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Abstract—The effect of fiber dispersion on the performance of light-
wave systems is analyzed for the case where multimode semiconductor
lasers operating near the zero-dispersion wavelength of the single-mode
fiber are used as sources. Both the intersymbol interference and the
mode-partition noise are considered in the discussion of dispersion-in-
duced power penalties. The theory is in good agreement with an ex-
periment in which the bit error rate is measured for four lasers at
various bit rates. The tolerable limits on the deviation of the laser
wavelength from the zero-dispersion wavelength are obtained for a 1.3-
um system operating at 1.7 Gbit /s. Monte Carlo simulations are used
to predict the effect of mode-partition noise on the performance of such
high-speed lightwave communication systems.

I. INTRODUCTION

T is well known [1], [2] that the group-velocity disper-

sion in single-mode fibers limits the performance of op-
tical communication systems. Since the group-velocity
dispersion vanishes at a specific wavelength \p, referred
to as the zero-dispersion wavelength (ZDWL), the dis-
persive effects can be minimized by operating the light-
wave system in the ZDWL vicinity. However, as an exact
match between the laser wavelength N\, and the ZDWL \p
is practically not feasible, the system performance de-
pends on the wavelength deviation AN = [No — Np|.
Since the dispersion penalty would generally vary from
one fiber link to another depending on the values of the
fiber and laser parameters, the goal of the system designer
is to set the tolerance limits on both Ay and Ap so that the
distribution of dispersion penalties is below some prede-
termined level. The tolerance limits, however, depend on
other laser and system parameters such as the bit rate B,
the fiber length L, and the spectral width ¢ of the multi-
mode semiconductor laser.

Since an unnecessarily tight specification on the laser
wavelength is detrimental to laser yield, it is prudent to
choose the wavelength window Ay + A as wide as pos-
sible within the system requirements. One objective of
this paper is to consider the dependence of the dispersion-
induced power penalty [3]-[6] on various parameters such
as B, L, o, and A\, and determine the tolerable AN fora
specific fiber link. The other objective is to determine the
distribution of power penalties for the whole system
through Monte Carlo simulations by including the al-
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lowed link-to-link variations in the system parameters.
Such simulations can then be used to predict the median
and worst-case penalties. The results are applied to a spe-
cific 1.3-um lightwave system operating at 1.7 Gbit /s to
determine the tolerable wavelength deviation AN.

I1. DisPERSION-INDUCED POWER PENALTY

There are two basic mechanisms through which the dis-
persion can induce power penalties for transmission sys-
tems making use of single-mode fibers.

1) The broadening of an optical pulse leads to inter-
symbol interference. Qualitatively speaking, the power
loss occuring within the bit period B~ ! has to be compen-
sated by increasing the launched power in order to main-
tain the required signal-to-noise ratio (SNR) at the re-
ceiver.

2) Mode-partition noise in multimode semiconductor
lasers (due to power redistribution among laser modes
with the total power relatively constant) coupled with the
fiber dispersion reduces the SNR at the receiver. This
mechanism under some conditions can degrade the SNR
so much that the system cannot achieve a specified bit
error rate even by increasing the launched power (i.e., a
bit-error-rate floor is observed).

A. Intersymbol Interference

It is generally difficult to estimate the amount of powes
penalty arising from the pulse broadening since it depends
on details of the laser transmitter and the receiver. To de:
velop a qualitative understanding, assume that the lase:
transmits a Gaussian pulse whose spectrum is also Gauss

ian, i.e.,
Py exp[_(x—xo)z}exp[_il
o V27 20° 275
(1
where o is the spectral half-width, T is the temporal half
width, and P, is the peak power. It can be shown [7] tha
the pulse remains Gaussian after propagation inside the

fiber and the transmitted power (integrated over all wave
lengths) at the receiver is given by

P..(1) = Py <%> exp L—z—t;—ﬂ (2

P(\ 1) =

0733-8724/88/0500-0620$01.00 © 1988 IEEE



AGRAWAL et al.: DISPERSION PENALTY FOR 1.3-um LIGHTWAVE SYSTEMS 621

where
T =T)[1 + (DLo/T)']"” (3)

