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The theory of nondegenerate four-wave mixing (NDFWM) in semiconductor lasers and amplifiers is presented with
particular emphasis on the physical processes that lead to population pulsations. In the case of nearly degenerate
four-wave mixing, modulation of the carrier density at the beat frequency Q of the pump and probe waves creates a
dynamic population grating whose effectiveness is governed by the spontaneous carrier lifetime T-. Such a grating
affects both the gain and the refractive index of the probe wave. In particular, the probe gain exhibits features
analogous to those observed in a detuned atomic system arising from the optical Stark effect. Both the gain grating
and the index grating contribute to NDFWM, with the dominant contribution coming from the index grating. For
detunings such that QrT >> 1, population pulsations correspond to modulation of the intraband population arising
from spectral hole burning. Our results show that NDFWM is then limited by the phase-mismatch effects governed
by the transit time r rather than by the intraband population-relaxation time T,. Significant NDFWM is expected
to occur for detunings up to about 300 GHz for typical transit-time values of 3 psec in semiconductor lasers.

1. INTRODUCTION

The phenomenon of four-wave mixing has been studied ex-
tensively in recent years, particularly in relation to its appli-
cation to optical phase conjugation.'- 3 The previous work
on degenerate four-wave mixing in atomic, molecular, and
semiconductor media is reviewed in Ref. 1. In most nonlin-
ear media, the poor efficiency of the four-wave mixing pro-
cess is often the limiting factor. Two ways to enhance the
efficiency are (1) the use of an intracavity geometry- 6 and
(2) the use of an amplifying nonlinear medium rather than
an absorbing one.7-9 Semiconductor lasers are attractive,
since both of these features are available in a compact de-
vice. More specifically, the cleaved facets form a Fabry-
Perot cavity leading to an intracavity geometry, whereas the
electrical pumping provides an amplifying semiconductor
medium at relatively low currents (-10 mA). Furthermore,
the pump beams can be generated internally by pumping the
semiconductor laser above its threshold. Indeed, recent
experiments demonstrated that nondegenerate four-wave
mixing (NDFWM) inside a semiconductor laser can be high-
ly efficient at pump powers of only a few milliwatts.10 -12

The initial attempts to understand the experimental re-
sults modeled the semiconductor-laser medium as an invert-
ed two-level system.13"14 Such an approach, although capa-
ble of explaining the qualitative behavior, has several limita-
tions. To mention a few, (1) the parameters of the two-level
system cannot be related directly to the known device pa-
rameters, (2) spatial effects related to the laser waveguide
are not accounted for, and (3) the effects of carrier-induced
index changes are not included. The last limitation is par-
ticularly important for semiconductor lasers, in which a
change in the carrier population (electrons or holes) affects
not only the optical gain but also the refractive index. In a
recent letter15 I outlined a theory of NDFWM in semicon-
ductor laser media that accounts properly for these effects.
The objective of this paper is to provide a comprehensive
account of the theory with particular attention being paid to

the phenomenon of population pulsations in semiconductor
lasers and amplifiers.

Population pulsations were first studied in the context of
multimode gas lasers1617 and have recently been used to
explain the dynamic instabilities of single-mode lasers.18
Bogatov et al.19 were apparently the first authors to point
out that the inclusion of population pulsations (modulation
of the carrier density) leads to an asymmetric interaction
between the longitudinal modes of a semiconductor laser.
As we shall see, the same effect is at the origin of NDFWM in
semiconductor lasers. More specifically, modulation of the
carrier density at the beat frequency Q = - w of the pump
and probe waves creates gain and index gratings. Diffrac-
tion of the counterpropagating pump wave from these dy-
namic gratings generates a conjugate wave at W2 = 2 wo - wl.

The effectiveness of the gratings is governed by the sponta-
neous carrier lifetime ( 2-3 nsec). Since the carrier
density cannot be modulated at frequencies much higher
than ri', NDFWM ceases to occur when the pump-probe
detuning exceeds a few gigahertz (IQIT» >> 1).

For semiconductor lasers, however, an additional mecha-
nism of population pulsations should be considered; it can
lead to significant NDFWM even when the pump-probe
detuning exceeds 100 GHz.' 0 The physical phenomenon
behind highly NDFWM is spectral hole burning,2 1 22 mani-
fested as a nonlinear reduction of the optical gain by a few
percent at operating powers of a few milliwatts.2 3-2 6 Spec-
tral hole burning is governed by the intraband relaxation
processes occurring at a fast time scale (typically <1 psec).
As a result, the dynamic gain and index gratings remain an
effective source of NDFWM for beat frequencies of Q - 1
THz. The important point to note is that population pulsa-
tions in this context do not refer to actual modulation of the
carrier density but rather to modulation of the occupation
probability of carriers within a band. In other words, even
though the intraband population pulsates, the carrier densi-
ty is unable to respond to such pulsations because of the
relatively slow interband recombination processes governed
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by the spontaneous carrier lifetime r,. Nonetheless, the
resulting gain and index gratings can lead to efficient
NDFWM.

The theory of NDFWM is developed by using the density-
matrix approach, in which the semiconductor medium is
modeled as an ensemble of collision-broadened two-level
systems.2 3-26 Even though there is some concern about the
validity of the Bloch equations in solids, we assume that the
dynamics of each two-level system is described well by them.
In general, modulation of both the interband and the intra-
band populations should be considered for an accurate de-
scription of NDFWM. However, depending on the amount
of pump-probe detuning, the analysis can be simplified in
the two limiting cases. For IQIr > 1, the interband modula-
tion can be ignored, as the carrier density cannot respond at
such fast time scales. For IQIrT S 1, the interband effects
dominate over the intraband modulation, and the latter can
be neglected.

This paper is organized as follows. In Section 2 we con-
sider the case of nearly degenerate four-wave mixing in
which the pump-probe detuning is relatively small (QIT <
1). It is then possible to employ the rate-equation approxi-
mation. Population pulsations are taken into account by
solving the carrier-density rate equation with a time-depen-
dent term oscillating at the beat frequency Q. The general
formalism presented in Section 2 permits us to consider the
nonlinear interaction among pump, probe, and conjugate
waves inside the active region of a semiconductor laser and
to obtain the induced polarization at their respective fre-
quencies. In Section 3 we consider the optical Stark effect,
and we obtain the probe susceptibility and study how it is
affected by the intense pump wave. Both the probe gain
and the probe index are affected by the pump wave. In
particular, the probe gain is considerably enhanced for spe-
cific values of pump-probe detunings.

