter r can be interpreted as the effective reflec-
tion coeflicient of the grating [3]. The sign in (3.12) is
chosen such that | 7 (¢)| < 1. The forward and backward
propagating fields can be propagated across the entire
cavity length through successive use of (3.8) in going from
one subsection to next. The matrix method is consider-
ably faster compared with other direct integration meth-
ods (implicit or explicit) for a given accuracy.

In some DFB laser structures such as a quarter-wave-
shifted DFB laser, the intracavity field experiences a phase
shift at certain locations along the cavity length. The al-
gorithm described above can easily be generalized to in-
clude the additional built-in phase shifts. While dividing
the cavity into subsections, the subsection boundaries are
forced to coincide with the phase-shift locations. The
phase shift at the subsection boundary is included by using

<A> _ <exp(i¢>sh) 0 > <Am> (3.14)
Boul 0 CXp (—ld)sh) Bin

where ¢, is the amount of phase shift. In the matrix
method, it amounts to multiplying the field components
by a diagonal matrix, a procedure readily implemented.

The numerical algorithm was tested on two specific
DFB laser structures for which the threshold gain o and
the mode detuning § can also be obtained using the con-
ventional eigenvalue method based on the analytic solu-
tion of the coupled-wave equations. For the conventional
DFB laser, the whole cavity acts as a single section. For
the quarter-wave-shifted DFB lasers, the laser cavity is
divided into two subsections with ¢, = 7 /2 atz = L/2.
In both cases the results based on the numerical approach
described here agreed with those obtained using the ei-
genvalue method with a relative accuracy of better than
107%. It should be noted that the present method auto-
matically provides the axial intensity distribution of the
forward and propagating waves for each mode. This is
useful to estimate the extent of spatial hole burning. At
the same time it can be used to calculate the differential
quantum efficiency of the light emitted from the two fac-
ets. More specifically,

P, P

=yp,— =y — 3.15
ﬂdP1+P2 2 ndPl+P2 ( )

T
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where

Py =C(1-R)[BO) P, =c(l-R)|a@)]

(3.16)

are the powers emitted from the facets located at z = 0
and z = L, respectively, C is a normalization constant,
and

20,
== 3.17
. (3.17)
is the total differential quantum efficiency. In (3.17), », is
the internal quantum efficiency, oy, is the threshold gain
of the main mode, and «, is the total internal loss re-
sulting from the phenomena such as free-carrier absorp-

tion and interface scattering.

IV. REsSULTS

In this section we apply the general numerical method
discussed in Section III to two DFB laser structures of
interest. Although the method can be used in the above-
threshold regime by including gain saturation, we focus
our attention to the near-threshold regime in which the
output power is far below the saturation level (typically
3-5 mW). The objective is to determine how the laser
characteristics such as the threshold gain &, and the gain
margin A« depend on the structural changes that lead to
axial variations of the DFB laser parameters. The two
structures discussed in detail are 1) a multiple-phase-shift
DFB laser and 2) a dual-pitch DFB laser.

A. Multiple-Phase-Shift DFB Lasers

The multiple-phase-shift DFB laser [23], [24] is a gen-
eralization of the quarter-wave-shifted DFB laser [22] in
which a single phase shift of 7 /2 is incorporated in the
middle of the laser cavity. The motivation behind consid-
ering multiple phase-shift regions is as follows. It is well
known [15] that in quarter-wave-shifted DFB lasers, the
total intracavity intensity peaks in the middle of the cavity
near the phase-shift region. As a consequence, gain sat-
uration in the above-threshold regime can lead to signifi-
cant local changes in the carrier density which in turn
changes the refractive index locally through the relation
(2.8). This phenomenon of spatial hole burning can affect
the laser characteristics dramatically [15]. In particular,
it reduces the gain margin A« with an increase in the out-
put power, an undesirable feature. The problem of spatial
hole burning is less severe if the axial intensity profile is
nearly uniform across the cavity length. We have found
that the use of multiple phase shift regions can make the
intensity profile more uniform than that of conventional
quarter-wave-shifted DFB lasers.