D is the dispersion (in ps/km-nm), and L is the fiber
length. To relate T to the bit rate B, we use the relation
Tox/ﬂ = B~! obtained by equating the Gaussian-pulse
area to that of a square pulse of duration B~'. The
broadening factor of the pulse is then given by

T/T, = [1 + 2x(BDLa)’] . (4)

A simple estimate of the dispersion penalty o;g due to
intersymbol interference can be obtained by comparing
the received power with and without dispersion at the de-
cision point (assumed to be located at the pulse center).
We then obtain (in decibels)

i = 10 log (T/Ty) = 5log [1 + 2x(BDLa)’]. (5)

Since in all cases of practical interest BDLo << 1, (5)
can be approximated by

o = 14(BDLo). (6)

The preceding estimate of ayg is based on an oversim-
plified model. A more accurate calculation of the inter-
symbol-interference effects should take into account re-
ceiver details, in particular those related to the equalizer,
and requires numerical simulations [8], [9]. In the follow-
ing discussion, we use (5) to estimate the power penalty
aygr- As a rough criterion, note from (6) that

|BDLg| < 1/4

in order to keep a;g at a level near or below 1 dB.

(7)

B. Mode-Partition Noise

Ogawa has studied in detail the power penalty due to
mode-partition noise (MPN) using a simple model [3],
[6]. We briefly discuss this model. It is assumed that the
total power carried by each pulse is constant while the
power in each mode fluctuates, i.e.,

N
24 =1

i=1

(8)

where A; (¢) is a random variable denoting the instanta-
neous power in the ith longitudinal mode, N is the total
number of longitudinal modes, and the total power has
been normalized to unity. The measured time-averaged
power spectrum p(\;) shows the average value of the
mode power at the mode-wavelength \;:

A= r(N)

S SAiP(AlsAz,""AN)

- dAdA, - - - dAy (9)

where p(A,, Ay, * - - Ay) is the joint probability distri-
bution function.
When the optical pulse is transmitted through the dis-

persive fiber, each mode is delayed by a different amount

because of group-velocity dispersion. If f(\;, ¢) denotes
the received waveform for ith mode, the total received
signal is
N
r(t) = X f(N, 1) 4. (10)
The MPN leads to an additional noise at the receiver with
the variance (evaluated at the decision time slot ¢ = 1;).

02 = r(10) — [r(t0)] - (11)

This noise is added to the receiver noise so that the effec-
tive SNR Q is determined by

1 [ 2 Ompn :
#-(3) - (5

where o, is the total receiver noise and S is the received
signal. ’

The MPN-induced power penalty is related to the in-
crease in the received power that is necessary to maintain
a constant SNR. Since in the absence of MPN, S, = Qo,
is the required power, the power penalty (in decibels) is
given by

S 1
Qpn = 10 log (S_o> =5 lOg <1——20ﬁ,pn> (13)

The value of Q is determined by the maximum acceptable
bit error rate (BER) using [6]

(12)

BER = — exp (—Q%/2). (14)

Q V2~
Q0 = 6.7if 107! is chosen as the maximum bit error rate.
Equation (13) shows that the power penalty becomes in-
finite for

Ompn = Q7' = 0.15

implying that a bit error rate of 10™!' cannot be achieved
in that case (an error-rate floor above 107°). It is this
feature of MPN that makes it of critical importance in the
design of lightwave transmission systems.

C. Evaluation of oxpy

The evaluation of o,,,, using (11) requires the knowl-
edge of the joint probability distribution function p (4,
A, - - -, Ay) which is generally unknown. Ogawa has
introduced the concept of the mode partition coefficient k
defined by [6]

47 - (&)
=2

4~ () 1

k=1-a= (for any i)

where it is assumed that /TAJ = aZiZ}- for all modes (i #
j). The assumption that all modes have the same cross-
correlation with respect to each other is the most critical
assumption of this model and may not always hold for
semiconductor lasers. Its use however allows the evalua-
tion of oy, without the knowledge of p (A, 4;, * * * An).
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Using (10), (11), and (15), one find that

N N 241/2
Oupn = K {2} fid; - (,‘_Zl f,-A,> ] (16)
where f; = f(\;, ;). We assume that the received signal
waveform after equalization at the receiver is of the form

fi=f(N\, tg) = cos [7B(to + AT)] (17)
where
A1 = LD(N, — No) (18)

is the relative delay of the ith mode with respect to the
central mode at \ during propagation for a fiber of length
L and dispersion D. The decision circuit samples the re-
ceived signal at times #, = N/B, where N is an integer,
and therefore f; = + cos (wBA7;) in (17).