In Section 4 we give the theory of nearly degenerate four-
wave mixing, and we obtain the coupled-wave equations for
the probe and conjugate waves. These equations are solved
for the specific case of a semiconductor laser operating below
threshold as a traveling-wave amplifier. Because of the
amplifying nature of the nonliner medium, a conjugate re-
flectivity in the range of 100-1000 can easily be obtained at
incident pump powers of about 1 mW. Population pulsa-
tions lead to considerable enhancement of the probe trans-
mittance for detunings such that QIrs 1. We discuss in
detail the spectral features arising from population pulsa-
tions both for the conjugate reflectivity and for the probe
transmittivity. In Section 5 we consider highly NDFWM
and show that the modulation of intraband modulation in
semiconductor lasers can generate conjugate waves even for
pump-probe detunings exceeding 100 GHz. The range of
detunings in this case is limited by the phase mismatch
rather than by the medium response time. Finally, the
results are summarized in Section 6.

2. GENERAL FORMALISM

In this section we present the theory behind the nearly
degenerate four-wave mixing in semiconductor lasers. Only
collinear geometry is considered, since the thin active region
(-0.1-0.2 ,um) of semiconductor lasers requires that the
pump, probe, and conjugate waves propagate parallel to one

another in order to maximize the interaction length. We
assume that the laser structure supports only the fundamen-
tal waveguide TE mode with the transverse distribution
U(x, y). This is generally the case for strongly index-guided
lasers employing a buried-heterostructure design.2 7 If all
fields remain linearly polarized during their interaction, the
propagation characteristics can be obtained by solving the
scalar wave equation

V2 2 2E 1 2 P
c2 2 coc2 2

(2.1)

where n is the refractive index, Eo is the vacuum permittivity,
and c is the velocity of light in vacuum. The total intraca-
vity field E is given by

E(x, y, z, t) = U(x, y) E Ei(z) exp(-iwjt),
I 

(2.2)

where j = 0, 1, 2 for pump, probe, and conjugate waves,
respectively.

The evaluation of the induced polarization P is in general
fairly involved and requires knowledge of the band-struc-
ture details. In the density-matrix approach,23 -26 each pair
of the conduction-band and valence-band states participat-
ing in band-to-band transitions is modeled as a two-level
system, and P is calculated by summing over all possible
pairs with an appropriate density of states. Although such a
detailed description is necessary for the discussion of
NDFWM resulting from spectral hole burning (see Section
5), a simple model can be used when the pump-probe detun-
ing

(2.3)Q = 1 COO = CO - 2

is relatively small, so that IQIT, 5 1, where r, is the spontane-
ous carrier lifetime. In this model, the induced polarization
is calculated by using

(2.4)P = eox(N)E,

where the susceptibility2 7

x(N) = - ( + i)g(N)
Co

and the gain is assumed to vary linearly with the carrier
density N, i.e.,

g(N) = a(N-No). (2.6)

Here a is the gain coefficient (a 2 X 10-16 to 3 X 10-16 cm2),
and No is the carrier density at which the active region
becomes transparent (No 1 X 1018 to 2 X 1018 cm-3). The
parameter fi in Eq. (2.5) accounts for the carrier-induced
index change that occurs invariably whenever the gain
changes. It is often referred to as the linewidth enhance-
ment factor and has typical values in the range 3-6 depend-
ing on the operating wavelength of the semiconductor la-
sers. 27-2 9

The physical origin of the carrier-index change is related
to the asymmetric nature of the gain spectrum in the semi-
conductor laser. For other laser systems that have a sym-
metric gain profile, f = 0. This feature distinguishes semi-
conductor lasers from gas and solid-state lasers.

(2.5)
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The carrier density N at an injected current I is obtained
by solving the rate equation

dN= I N g(N) IE12 + DV2N,
dt qV rs hcwo

(2.7)

where q is the electron change, V is the active volume, and D
is the diffusion coefficient. Equation (2.7) can be derived
from the density-matrix equations (see Section 5) in the
rate-equation approximation.2 3 We have assumed for sim-
plicity that the gain g(N) is the same for all waves, an as-
sumption justified since the pump-probe detuning is much
smaller compared with the gain-spectrum bandwidth (IIT 2
<< 1). The solution of Eq. (2.7) is complicated because of the
diffusion term. The main effect of carrier diffusion is to
wash out spatial holes burned by the counterpropagating
waves, as the diffusion length ( Dr 2-3 Mm) is much larger
than the half-wavelength /n. Carrier diffusion in the
transverse dimensions is restricted, since the transverse
waveguide dimensions are generally smaller than the diffu-
sion length. Thus, to a good degree of approximation, N can
be assumed to be spatially homogeneous, satisfying the sim-
pler rate equation

dN = I - N _ g(N) (IEI)2, (2.8)
dt qV r8 hw0

where angle brackets denote the averaging operation over
the active volume.

To solve Eq. (2.8), we substitute E and g(N) from Eqs.
(2.2) and (2.6) and assume an approximate solution of the
form

N(t) = N + [AN exp(-it) + c.c.],

P(x, y, z, t) = U(x, y) E Pj(z) exp(-iwjt).

j

We then obtain

Po(z) = co Ag (N) Eo(z),

P,(z) = e A [g(N) El(z) + aANE0 (z)],

P2(z) = eo A [g(N) E2(z) + aANEo*(z)],

where

A = -(nc/co)(3 + i)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

and

(2.19)g(N) = a(N-NO) = (ar8 /q -12 aNO

is the gain experienced by the optical fields when the current
I is injected into the active region of the semiconductor laser.

This completes the general formalism. For its application
we should determine whether the laser is operating below or
above threshold. The threshold condition of a semiconduc-
tor laser is given by27

rg(N) = gth = am + -int, (2.20)

where gth is the threshold gain of the lasing mode, ait is the
internal loss, and

am = 2L ln(R )
(2.9)

(2.21)

where N is the static carrier density and AN accounts for
population pulsations. The solution of Eq. (2.8) yields the
following expressions 30 for N and AN:

-N I(=8 /q V) + NoIEo12/Ps

1 + E01
2/P,

C(N - No ) (Eo*El + EoE 2*)/Ps
AN =--

(1 + 1E012/P, - Q)

(2.10)

(2.11)

where the overbar denotes averaging in the z direction,

P= hwow/(ar8)

is the saturation intensity (1 MW/cm2 ), and

: j IU(x,y)12dx dy

J J I U(x, y) 12dx dy

(2.12)

is the mirror loss for a cavity of length L and facet reflectivi-
ties R, and R2. Using Eqs (2.19) and (2.20), the average
intracavity pump intensity in the above-threshold regime is
given by

MEOg2 g_ I - th

Ps gth Ith - IO

where the small-signal gain is

g = raN0(I/ 0 - 1),

the threshold current is

(2.22)

(2.23)

(2.24)Ith = IO + qVgth/(a rr),

(2.13)

r represents the fraction of mode energy confined within the
active region of width w and thickness d and is often referred
to as the confinement factor.27 The overlap factor C is
introduced phenomenologically and results from the non-
plane-wave nature of the waveguide mode in semiconductor
lasers.19 Typically, = 0.3-0.5 and C = 0.5-1.

