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Gain  Nonlinearities in Semiconduct 
and  Application  to  Distribute 

Abstract-The gain  spectrum  in  semiconductor  lasers is affected by 
the  intensity-dependent  nonlinear  effects  taking place due to  a finite 
intraband  relaxation  time  of  charge  carriers. We obtain  an  analytic 
expression  for  the  nonlinear  gain  in  multimode  semiconductor  lasers 
using  the  density-matrix  formalism. In general, the nonlinear  gain is 
found to consist  of the symmetric  and  asymmetric  components.  The 
asymmetry does  not  have its origin in the  carrier-induced index change, 
but is  related  to  details  of  the  gain  spectrum.  The  general  expression 
for the nonlinear  gain  is  used to discuss  the range of  single-lougitndi- 
nal-mode  operation  of  distributed  feedback  lasers. It is also used to 
obtain an analytic  expression  for the self-saturation coefficient and  to 
compare  the  predicted  value  to the experimental  value  for  both GaAs 
and InGaAsP lasers.  The  agreement  between  the  theoretical  and  the 
experimental  values  supports  the  hypothesis that spectral  hole  burning 
is the dominant  mechanism  for  the  gain  nonlinearities in semiconduc- 
tor  lasers. 

T 
I.  INTRODUCTION 

HE theory  of  semiconductor  lasers  has  evolved  some- 
what differently from  that  of gas and  solid-state  la- 

sers.  Whereas  in  the  semi-classical  laser  theory [ 11, [2] 
developed  originally  for  gas  lasers,  the  nonlinear  contri- 
butions to  the induced  polarization  (and  hence  to  the  op- 
tical  gain)  were  included  using  the  density-matrix  for- 
malism,  such  nonlinear  effects,  with  few  exceptions [3]- 
[6],  have  generally  been  ignored  for  semiconductor  la- 
sers.  It has,  however,  been  realized  in  recent  years  that 
gain  nonlinearities play an  important  role in determining 
the  dynamic  response  and  modulation  performance of 
semiconductor  lasers [7]-[ 131. These  nonlinear-gain  ef- 
fects  have  been  phenomenologically  included  through a 
power-dependent  gain-suppression  term in the  single- 
mode  rate  equations  [11]-[13].  Recently,  attention  has 
been  paid  to  include  the effects of nonlinear  gain in mul- 
timode rate equations [lo], [ 141, [15] so that  cross  satu- 
ration of  the  gain is also  accounted for.  Here  it has  been 
pointed  out  that  the  cross-saturation  term is generally 
asymmetric 1161, [17]. Indeed,  the  asymmetric  compo- 
nent of  the  nonlinear  gain  was  invoked  to  explain  the 
asymmetric  mode  spectra  and  the  shift of the  dominant 
mode towards  longer  wavelengths  occurring  with  an  in- 
crease in the  output  power [ 101. The  form of the  nonlinear 
gain  used in previous  work [lo],  [14],  [15]  is,  however, 
based on  an intuitive  generalization [ 171 of  the  model used 
by Bogatov et al. [16]  and  does not appear  to  have a firm 
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theoretical  basis.  As a result,  the  resulting  expression  for 
the  nonlinear  gain  contains  parameters  whose  value  and 
physical  interpretation are  uncertain. 

The objective of this  paper is to  obtain  an  analytic 
expression for  the  nonlinear  gain  in  multimode  semicon- 
ductor  lasers  using  the  density-matrix  formalism. Al- 
though  the  density-matrix  formalism has previously been 
used  to  obtain  the  nonlinear  gain  [4]-[6],  the  asymmetric 
nature of mode interaction attracted  little  attention. In their 
three-mode  analysis,  Kazarinov et al. [5]  found  that  the 
asymmetric  component of the  nonlinear  gain was essential 
to  explain  the  experimentally  observed  gain  spectra. We 
generalize  their  analysis  to  the  multimode  case  and  dis- 
cuss  the  conditions  under which the  expression  for  the 
nonlinear  gain  can be reduced  to  the  phenomenological 
form  used in earlier  work [ 101, [14]. We find that, in con- 
trast  to  the  model of Bogatov et al. 1161, the  nonlinear- 
gain  asymmetry  does not have  its  origin in the  carrier- 
induced  index  reduction  (governed by the  linewidth  en- 
hancement  factor),  but  is  related to the  slope of the  gain 
profile at the  frequencies  of  various  longitudinal  modes. 
As an  application of the  general  expression  for  the non- 
linear  gain,  we  apply it to discuss  the  range of single- 
longitudinal-mode  operation of distributed  feedback 
(DFB) semiconductor  lasers using a two-mode  model. The 
results  show that both  main  and  side  modes  can  oscillate 
simultaneously when the  Bragg  wavelength  deviates  con- 
siderably  from  the  gain peak.  We  also use our theory to 
obtain  an  analytic  expression  for  the  self-saturation  coef- 
ficient;  the  predicted  values  are in agreement with the  ex- 
perimental  values  for  both GaAs and  InGaAsP  lasers. 