The numerical value of oy,,, depends on the steady-state
spectrum A; which we assume to be Gaussian:

2
= 1 (N = No)
Ai = )\,‘ = X { !
p(N) o 27 p 252
The calculation is considerably simplified if we assume

that the discrete sum in (16) can be replaced by an inte-
gral. The final result is

}. (19)

Ompn = % [1— exp (—89)] (20)

where
(21)

is a dimensionless parameter. Our result (20) is a slight
generalization of the Ogawa’s result [3], [6] since we did
not assume T BA7;, << 1 in (17). In the limit § << 1

Gupn = kB2 (22)

and we recover the Ogawa’s result. The calculation of
Ompn Can be generalized to include the effect of non-Gauss-
ian spectrum by using the discrete sum in (16). We cal-
culate our results for the MPN-induced power penalty
using (13) and (20).

The expression (20) for the MPN noise shows that oy,
is directly proportional to the mode-partition coefficient k
defined by (15). The numerical value of k is relatively
uncertain and may depend on a large number of parame-
ters such as the bit rate (through the pulse duration), the
modulation depth (through the bias level), and the spec-
tral width . Experimental measurements suggest a value
of k = 0.5, and this value has been widely used [6]. It
should however be stressed that the experimental data
have been obtained for relatively wide pulses ( >1 ns)
and depend to some extent on the method of measure-
ment.

8 = wBDL¢

III. ResuLTS FOR 1.7-GBIT SYSTEM

In this section we present the results for a 1.3-um light-
wave transmission system operating at a bit rate of 1.7
Gbit /s. The dispersion parameter D is obtained assuming

JOURNAL OF LIGHTWAVE TECHNOLOGY. VOL. 6, NO. 5. MAY 1988

that in the ZDWL vicinity D varies linearly with the
wavelength deviation, i.e.,

D =S\ — N\p) (23)

where the slope S = dD /9N is evaluated at the ZDWL
Ap. The numerical values of the average slope and its
standard deviation are obtained from measurements [10]
on a large number of fiber segments (sample size of 6538)
varying in length from 2-7 km. Table I shows the average
values and the range of variations in the values of the pa-
rameters which control the dispersion penalty. In partic-
ular, the fiber length L is assumed to be uniformally dis-
tributed over the range 36-46 km. The other parameters
S, Ap,» Ao, and o are assumed to have a Gaussian distri-
bution whose standard deviation is shown in Table I (un-
der the range column). These parameter values are typical
of realistic lightwave systems. To quantify the system
performance, we consider both the median and the worst-
case penalties. The median penalty is calculated by using
the average values in Table I. The worst-case penalty is
calculated by taking L = 46 km (the maximum fiber
length), S = 0.102 ps/km/nm’, and ¢ = 2.5 nm. The
values of S and ¢ correspond to 2 standard deviations
above the average value of the corresponding Gaussian
distribution. For this choice the probability of a larger
penalty than that calculated here is < 1073,

Consider first the dispersion penalty ajg due to inter-
symbol interference. Using the average parameter values
from Table I in (5), we find that ;g =< 0.5 dB as long as
INo — N\p| < 16 nm. If we use (5) for the worst-case
values of L = 46 km, S = 0.102 ps/km/nm’, and 0 =
2.5 nm, we find that for gy < 0.5 dB the wavelength
window narrows down to

|No — Np| < 10 nm. (24

This result shows that the intersymbol interference does
not cause significant power penalty for wavelength devia-
tions as large as 10 nm.

We next consider the dispersion penalty due to MPN.
The average power penalty ap,, for a bit error rate of
107! as a function of A is shown in Fig. 1 using the
average parameter values given in Table I and (13), (20)
and (21). Since the value of the mode-partition coeflicien
k is relatively uncertain, curves for k = 0.5 and k = 1 arc
shown. The power penalty increases rapidly with an in-
crease in the wavelength deviation |\ — Np| and even
tually becomes infinite (an error-rate floor at a level highe:
than a 10 "' bit error rate).