The induced polarization P is calculated by using Eqs.
(2.4)-(2.6) with E and N given by Eqs. (2.2) and (2.9). It is
convenient to expand P into its frequency components in a
manner similar to that of Eq. (2.2), i.e.,

and

I = qVN 0/-r (2.25)

is the current needed to achieve transparency. At I = Io the
carrier density No just overcomes the material loss; popula-
tion inversion occurs for I > Io. At I = Ith the small-signal
gain is large enough to balance the cavity losses, and the laser
starts to oscillate.

Equations (2.16) and (2.17) show that the induced polar-
ization for the probe and conjugate waves has an additional
contribution resulting from population pulsations (the term
proportional to AN). This term is responsible for the en-
hanced probe gain as well as for four-wave mixing. We
consider the two phenomena separately in Sections 3 and 4.
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3. EFFECT OF POPULATION PULSATIONS
ON THE PROBE GAIN

When an intense pump wave propagates in a nonlinear me-
dium, it can modify the medium's response to the extent
that the propagation characteristics of a weak probe become
dependent on the pump intensity. In particular, the probe
may experience gain even in an absorbing medium for specif-
ic pump-probe detunings whose values depend on the pump
intensity. This effect is related to the optical Stark effect
and has been well studied in the context of atomic sys-
tems.3 0-3 3 In this section we study how the refractive index
and the gain coefficient of a probe wave are affected by the
intense pump propagating inside the semiconductor laser.
If the laser is operating above threshold, the lasing mode
plays the role of the pump, and only the probe needs to be
injected from outside.

To obtain the induced polarization at the probe frequen-
cy, we substitute AN from Eq. (2.11) into Eq. (2.16) and
obtain

P1 = eo(xpEl + XFWME2*), (3.1)

where

xp=A ()(1 1 + PO- iTg )

XFwM = -Ag(N) C(E 2/P,)1 + Po - -,

(3.2)

(3.3)

XFWM is responsible for NDFWM as discussed in Section 4.
Here we discuss the qualitative and quantitative features of
Xp. In Eq. (3.2) the pump intensity

PO = IJ 0I2/PS

0'

0'z
cl:

Ld
m
0
a:

(3.4)

is normalized to the saturation intensity P, for simplicity of
discussion. The probe susceptibility Xp changes the dielec-
tric constant at the probe frequency by AE, which can be used
to calculate the index change An and the probe gain gp by
using the relation

X = e = 2n[An - igp(c/2wo)]. (3.5)

enhancement of 50% is predicted when the pump intensity
equals the saturation intensity (P0 = 1). Both the location
and the amplitude of the gain maximum change with the
pump intensity Po. The detuning Qp corresponding to the
maximum gain can be found by setting dgp/dQ = 0. Using
Eq. (3.7), we obtain

Qp = -1 + [(1 + 2)1/2 + 1].
fl

3Ts
(3.8)

The index change An is, by contrast, reduced, with the maxi-
mum reduction occurring near Q = 0 (see Fig. 2).

The physical origin of the asymmetric line shape of the
probe gain is related to the fact that a change in carrier
density affects both the gain and the index of the active
region in semiconductor lasers. Thus population pulsations
create the gain and index gratings simultaneously; the rela-

-10 -5 0 5

DETUNING, QTS

10

Fig. 1. Variation of the probe gain (normalized to its value expect-
ed in the absence of the pump wave) with the normalized pump-
probe detuning Or, for several pump intensities P0 (normalized to
the saturation intensity). For Ts = 2 nsec, Qr = 1 corresponds to a
detuning of about 80 MHz.

Note that gp is the small-signal gain of the probe wave in the
presence of the pump. Using Eqs. (2.18), (3.2), and (3.5), we
obtain

CP 0(1 + Po - QT/3) 

An= [ -(1 + P0 )2 + (QTr) 2 ,

[ CP0(1 + P0 + rQTS)

= g(N) -(1 + PO)2 + (QT) 2

(3.6)

(3.7)

where An = -g(N)(c/2co) is the carrier-induced index
change associated with the gain g(N). The second term
inside the square brackets in Eqs. (3.6) and (3.7) has its
origin in population pulsations. To illustrate how the pump
wave modifies the index change An and the probe gain gp,
Figs. 1 and 2 show their variation with the pump-probe
detuning QTS for several pump intensities P0 with ,B= and C
= 0.5.

As Fig. 1 clearly shows, the probe gain gp has an asymmet-
ric line shape. More specifically, gp is enhanced compared
with its value g(N) for < 0 and is reduced for Q > 0. An

1.1

0
a

-.1

CD
2

C.
X
Lu
0
2
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DETUNING, QTS

10

Fig. 2. Variation of the index change (normalized to its value
expected in the absence of the pump wave) with the normalized
pump-probe detuning Qr for several pump intensities.
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Fig. 3. Effect of the linewidth enhancement factor a on the probe-
gain spectrum at a fixed pump intensity equal to the saturation
intensity (P0 = 1).

tive contributions of the two gratings are governed by the
linewidth enhancement factor /3. To see how this parameter
affects the probe gain, in Fig. 3 we have shown the probe-
gain spectra for several values of a3 at a fixed pump intensity
(P0 = 1). For A = 0, the index-grating contribution vanishes;
the resulting line shape is symmetric, with a dip at Q = 0.
For nonzero values of /3, the line shape becomes asymmetric,
with the maximum gain occurring at Q, given by Eq. (3.8).
The increase in the peak height is due to an increasingly
large contribution of the index grating. The relative contri-
bution of the index grating varies as OQTI(1 + P0 ), as shown
by Eq. (3.7), and can significantly exceed that of the gain
grating for certain values of the detunings Q.