11. DENSITY-MATRIX  FORMALISM 

We use  the  density-matrix  formalism [I] ,  [2] to obtain 
the  linear  and  nonlinear  contributions to the  optical  gain. 
This  formalism  has  been  used  previously 131-[6] for  semi- 
conductor  lasers.  However,  except for the  work of Ka- 
zarinov et al. [5],  the  asymmetric  nature of nonlinear  gain 
attracted little  attention. We generalize  the  analysis of [5]  
to include  an  arbitrary  number  of  longitudinal  modes and 
pay particular  attention to  the  asymmetric  nature of the 
nonlinear  interaction  among  longitudinal  modes.  Within 
the  framework of the  density-matrix  formalism,  the non- 
linear  gain  has  its  origin in spectral  hole  burning, a phe- 
nomenon that  leads to inhomogeneous  saturation of the 
gain  spectrum in  semiconductor  lasers [ 181, [ 191, similar 
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to the  case of gas  lasers  [2].  Physically,  the  gain  at  the 
frequency  of  an  oscillating  mode is slightly reduced be- 
cause of the finite intraband relaxation time  of  charge  car- 
riers. The  amount  of reduction depends not only  on  the 
power  of that mode (self saturation), but also on the power 
of  neighboring  modes  (cross  saturation). 

In the density-matrix  approach  for  semiconductor lasers 
[3]-[6], each  conduction-band state 11 > and  the  corre- 
sponding  valence-band  state 12 > participating in the 
band-to-band transitions are  modeled as a two-level sys- 
tem  with  analogous  density-matrix  equations of the  form 
[21 

where yc and y u  are  the intraband energy relaxation rates 
for  the  conduction  and  valence  bands,  respectively, y is 
the polarization relaxation rate, wT is the transition fre- 
quency,  and p is the  transition  dipole  moment.  The di- 
pole-moment  operator is assumed  to  have  only off-diag- 
onal matrix  elements  which  are  further  taken to be real 
without  any  loss of generality ( p I 2  = p21 = p ) .  P l 1  and 
p22 are  the  occupation probabilities of electrons and holes 
in. thermal  equilibrium  and  are  determined by the quasi- 
Fermi  levels  of  the  conduction  and  valence  bands,  re- 
spectively.  Finally, E (  r,  t )  is the  optical field given by 

- 

E ( r ,  t )  = C ~ ( w ; )  exp ( - i w j t )  < ( r )  + C.C.  (4) 
.i 

To separate  the  linear  and  nonlinear contributions in the 
susceptibility, the solution of (1)-(3) is taken to be of the 
form 

P , l ( t >  = P I 1  + APll(t> (7)  

By using (7)-(9) in (3),  we  obtain  the  formal solution 

where  the  prime  denotes  the  time-independent  part  of  the 
bracketed  term. To obtain A p l l  ( t )  and A P ~ ~ ( ~ ) ,  we use 
third-order perturbation theory [2]  and  assume  that p 1 2  in 
(1) can  be replaced by PI2. Equation (1) has a  general 
solution of  the  form 

~ ~ l l ( t >  = A P ~ ~ ( o >  + CC ~ ~ l l ( w r n  - wn> 
m f n  

* exp [ -i(wrn - wn>t]. (12) 

The first term represents the static change in the  electron 
occupation probability and causes static hole burning.  The 
second  term  arises  from  the beating of  two longitudinal 
modes  that  modulates  the  occupation probability at the 
beat frequency Qrnn = w, - w,. In  the context of  semi- 
classical laser  theory,  these  dynamic  variations  are  often 
referred to as population pulsations [2]. By substituting 
(7) and (12) in (1) , we  obtain 

E * ( U j )  F?(r)  - C.C.] (13) 

where  sum  extends  over  all longitudinal modes  and wj are 
the corresponding frequencies. The spatial structure of the 
mode is accounted  for  through Fj ( r ) .  The induced  polar- 
ization is calculated by summing  over all possible band- 
to-band  transitions, i.e., 

( 5 )  

where D ( wT) is the density of states  per unit volume.  The 
susceptibility x ( wj) of the medium  for  various  modes- is 
then  obtained by writing 

P ( r >  = ‘ 0  x (? / )  
J 

. exp (-iw,t) F , ( r )  + C.C.  (6) 

where eo is the  vacuum  permittivity. 