The wavelength window | A\g — N\p | to achieve oy, be
low a preselected level can be obtained as follows. If we
use (22) and (23), we obtain

V20,00 \ /2
pn 1
Ao — Np| = 25
Mo = < k > TBSLo (
where from (13) 0, is related to oy by
1
Ompn = 57 (1~ 10 omm/3)!/2 (26
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Fig. 1. Variation of the average power penalty o, for a bit error rate of
107" with the lasing wavelength for the 1.3-um system with parameter
values given in Table I. The two curves show the strong dependence of
Qmpn ON the mode-partition coefficient k. The curves are symmetric around
the zero-dispersion wavelength of 1308 nm.

TABLE 1
NUMERICAL VALUES OF THE PARAMETERS FOR A 1.3-pm LIGHTWAVE
SYSTEM OPERATING AT 1.7 GBIT/s

Parameter Symbol Average Range
Fiber length L 41 km + Skm
Dispersion slope N 0.09 ps/km/nmi? | =.006 ps/km/nm?
Zero-dispersion wavelength Ap 1308 nm *=3nmm
Laser wavelength Ao 1308 nm = 5nmm
Spectral width a 2.0nm + 0.25 nm

and we took Q = 6.7 corresponding to a bit error rate of
107,

To provide the worst-case estimates of a,p, for com-
parison with the median o, Fig. 2 shows | Ag — Ap| as
a function of oy, using L = 46 km, S = 0.102
ps/km/nm’, and ¢ = 2.5 nm. We note that in order to
keep the dispersion penalty (for k = 1) below 0.5 dB:

[N — Ap| < 5 nm. (27)

We can also calculate the wavelength window for the
average penalty to be below 0.5 dB and find that (Fig. 1,
k=1)

|>\0 - )\Dl < 8 nm. (28)

These ranges of wavelength deviation should be com-
pared with (24). It is evident that the MPN is the limiting
factor rather than the intersymbol interference and sets the
final limit on the wavelength deviation | Ay — Ap | that can
be tolerated, given these parameters.

IV. EXPERIMENTAL RESULTS

Since the dispersion penalties in Figs. 1 and 2 depend
critically on the relatively unknown value of the model
parameter k, system experiments were done using four
lasers of varying wavelengths. As the dispersive effects

WAVELENGTH DEVIATION (am)

) | L | 1 1 "
CO 1 2 3

POWER PENALTY (dB}

P
w

Fig. 2. Variation of the wavelength deviation | Ao — Ap| with the worst-
case power penalty a,,,, for two values of the mode-partition coefficient
k. The tolerable bit error rate is assumed to be 107''.

depend on the product BDLo [see (20) and (21)], the
power penalty curves can be obtained by varying any one
of the four parameters. We have found it convenient to
vary the bit rate B. Fig. 3 shows the measured power pen-
alty for a bit error rate of 107'" as a function of the bit
rate for the four lasers. Calculated curves show the theo-
retical fit to the experimental data. The laser wavelength
Ao and the spectral width ¢ were obtained using the lon-
gitudinal-mode spectrum for each laser measured under
the operating conditions. The measured fiber parameters
were L = 28.1 km, A\p = 1306 nm, and § = 0.09276
ps/km/nm*. To obtain the fit shown in Fig. 3, it was
necessary (1) to set k = 1 and (2) to choose the ZDWL
4.5 nm shorter than the measured value. The fitted value
of A\p is within the experimental uncertainty. The power
penalty o, predicted using £k = 0.5 is significantly
smaller than the measured values, and therefore k = 1
was used in the Monte Carlo simulations discussed in the
next section.