It is interesting to compare the probe-gain characteristics
in semiconductor lasers with those expected for two-level
systems.31 -34 Of particular interest is the case of an atomic
system in which the pump wave is detuned from the atomic
resonance by A. The absorption spectrum shows that the
gain (negative absorption) can occur at a pump-probe de-
tuning Q2L such that

Q2L = (A
2

+ O 
2
)

1
/2, (3.9)

where QR = MtIE0I/h is the Rabi frequency; R is sometimes
referred to as the generalized Rabi frequency.3 4 This phe-
nomenon is understood in terms of the optical Stark effect
that leads to a shift of the atomic levels by Q2L in the pres-
ence of the pump field. For A = 0, the shift is proportional
to E01. However, for A >> R, the shift becomes linear in the
pump intensity E012, since Q2L can be approximated by

(2L 2_- A 1 2A2 )(3.10)

A comparison of Eq. (3.8) and relation (3.10) shows that
semiconductor lasers behave in a manner analogous to that
of detuned atomic systems with the effective detuning

A = - [(1 + /2)1/2 + 1]/(#T.r). (3.11)

The parameter / controls the extent of detuning. For >> 1,

1Al - -r,1. Thus maximum detuning is governed by the
spontaneous carrier lifetime.

The analogy between a semiconductor laser and a detuned
atomic system suggests that the enhancement of probe gain
in the vicinity of Qp can be interpreted in terms of the optical
Stark effect. The analogy should not, however, be pushed
too far. In particular, the concept of the Rabi frequency for
a semiconductor laser is not necessarily valid because of the
obvious complications arising from the band structure.

4. NEARLY DEGENERATE FOUR-WAVE
MIXING

As was mentioned earlier, population pulsations not only
affect the probe susceptibility but also are responsible for
NDFWM. This can be seen from Eq. (3.1) by noting that
the induced polarization at the probe frequency has a contri-
bution arising from the nonlinear interaction between the
pump wave and the conjugate wave. Such a contribution
couples the probe wave and the conjugate wave and can
generate the conjugate wave at W2 = 2 0- wi even if no field
at that frequency is incident upon the semiconductor laser.
The study of NDFWM consists of obtaining the coupled-
wave equations for the probe wave and the conjugate wave
and solving them subject to appropriate boundary condi-
tions at the laser facets. We perform such a procedure in
this section.

We substitute Eqs. (2.2) and (2.14) into Eq. (2.1), multiply
by U*(x, y), and integrate over the transverse dimensions x
and y. This leads to the one-dimensional wave equation

d2Ej + kEj = _j r
dz 2 J EOc 2 i

(4.1)

where kj = inj 1/c and n is the effective mode index corre-
sponding to the waveguide mode U(x, y). The polarization
components Pj are given by Eqs. (2.15)-(2.17). The confine-
ment factor F appears in Eq. (4.1) since Pj = 0 outside the
active region of the semiconductor (because N = 0). 
accounts for the spatial effects related to the non-plane-
wave nature of the interacting waves.

To obtain the coupled-wave equations from Eq. (4.1), we
must consider the specific experimental configuration em-
ployed for NDFWM. In the case of semiconductor lasers
the interaction is collinear10- 2 because of the relatively
small dimensions of the active region. In the most general
case we must consider the forward and backward compo-
nents of the pump, probe, and conjugate waves leading to a
set of six wave equations coupled by the mixing of the for-
ward and backward components at the partially reflecting
laser facets. Such a problem requires numerical solution;
the numerical approach is necessary when the semiconduc-
tor laser operates in the above-threshold regime. However,
the main qualitative features of NDFWM can be obtained in
a simpler manner when the semiconductor laser operates
below threshold as an amplifier. The analysis is particularly
simple if we consider the case of a traveling-wave amplifier
whose facets have negligible relectivities (by the use of an
antireflection coating). More specifically, we assume that
two counterpropagating pump waves are incident at the two
facets of an amplifier of length L and that a probe wave
(shifted by Q from the pump-wave frequency) is incident at
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the left facet at z = 0. In the collinear geometry, the pump,
probe, and conjugate fields are given, respectively, by

E = PS/2 [Ef(z) exp(ikoz) + Eb(z) exp(-ikoz)], (4.2)

El = P 1 12 [Al(z) exp(iklz)], (4.3)

E2 = p,112[A2(z) exp(-ik2z). (4.4)

The use of Eqs. (4.2)-(4.4) in Eq. (4.1), together with Eqs.
(2.15)-(2.17), leads to the following set of equations:

dEf
d = -aoEfdz

dEb
d = Eb,

dA,
dz = -1 aAl + iKlA2* exp(iAkz), (4.6)

dA 2 *
d = a2*A2* + 'K2 Al exp(-i\kz), (4.7)
dz

where the pump-wave absorption coefficient is

(1 - ifto
° (1 -i 0 (4.8)

and go is the small-signal gain related to the device current I
through Eq. (2.23). The absorption coefficient aj and the
codpling coefficient Kj are given by

(1 + Po + iTs)

(2CE(z)Eb(z))
ij = 1o + P + iQ-s),

(4.9)

lEf(0)1 = Eb(L)12
= Pin. (4.13)

We solve Eq. (4.5) subject to the above boundary conditions
and carry out the integration in Eq. (4.12). The result is

g0L P0o g0L _ 1
Pin = 2 1 °p0 [expl +°)- 1] (4.14)

For given values of Pin and goL, Eq. (4.14) can be used to
obtain P0 . Before proceeding with the solution of the cou-
pled-wave equations, we note from Eqs. (4.5) that Ef(z)Eb(z)
is constant (z independent) and can be replaced by

Ef(z)Eb(Z) = Pin exP[2(l + P) (4.15)

in Eq. (4.10) by using Eq. (4.13). Thus both aj and Kj are
independent of z in the coupled-wave Eqs. (4.6) and (4.7).

Because of their linearity, Eqs. (4.6) and (4.7) can be
readily solved. Under typical experimental conditions only
the probe wave is incident at z = 0, and the conjugate wave is
generated without any input. Using the boundary condi-
tion A2*(L) = 0, the conjugate reflectivity R and the probe
transmittance T are given by35,36

A2*(0) 2
A,(0) P

A,(L) 2

Al(o) p

where

(4.10)

where a plus and a minus are chosen for j = 2 and j = 1,
respectively. In Eqs. (4.6) and (4.7),

Ak = k2-k, = - 2Q/c (4.11)

is the wave-number mismatch resulting from the nondegen-
erate nature of the four-wave mixing process.