Fig. 2 shows the threshold gain g, of the main mode
and the gain margin A« as a function of the phase shift
o, for the cases of Ny, = 1-3, where N, is the number
of phase-shift locations. For definiteness, we have as-
sumed that the phase shift locations are equispaced across
the cavity length and that the same phase shift occurs at
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Fig. 2. Variation of the threshold gain g,;, and the gain margin A« with the
phase shift ¢, for multiple phase-shift DFB lasers. The case Ny, = 1
with ¢, = /2 corresponds to the conventional quarter-wave-shifted
DFB laser.

each location. Thus for Ny, = 3, a phase shift of ¢, oc-
cursatz = L/4,L/2, and 3L /4. The coupling coefficient
k was chosen such that kL = 2. For L = 250 um, a typical
value of the cavity length, this corresponds to ¥k = 80
em™'. The internal loss was taken to be o, = 50 cm™!.
In order to avoid complications resulting from the grating
phases ¢; and ¢, at the facets (which may vary from de-
vice to device), we have taken R, = R, = 0. The effect
of residual facet reflections is to replace each curve in
Fig. 2 by a band resulting from variations in the phases
¢, and ¢,. The qualitative behavior however remains un-
changed for facet reflectivities of 1 percent or less. The
main coriclusion drawn from Fig. 1 is that multiple phase
shifts can provide significant gain margin in the range 20-
30 cm™! if the amount of phase shift ¢, is optimized.
Although the gain margin A« is roughly reduced by a fac-
tor of two compared with conventional quarter-wave-
shifted DFB lasers (Ny, = 1 and ¢y, = 7/2), the DFB
side modes are still suppressed by 30 dB or more as long
as Ao > 8-10 cm™ ' [27], [28]. The threshold gain is also
generally increased for Ny, > 1. However, at the opti-
mum values of the phase shift, the increase is about 20
percent, which would not increase the threshold current
significantly.

As discussed above, the motivation behind the multiple
phase-shift regions is to achieve nearly-uniform axial in-
tensity profiles. Fig. 3 compares the main-mode intensity
profiles for Ny, = 1-3 with the optimum value of the phase
shift for each Ny,. More specifically, the total intensity
P(z) = |A(2)|* + |B(z)|* is plotted, where A(z) and
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Fig. 3. Axial distribution of the main-mode intensity for Ny, = 1-3. For
each value of N, the phase shift ¢, is chosen to be the one for which
Ax is largest in Fig. 2.

B(z) are obtained by solving the coupled-wave equations
(2.3) and (2.4). Note that the peaks in P(z) occur at places
where the phase shift was introduced. The important point
to note is that the use of multiple phase shifts reduces
considerably the range over which P(z) varies inside the
laser cavity. As a result, spatial hole burning is less of a
problem, and the performance of such lasers is expected
to be less dependent on the operating power. Note that
even two phase-shift regions are enough to take advantage
of the concept of the multiple phase shifts.

The relatively flat intensity distribution in the case of
multiple-phase-shift DFB lasers in a consequence of the
boundary conditions imposed on the electric field at the
location of the phase shifts. Near each phase discontinuity
the field must decay exponentially while, at the same time,
peaking at the discontinuity itself. As the phase discon-
tinuities come closer, the decaying field near one discon-
tinuity is forced to start rising before it has a chance to
decay considerably. Note that the situation is different
from that considered in [23] where identical phase-shifted
(single 7 /2 shift) lasers are coupled in series. There, the
axial variation of the field intensity remains unchanged
for a given value of the coupling coefficient.

B. Dual-Pitch DFB Lasers

In a dual-pitch DFB laser, the laser consists of two sec-
tions of slightly different grating periods. Let us assume
that in a section of length L, the grating period is A + AA
while the remaining section of length L — L, has the pe-
riod A. As seen in (2.2), for a first-order grating the Bragg
wavelength is related to the grating period by the simple
relation

Np = 2FA (4.1)

where u is the effective index. Because of different grating
periods the two sections have different Bragg wave-
lengths. The motivation behind the dual-pitch DFB laser
is as follows. A conventional single-pitch DFB laser with
nonreflecting facets (R, = R, = 0) has two modes with
the same threshold gain located at the edge of the stop-
band [6]. A dual-pitch DFB laser can be viewed as two
coupled conventional DFB lasers whose stopbands are
shifted with respect to each other by ANz = 2pAA. If the
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shift ANy is suitably chosen such that the left-hand side
edge of one stopband coincides with the right-hand side
edge of the other stopband, this particular mode will be
favored in both sections and will have the lowest thresh-
old gain. The other modes will be discriminated since they
are not supported simultaneously by both sections. In this
respect, a dual-pitch DFB laser selects a single longitu-
dinal mode in a manner similar to that of a coupled-cavity
laser [3]. Note that a relatively small change AA/A = 1
x 107 is required since a relative change of 0.1 percent
in A corresponds to AN = 1.5 nm (for Az = 1.55 um),
a typical value for the width of the stopband.