It should be stressed that actual lasers are not expected
to have k = 1 since it implies that at any time the laser
output is concentrated in one mode only. The experimen-
tal measurements shown in Fig. 3 indicate that (20)
underestimates the extent of MPN. The reason behind this
underestimation can be traced back to the Gaussion form
(19) for the mode spectrum. Although the Gaussian-spec-
trum assumption is often used and provides a reasonable
fit for the central part of the experimental spectra, its use
ignores the contribution of the spectral modes in the
wings. If we use the discrete sum (16) in place of (20)
and include the modes up to 30 dB down from the domi-
nant mode, the experimental results can be fitted with a
lower value of the mode-portion coefficient k = 0.7. Our
recent work shows that the experimenal spectra can be
fitted by assuming a super-Lorentzian profile [11]. The
use of this form has also resulted in £k = 0.7. In our
Monte Carlo simulations we have nonetheless used k£ = 1
in order to provide the worst-case estimates of the power
penalty that are independent of the actual value of k.
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Fig. 3. Measured system penalties at several bit rates for four lasers of
different wavelengths and a fiber length of 28 km. Solid curves show the
theoretical fit based on the mode-partition-noise model with Ap, as the
fitting parameter. The theoretical curves for the data points denoted by
circles and squares nearly coincide on the scale shown.

V. MoNTE CARLO SIMULATIONS

Equations (27) and (28) show that the median and the
worst-case estimates of the wavelength window are dif-
ferent and neither of them may be suitable for the system
design. Clearly the worst case has a very low occurrence
probability since several parameters have to take their
worst values simultaneously. The resulting power penalty
for the whole system can thus be estimated only in a sta-
tistical sense. For this purpose, we have performed Monte
Carlo simulations to obtain the distribution of MPN-in-
duced power penalties for a 1.7-Gbit /s system resulting
from link-to-link variations in the laser and fiber param-
eters. In these simulations the laser and fiber parameters
are chosen randomly assuming a mean and a standard de-
viation for a Gaussian distribution, and the range for a
uniform distribution.

Table I shows the values of the five parameters varied
randomly for the purpose of Monte Carlo simulations. The
fiber length L is taken to be uniformly distributed over the
range 36-46 km. Based on extensive measurements [10]
on a large number of fiber segments, the ZDWL X is
assumed to obey a Gaussian distribution with mean 1308
nm and a standard deviation of 3 nm. The dispersion slope
near the ZDWL is also found to satisfy a Gaussian distri-
bution with parameters given in Table I. The dispersion
parameter D is obtained by using (23). Both the laser
wavelength A\ and the spectra width ¢ were found to vary
as a Gaussian distribution for our laser population. We
have however assumed that the distribution of A is a trun-
cated Gaussian in the range 1308 + 5 nm. This would be
the case in practice if lasers are selected to have their
wavelengths in that range.

The Monte Carlo simulations were performed for a
sample size of 1000. The power penalty for each sample
point was calculated by using (13) and (20). The results
provide us with the distribution of power penalties. The
distribution is nearly log-normal. The median penalty is
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found to be negligible ( =0.02 dB). However, the vari-
ation is quite large, with each change of one standard de-
viation producing an order of magnitude change in pen-
alty. Still, the power penalty is below 0.5 dB in 92 percent
of the cases. The transmitters for which the dispersion
penalty exceeds the system-allocated margin can be iden-
tified through the BER measurements using a fiber with
nearly worst-case parameters. Our simulations results
show that a wavelength window of 5 nm centered at the
ZDWL (A = A\p + 5 nm) can be used for 1.7 Gbit /s
with only a few percent yield drop in transmitters.

VI. CONCLUSIONS

We have analyzed the effect of intersymbol interference
and mode-partition noise on the performance of high-
speed lightwave system operating near the zero-disper-
sion wavelength of single-mode fibers. It is found that the
mode-partition noise is the limiting mechanism and sets
the ultimate limit on the tolerable range of laser wave-
lengths. For a 1.3-um system operating at 1.7 Gbit /s, the
acceptable range is \p £+ 5 nm. The theory was compared
with the experiments by measuring the bit-error rates fot
four lasers as a function of the bit rate. The Gaussian-
spectrum assumption is found to underestimate the powet
penalty. We performed Monte Carlo simulations to study
the overall system performance. Although we have con-
sidered only 1.3-um systems, the analysis can be readily
applied to the case of 1.55-um systems making use of
dispersion-shifted fibers and multimode semiconductor
lasers.
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