In Eqs. (4.8)-(4.10), Po = 1E012/P5 is the average intracavity
pump intensity normalized to the saturation intensity. By
using Eq. (4.2), it can be written as

Pw = L J [IEf(z)I 2 + IEb(z)12 ]dz, (4.12)

where we have neglected the interference term resulting
from spatial hole burning. As mentioned earlier, this is
justified for semiconductor lasers, since carrier diffusion
tends to wash out the spatial holes in the carrier population
burned by the counterpropagating pump waves. The aver-
age over the amplifier length L in Eq. (4.12) is a consequence
of our assumption of spatially homogeneous carrier density
in Eq. (2.8). This assumption can be relaxed by allowing Po
to be a slowly varying function of z along the amplifier
length, but only at the expense of considerable complexity,
since Eqs. (4.5)-(4.7) must then be solved numerically. By
treating Po as independent of z, the coefficients aj and Kj are
constant, and Eqs. (4.6) and (4.7) can be readily solved.

We can relate Po to the incident pump intensity Pin by
using Eqs. (4.5) and (4,12). If we assume that the, pump
beams of equal intensity are incident upon the two ends of
the amplifier,

K2sin(pL) 2

cos(pL) + a sin(pL)

p exp(-aL) 2

cos(pL) + a sin(pL)

p = (K2* - a2
)12

,

a = (a, + a2* + ik)/2,

a = (a, - a2 * - iAk)/2.

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

We have studied the variation of R and T with the normal-
ized pump-probe detuning Qr for a range of experimentally
accessible parameters. The two parameters that can be
experimentally controlled are the small-signal gain go (var-
ied by changing the device current I) and the incident pump
intensity Pin. The only other parameters that must be spec-
ified are the overlap factor C and the linewidth enhancement
factor 3. We choose C = 0.5 and ,B = 5 as typical values for
InGaAsP lasers. Since AkLI 10-3 from Eq. (4.11) for
detunings Mr, - 1, the phase mismatch is negligible in the
case of nearly degenerate four-wave mixing. The available
small-signal gain before the laser reaches threshold depends
on the facet reflectivities. If we take aintL = 1 and R, = R2 =
1% in Eqs. (2.20) and (2.21), the threshold is reached for goL
= 5.6; a value of goL 4 is easily achieved. In order to relate
Pin to the actual pump powers, we need an estimate of the
saturation power. By using Eq. (12) and assuming a mode
cross section of 1 ,um2, we estimate a saturation power of
about 5 mW. Thus Pin = 0.2 corresponds to an incident
pump power of 1 mW.

Figure 4 shows the dependence of the reflectivity and
transmittance spectra (R and T as functions of Qr) on the
pump power Pin for goL = 4. The reflectivity spectrum is
nearly Lorentzian, and its peak height increases rapidly with
Ph,, reaches a maximum value, and then decreases with a
further increase in Pin because of the saturation effects. For
the parameter values used in Fig. 4, R exceeds 1000 for Pin 
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103-1 | | | | | | 1 | | | | | | I | | 1 E | I | | 1 | 1 | and reduces T through processes such as Auger recombina-
tion.

-g0OL = 4 - The transmittance spectra in Fig. 4 show the dependence
P - 2 of probe amplification on the pump-probe detuning. In the

in IO. absence of population pulsations, xi =0 and al = ao. From
> 102 Eq. (4.8), the probe transmittance To in that case is given by

A1(L) 2 (g 0 L\
> 0 105\ 0 To = | l( ) = exp 1 (4.22)

I.- ~~~~~ ~ ~~~~~~~~~~~~~~~~A1(0) I +Po,
0

-J Thus, the probe transmittance is expected to be detuningU-
10= _ // \\- independent in the absence of population pulsations. This

is indeed the case in Fig. 4 for lb1 >> 1. However, consider-
_ 1. \ - able enhancement of To can occur when the probe is detuned

on the low-frequency side of the pump such that = Qp
where QP is given by Eq. (3.8). An enhancement by a factor

1 of 50 can be seen in Fig. 4 for Pi, = 0.2. The enhancement
-6 -4 -2 0 2 4 6 factor decreases with a further increase in the pump power

103 " " I,, | | | 1 i I I I | { I I I I I I I becauseofthesaturationeffects. Thephysicalmechanism
behind the enhancement is the one discussed in Section 3

gAL = 4 that leads to an enhancement of the probe gain, with a
= 5 maximum enhancement occurring at Qp (see Fig. 1).

F- 102 - | | -As mentioned earlier, both the gain grating and the index
Id

U)

*i1 Pi, = 0.2

102

-6 -4 -2 0 2 4 6 - _U-

DETUNING, QTS \

Fig. 4. Variation of the conjugate reflectivity R and the probe
transmittance T with the normalized pump-probe detuning r, for
several incident pump intensities when the semiconductor laser
operates as a traveling-wave amplifier with gL = 4. /

0.1 A | iI|||| || 1 1 
0.1. A peak reflectivity of about 50 can be obtained even for -6 -4 -2 0 2 4 6
Pin=0.01(pumppower 50yW)becauseoftheamplifying 103 " a | | | | | | | I' I, I I | l l l
nature of the nonlinear medium. This is in agreement with _
the experimental result12 on a GaAs amplifier where R = 35 A 0L=4
was observed at a pump power of 70 AtW (since the laser - Pin = 0.2
facets were uncoated, gL 2 in that experiment, rather 102
than the value of 4 assumed here). Higher reflectivities 
were obtained in a recent experiments with an InGaAsP 0 5
amplifier whose facets were antireflection coated to increase <
goL. The spectral width of the reflectivity profile can be
estimated by using Eqs. (4.10) and (4.16) and by noting that z 10
R IK22 at low pump powers. The spectrum is Lorentzian, \
with a width (FWHM) of15

I-

1 + PO0 \Av= +Po. (4.21)

As expected, the width increases linearly with the pump |_ _,,_I,,_I,

power because of pump-induced power broadening. Mea- -6 -4 -2 0 2 4 6
surements of A can lead to an accurate estimate of the DETUNING, SITS
spontaneous carrier lifetime s. Note that Ts depends on the Fig. 5. Same as for Fig. 4 except that the effect of linewidth en-
small-signal gain of the amplifier. This is so because an hancement factor fi on the reflectivity and transmittance spectra is
increase in go increases the steady-state carrier density N shown at a fixed pump intensity.
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Fig. 6. Same as for Fig. 4 except that the effect of small-signal gain
on the reflectivity and transmittance spectra is shown for Pin = 0.1
and a = 5.
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Fig. 7. Reflectivity spectra under conditions identical to those of
Fig. 5 except for the larger values of the linewidth enhancement
factor d3.