For the numerical results, we have again selected the
parameter values used in Figs. 2 and 3. More specifically,
we take L = 250 pm, kL = 2, o, = 50cm™!, and R, =
R, = 0. Fig. 4 shows the gain margin A« and the main-
mode threshold gain gy, as a function of the section length
L, for several values of AA /A. The parameter L, is varied
only in the range 0-L /2 because of the inherent symmetry
of the device about z = L/2. In particular, note that a
dual-pitch device with two sections of equal lengths has
Aa = 0. However, considerable gain margin can be re-
alized if L, /L is chosen to be in the range 0.25-0.35. The
amount of gain margin A« depends on the value of AA/A;
A = 30 cm ™' can be obtained for AA /A = 0.1 percent.
Even higher values of A« are possible by increasing AA.
The kinks seen in Fig. 4 for AA/A = 1.5 X 107> cor-
respond to mode jumps. The origin of these mode jumps
can be understood by noting that for such large values of
AA, the stopbands of the two sections are separated by
more than the widths of the individual stopbands. Thus,
depending on the section lengths, the laser oscillates in
the vicinity of one stopband or the other. The central re-
gion between the two kinks correspond to the case in
which two sections cooperate with each other.

To understand the mode of operation of a dual-pitch
DFB laser, it is instructive to look at the axial distribution
of the mode intensity inside the laser cavity. Fig. 5 shows
the main-mode axial distributions of the forward wave
|A(z)|?, the backward wave |B(z)|?, and the sum
|A(2)]* + | B(z)|* for the specific case of L, /L = 1/2
and AA/A = 1.5 X 107>, Fig. 6 shows the same distri-
butions for the side mode. A comparison of Figs. 5 and 6
shows that the axial distributions of the main and side
modes are the mirror image of each other. This behavior
can be understood by noting that for L, = L /2, the device
has two sections of equal length with zero gain margin
(Fig. 4), i.e., the main and side modes reach threshold
simultaneously. However, since the two sections have dif-
ferent Bragg wavelengths (because of slightly different
grating periods), the main mode of one section becomes
the side mode of the other section. In effect, such a laser
acts as a dual-wavelength laser emitting its light predom-
inantly at one wavelength from one facet and at a different
wavelength from the other facet. Figs. 5 and 6 show that
the power ratio at the two wavelengths from each facet is
about 6: 1. Although this value of mode-suppression ratio
is not large enough for single-frequency applications, such
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a dual-wavelength laser may be useful for many other ap-
plications. An important feature of such lasers is that the
wavelength difference A\ 3 can be controlled by adjusting
the difference AA in the grating period of two sections.

When the two sections are of different lengths, the large
values of A« in Fig. 4 imply that the wavelength associ-
ated with the longer section will dominate the device be-
havior. Fig. 7 shows the axial distribution of the main
mode for L, /L = 0.32 and AA/A = 1.5 x 107, The
side-mode intensity on the scale of Fig. 7 nearly coincides
with the x axis because of the large gain margin between
the two modes (Ao = 42 cm™' from Fig. 4). Note that
it is advantageous to extract the power from the longer-
section side because that section plays a dominant role.
The purpose of the smaller section is to provide a gain
margin between the main and side modes. The extent of
gain margin depends on the period difference AA as seen
in Fig. 4.

V. CONCLUSION

In this paper we have described a numerical procedure
that is capable of predicting important laser characteris-
tics such as the threshold gain and the gain margin for a
DFB semiconductor laser of arbitrary complexity. We
have applied the method to model two DFB laser struc-
tures. In the case of a multiple-phase-shift DFB laser, our
results show that such devices can have a more uniform
axial intensity distribution than that of a quarter-wave-
shifted (single-shift) DFB laser while maintaining suffi-
cient gain margin between the main and side modes. Such
devices are likely to be more stable in the above-threshold
regime since spatial hole burning plays a less important
role. In the case of a dual-pitch DFB laser, we show that
the incorporation of a slightly different grating period over
a section with a relative length of 0.25-0.35 can provide
a gain margin that is comparable to that achieved in
quarter-wave-shifted DFB laser. Such lasers therefore
represent an alternative to the quarter-wave-shifted DFB
laser. At the same time, if the lengths of the two sections
are made nearly equal, a dual-pitch DFB laser acts as two
lasers in one housing, i.e., the output is dominated at a
different wavelength for each facet. We believe that the
numerical method presented here is versatile and can be
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used to test many different ideas. Although in this paper
we did not include the gain saturation, this numerical
method is currently being used to investigate spatial hole
burning effects in the above-threshold regime.
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