grating created by population pulsations contribute to the
NDFWM process. The relative contribution of the two
gratings is governed by the linewidth enhancement factor .
This is seen more quantitatively in Fig. 5, in which the
reflectivity and transmittance spectra are plotted for several
values of a with Pin = 0.2 and goL =4. When 3= 0, only the
gain grating contributes to the NDFWM process, and the
conjugate reflectivity R is relatively small (R < 0.2). How-
ever, it increases rapidly with an increase in ; for the param-
eter values used in Fig. 5, R 400 for A = 5. Clearly, the
index-grating contribution to NDFWM dominates in the
case of semiconductor lasers. The same conclusion holds for
the transmittance T; the enhancement factor for T in Fig. 5
increases with /3. More importantly, the transmittance
spectrum is symmetric for = 0 (when only the gain grating
contributes) and becomes asymmetric for a 3- 0. Thus the
carrier-induced index change is responsible for the asym-
metric probe transmission with respect to the pump-probe
detuning,15 as is also evident from Fig. 3. The theoretical
prediction of asymmetric probe transmission has been veri-
fied in a recent experiment by using an InGaAsP amplifier.3 7

So far we have assumed that goL = 4. Figure 6 shows the
dependence of the reflectivity and transmittance spectra on
the small-signal gain for the values Pin = 0.1 and a = 5. As is
expected, R increases rapidly with an increase in goL. How-
ever, after a certain value of g0L, the peak reflectivity de-
creases, and the spectrum develops a two-peak structure
with a central dip. The central dip can occur at lower values
of g0L, but larger values of a are necessary. This is shown in
Fig. 7, in which the reflectivity spectra are plotted by using
parameter values that are identical to those used for Fig. 5
except for the higher values in the range 8-10. Although
some semiconductor lasers may have such large values of ,
typical values of are in the range 4-6.29 Thus it appears
that an experimental observation of the double-peak reflec-
tivity spectrum would require relatively large values of g0L,
which may be achieved by reducing the facet reflectivities to
<1%.

The origin of the central dip in Figs. 6 and 7 can be
understood by noting that the variation of R with Q depends
on how K21 and Re(a) vary with the detuning Q. In particu-
lar, a dip can occur at Q = 0 if Re(a) is more sharply peaked
than IK21 around Q = 0.38 A dip in the reflectivity spectrum
can also result from the pump imbalance,3 8 39 i.e., when the
incident pump powers at the two ends of the amplifiers are
different from each other. Considerable structure in the
reflectivity spectrum occurs for two-level systems when the
pump frequency is detuned from the atomic resonance.3 4 36

Semiconductor lasers, in effect, behave as a detuned system,
with the parameter /3 controlling the amount of detuning, in
agreement with our discussion in Section 3.

5. HIGHLY NONDEGENERATE FOUR-WAVE
MIXING

The four-wave mixing discussed in Section 4 ceases to occur
when the pump-probe detuning exceeds a few gigahertz (UT,
>> 1). The reason is that the carrier density is unable to
respond at time scales much faster than the spontaneous
carrier lifetime ( 2-3 nsec). As a result, the gain and
index gratings created by the population-pulsation mecha-
nism discussed in Section 2 become ineffective for Q >> T,-1.

-5 0 5

Govind P. Agrawal



Vol. 5, No. 1/January 1988/J. Opt. Soc. Am. B 155

In this section we consider another mechanism of population
pulsations that can lead to four-wave mixing even for pump-
probe detunings exceeding 100 GHz.20 The physical mecha-
nism behind highly NDFWM is spectral hole burning mani-
fested as a nonlinear suppression of the optical gain in semi-
conductor lasers.22 -2 6 Since spectral hole burning is gov-
erned by the intraband relaxation processes occurring at a
fast time scale (T1 < 1 psec), the dynamic gratings remain an
effective source of NDFWM for beat frequencies up to -1
THz. The efficiency of the NDFWM process at such high
pump-probe detunings is limited by the phase mismatch, in
contrast to the case discussed in Section 4, in which it was
limited by the carrier lifetime r,.

The theoretical description of spectral hole burning re-
quires the density-matrix approach. More specifically, each
set of the conduction-band and valence-band states partici-
pating in the band-to-band transitions is modeled as a two-
level system whose contribution to the induced polarization
is calculated with proper consideration of population pulsa-
tions resulting from pump-probe beating. The total polar-
ization is obtained by summing over all such contributions
and requires a knowledge of the density of states associated
with the two bands. Since the procedure is similar to that
used for two-level atomic systems32-36 and has been dis-
cussed in detail elsewhere,23-26 it is described only briefly
here. By the method of Kazarinov et al.,2 4 we assume that
the valence-band population remains in thermal equilibri-
um throughout the nonlinear interaction. This is justified,
since the relaxation time T, is much shorter for valence-
band electrons than for conduction-band electrons because
of the higher density of states associated with the valence
band. The density-matrix equations are then of the form

dP1 + PT = 11 (P12 - P2 1)E, (5.1)dt'T ih

d P12 + (T + P12 = A (P11 - P 2 2)E, (5.2)

where AL is the dipole moment and CT is the transition fre-
quency. T is the population-relaxation time of conduction-
band electrons, and T2 is the dipole-relaxation time. They
have been introduced phenomenologically, as in the case of
the Bloch equations.' 7 In the case of semiconductor lasers,
T, and T2 are governed by the intraband relaxation process-
es and have typical values of T, 0.3 psec and T 0.1
psec.23

-26

The induced polarization is obtained by summing over all
possible band-to-band transitions, i.e.,

P = J 1 (wT)D(WT)(P12 + P2 1)dWT, (5.3)

where D(WT) is the joint density of states per unit volume.
In general, the dipole moment ,u is also a function of WT. To
evaluate p, we substitute the total field E from Eq. (2.2) in
Eqs. (5.1) and (5.2). Because of pump-probe beating, the
general solution of Eq. (5.1) is of the form

p1 = 11 + Apl,(O) + [Ap,,(Q) exp(iQt) + c.c.]. (5.4)

Physically, p1, represents the occupation probability of the
conduction band state participating in the transition (the
Fermi factor of the conduction-band electrons), and 11 is its
value in thermal equilibrium (in the absence of optical

fields). In the presence of a strong pump field, the occupa-
tion probability changes: Apul(O) is the static change in-
duced by the pump wave alone, whereas Apl,(Q) is the dy-
namic change induced by the beating of the pump and probe
waves at the beat frequency Q. The situation is similar to
that considered in Section 2. Although Apl,(Q) has its ori-
gin in population pulsations, it is the intraband population,
and not necessarily the actual carrier density, that pulsates.
For IQIr, < 1, the carrier-density pulsations considered in
Section 2 should also be included by noting that an integra-
tion of Pl over the conduction-band states leads to the
carrier density.

The induced polarization P is calculated by using Eqs.
(5.2) and (5.4) in Eq. (5.3). The individual polarization
components are obtained by expanding P in the form of Eq.
(2.14). The final result is 26

,PO = Eo[XL(CWo) + xl(0)]Eo,

P1 = EO[XL(W1) + X(Q) + X2(Q)]E1 + EOX3 (Q)E2*,

P2 = EO[XL(W2) + X(-Q) + X2(-Q)]E 2 + EOX 3 (-Q)El*,

(5.5)

(5.6)

(5.7)

where the linear susceptibility

XL(WJ) = - - (O + i)g(N, WO)
CL)

(5.8)

has a form similar to that of Eq. (2.5). The gain g(N, j) is
determined by the current applied to the semiconductor
laser. Because of a large frequency difference among pump,
probe, and conjugate waves, it is necessary to account for the
gain roll-off. If we assume a parabolic gain profile, then

g(N, W) = g(N)[l-(Cp - j)/Ag2], (5.9)

where g(N) is the peak gain occurring at cop and is related to
the device current I by Eq. (2.19). Awg is the half-width of
the gain profile. The nonlinear contributions x,, X2, and X3
to the susceptibility arise from the pump-induced change in
the intraband population, given by Eq. (5.4). More specifi-
cally, XI is due to static change Apl,(O), while X2 and X3 have
their origin in the population-pulsation term A(Q).
Their explicit expressions are' 4"26

(Q) inc g(N)C(l - i) IEO
coo (1 - iK2/2) 

_ inc g(N)C(1 - 3) 1E 012
'oo (1 - MT2/2)(l -i2T) P8

X3(Q2) inc g(N)C[1 - i (1 - iQT2)] Eo'
coo)= A, (1 -iQT2)( - iQT,) P

where g(N) is the saturated gain given by Eq. (2.24),

P, = 2/(A2TIT2)

is the saturation intensity, and the parameter

(dgoT2 Wo)-

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

is related to the slope of the gain profile at the pump fre-
quency. The overlap factor
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C = f J IU(x, y)1
4dxdy (5.15)

results from the spatial structure of the waveguide mode.
Several simplifications were made in the derivation of

Eqs. (5.5)-(5.7), the most important being the use of third-
order perturbation theory. This is justified, since the satu-
ration intensity P5 in Eq. (5.13) is 10 MW/cm 2, in contrast

to that used in Section 2, Ps 0.5 MW/cm 2. The integra-
tion over OT in Eq. (5.3) was performed by assuming that the
dominant contribution to the integral comes from a region of
width T - Wol = T2-1 centered at the pump frequency wo.
Finally, it was assumed that the transition dipole moment u
and the saturation intensity P, do not vary significantly over
this range of integration.

The polarization components Pj given by Eqs. (5.5)-(5.7)
can be used in the wave equation [Eq. (4.1)] to discuss
NDFWM. We obtain the coupled-wave equations for the
probe and conjugate waves that are identical to Eqs. (4.5)-
(4.7) but with different absorption coefficients aj and cou-
pling coefficients Kj. More specifically,

°a =-2(1 + PO) [1 - -(1 - )CrPo], (5.16)

go -1Q2 (iPCrPO 

2(1 + P) L i Aw 2 1-iiQT2 /2 >

X 1+ (5.17) J
1 - MT, ~~~~~~~~LL

igo Cr[l - i(l - iQT2 )]

K1 2(1 + PO) (1 - T2)(l - iQT) 2Ef(z)Eb(Z). (5.18)

The expressions for a 2 and K2 are obtained by changing Q to
-Q in Eqs. (5.17) and (5.18). Po is given by Eq. (3.4), and the
parameter r = PJP5,. The conjugate reflectivity R and the
probe transmissivity T are obtained by using Eqs. (4.15)-
(4.20) with aj and Kj as given by Eqs. (5.17) and (5.18).

Before discussing the spectral features of R and T, we
consider the effect of population pulsations on the probe
gain. Consider first self-saturation of the pump gain. From
Eq. (5.16) we note that the pump gain is saturated by two
mechanisms. Interband processes lead to the well-known
reduction by a factor of 1 + Po. However, intraband pro-
cesses lead to a further reduction by a factor of 1 - CrPo.
This effect is known as spectral hole burning; the intense
pump wave burns a hole of width T2-1 in the gain profile, as
is shown by Eq. (5.10). Typically the gain is reduced by 0.5-
1% per milliwatt of the operating power for a semiconductor
laser.2 6 This information can be used to estimate the satu-
ration power P, instead of using Eq. (5.13). We estimate
that P = 100 mW for index-guided lasers. If we assume
that P = 5 mW, r = 0.05. Equation (5.16) shows that the
refractive index is also changed by a relative amount of
3CrPo/l. We can estimate by using Eqs. (5.9) and (5.14):

-=2(o - -2(oo -p) T2

T2AWg 2
(5.19)

for which we assume that Awg t- T 2-'. When the pump
frequency wo coincides with the gain at wp, 3 = 0. This is
the case for Fabry-Perot-type semiconductor lasers. When

the laser is operated as an amplifier, wo may differ from Up.
However, in most situations of practical interest, 3 << 1. In
the following discussion we therefore set A = 0.

The probe gain is calculated from Eq. (5.17) by using g =
-2 Re(al). It is given by

go r Q2 CrPO
v = 1- -

°P 1 +o |IX + ( T2/2)

[ 1 - Q2TT /2]}

1 + (QTl)' j J
(5.20)

In the absence of the pump wave (Po = 0), gp = go(l -Q2/

Awg
2
) is the small-signal probe gain. Equation (5.20) shows

that this gain is reduced by spectral hole burning and the
saturation effects produced by the pump field. The reduc-
tion resulting from population pulsations is given by the last

-1 -0.5 0 0.5

DETUNING, QT1
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0
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z
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Fig. 8. Reflectivity and transmittance spectra for the case of highly
nondegenerate four-wave mixing resulting from spectral hole burn-
ing. Pump-probe detuning is normalized to the intraband popula-
tion-relaxation time T1. For T, = 0.3 psec, 2T, = 1 corresponds to a
detuning of about 500 GHz. Other parameters are T2/T, = 1/3 and
r/T1 = 10.
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IXI I I I I I I I I I I I I I I l_ Clearly, NDFWM is much less efficient when the nonlinear-
Pi = =4ity is due to pulsations of the intraband population rather

Pin 1 g0 L 4 than when it is due to modulation of the actual carrier

t/T 1 = 5 density. This can be understood by comparing the satura-
tion powers P, and P, associated with the two nonliner mech-
anisms. As seen from Eq. (5.18), the coupling coefficients Kj

are smaller by a factor of r = P/P, for the case of spectral
hole burning compared with those obtained from Eq. (4.10).
Since R IK2I2, the reflectivities are expected to be smaller by
a factor of r2. Since r = 0.05 in Fig. 8, one can expect that R

0.5 will be lower by nearly 3 orders of magnitude compared with
/ \ \ _ the values shown in Fig. 4. Note that P8, and hence r,

/ /0.3 \ \ - depends on the intraband relaxation times T1 and T2, which
are not precisely known. To show how R and T are affected
by an increase in T1, Fig. 9 shows R and T for the same
parameters used for Fig. 8 except for T1, which was taken to

-1 -0.5 0 0.5 1 1.5 be T1 = 0.6 psec. As expected, R increases to about 0.5. A
slight enhancement of T is apparent in the central region

DE TUNING) QT1 because of NDFWM; this enhancement is too small to be

' I ' ' I I I I I I I I ' ' _ evident in Fig. 8. The conjugate reflectivity R can be in-
Pin = 0.3 goL = 4 - creased considerably by increasing the amplifier gain g0L.

_ In particular, R exceeds unity for g0L > 6. Such values of
/ \ T/T1 = 5 - the small-signal gain can be obtained by reducing the residu-

al facet reflectivities to <1%.
An important feature of Figs. 8 and 9 is that the reflectiv-

ity profile is narrower than T1-'. Even though the gain and
index gratings are expected to remain effective sources of
NDFWM up to IQIT 1 - 1, the mixing efficiency drops signifi-
cantly for such large detunings because of the phase mis-
match. In other words, the width of the reflectivity spec-
trum is determined by the transit time rather than the

_ population-relaxation time T1. Since r 3 psec for a 250-
_ ,tm-long semiconductor laser, significant values of R can be
_ obtained for pump-probe detunings up to -r-1 300 GHz.

I I I I I I _ I I This range can be extended further by reducing the laser
-2 0 2 4 length. The weak satellite peaks in the reflectivity spectra

in Figs. 8 and 9 are also due to the phase mismatch.
DETUNING, LQT1

Fig. 9. Same as for Fig. 8 except that the population-relaxation
time T1 has been doubled. As a result, T2/T1 = 1/6 and TI/T = 5.

term in Eq. (5.20). As is expected, the population-pulsation
contribution vanishes for IQIT 1 >> 1. Although population
pulsations can change the probe gain by 100% or more for the
case discussed in Section 3, such changes are -1% because of
the large saturation power associated with the spectral hole-
burning phenomenon. Even such small changes can none-
theless lead to significant NDFWM, as is discussed below.

As in the case discussed in Section 4, we assume that the
semiconductor laser is operating as a traveling-wave amplifi-
er with the incident pump intensity Pin at the two facets.
The intracavity pump intensity PO is related to Pin by Eq.
(4.14). The other parameters are chosen to be T1 = 0.3 psec,
T2 = 0.1 psec, = 5, r = 0.05, and C = 0.7. This value of C
was estimated by using a Gaussian mode profile in Eq.
(5.15).26 Figure 8 shows the variation of R and T with QT1
for g0L = 4. The phase mismatch is AkL = -2Qr from Eq.
(4.11), where - = nL/c is the transit time; we chose T/T1 = 10.
For T = 0.3 psec, this corresponds to - = 3 psec, a typical
value for 250-,um-long laser amplifiers.

Figure 8 shows that R 0.1 for Pin = 1. This should be
compared with Fig. 4, for which R > 100 even for Pin = 0.2.

6. SUMMARY

In this paper we have presented the theory of NDFWM in
semiconductor lasers with particular emphasis on the physi-
cal processes that lead to population pulsations. Two rather
different mechanisms are involved in the NDFWM process,
depending on the detuning Q between the pump wave and
the probe wave. For small detunings ( 1 GHz), modulation
of the carrier density at the beat frequency Q creates a
dynamic population grating whose effectiveness is governed
by the spontaneous carrier lifetime -r,. This was the physi-
cal mechanism involved in the experiments on NDFWM
reported in Refs. 10-12 and 37.

For large detunings, such that IQI-s >> 1, the above mecha-
nism cannot generate the conjugate wave, as the carrier
density is unable to respond to such high beat frequencies.
In that situation a weaker nonlinear effect arising from spec-
tral hole burning can nonetheless lead to significant conju-
gate reflectivities. Population pulsations in this case refer
to modulation of the intraband population, and the effec-
tiveness of the resulting population grating is determined by
the intraband population-relaxation time T (0.3 psec).
Our results show that the NDFWM process is limited by the
phase mismatch or the transit time T rather than by the
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population-relaxation time T,. For a 250-Arm-long semicon-
ductor laser, T 3 psec, and significant NDFWM is expect-
ed to occur for pump-probe detunings of up to r-1 (300
GHz). Experiments have not yet been performed to observe
four-wave mixing under such highly nondegenerate condi-
tions.

The NDFWM process discussed here may have applica-
tions in many fields. The highly efficient nature of
NDFWM in semiconductor lasers should be useful in the
fields of phase conjugation and nonlinear spectroscopy.
NDFWM can also be used to stabilize external-cavity semi-
conductor lasers by providing the feedback from a semicon-
ductor laser operating as a phase-conjugate mirror. 40 In the
field of coherent optical communications, semiconductor-
laser amplifiers are being proposed to amplify several chan-
nels simultaneously. The carrier-density modulation and
the resulting NDFWM would then induce interchannel
cross talk that would limit the interchannel spacing in such
systems.4

1 Further work is needed to clarify the role of
NDFWM in optical communication systems.
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