The  expression for Ap22 ( t )  can  be  obtained  from  (12)- 
(14) by changing p to - p  and yc to yu .  

Equations (7)-(14) complete  the  formal solution of the 
density-matrix  equations.  The susceptibility is obtained 
by using (9) in (5) and then expressing  the result in the 
form of (6).  We find that the susceptibility consists of 
several contributions  which  can  be identified as [5] 

where 
X ( w j )  = X L ( U ~ )  + x l ( w j )  + X Z ( W ~ )  + X F W M ( W J ’ )  (15) 

is the linear contribution with C’ = ( I F j (  r )  1’ ) andf(wT) 
defined as 

f ( 4  = P2(Pl l  - 522) D ( W T ) / ( % h ) .  

The  other  three  terms represent the  nonlinear  contribu- 
tions to the  susceptibility.  Their  explicit  expressions  are 
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where 7 = ycyv /( y, + yu). The  saturation intensity 

Is = k 2 7 c Y h 2  (20) 
is generally a function of wT because of its dependence on 
p.  The  overlap  factor Cj, = ( I FJ  ( r )  Fk( r )  1’ ) arises from 
the spatial structure of the  optical  mode:  angular brackets 
denote  averaging  over  the  active  volume. In (19),  the in- 
dex m is chosen  such  that 2wk - w, = wj .  Further, the 
overlap  factor Cjk = ( F F (  r )  F: ( r )  F i (  r )  ). Expres- 
sions (17)-( 19) are  generalizations  of  the  corresponding 
results of [5] to the  multimode  case. In physical terms, x l  
is due to static hole burning, x2 is  due to population pul- 
sations,  and xFWM is due  to  four-wave  mixing occurring 
in the  presence of population  pulsations.  Note  that  the 
xFWM term  can lead to efficient nondegenerate  four-wave 
mixing [20].even when  pump  and  probe  frequencies differ 
by more  than  100 GHz. 

111. NONLINEAR  GAIN 
The susceptibility x ( w j )  given by (15) can  be  used to 

obtain the  linear  and  nonlinear contributions to the  optical 
gain at the frequency wj .  However,  the contribution of the 
four-wave  mixing  term  considerably  complicates  the  non- 
linear-gain analysis.  The  reason is that xFWM couples the 
amplitudes of the  neighboring  modes. As a  result, it is not 
possible to obtain  the effective nonlinear gain for  a  par- 
ticular  mode  without  solving  the  coupled set of amplitude 
equations.  Kazarinov et al. [5] have  solved  the  coupled- 
mode  problem for the specific case of a  three-mode  laser. 
They  found that the  contributions  of x2 and xFWM to the 
nonlinear gain cancel  at  the  line  center  while  the cancel- 
lation is incomplete  for  modes  away  from  the  gain peak. 
A further  consideration  occurs  for single-frequency lasers 
such as  DFB  lasers  where the main  mode is not located at 
the gain peak.  Since  the  modes of such  a laser  are not 
necessarily equispaced, the four-wave  mixing contribu- 
tion may vanish  completely  due to phase  mismatch.  To 
account  for  these  features in a  simple  manner,  we define 
the effective nonlinear  gain  as 

w 
g N L ( W )  = -; Im [ X d 4  + b ( 4  x 2 ( 4 1  (21) 

where II is the refractive index  and  Im stands for the imag- 
inary part of the  bracketed  expression. The phenomeno- 
logical  parameter b controls  the net contribution to the 
nonlinear  gain resulting from  intermode beating (popula- 
tion pulsation). In general, 0 5 b I 1. We  expect b to 
be small for Fabry-Perot lasers, while it approaches  1 for 
DFB  lasers. If we  write gN, ( w j )  = E, d 3 )  ( wj ,  wk) 1 Ek 1 2 ,  
the resulting expression  for a ( 3 )  ( wj ,  wk) reduces to that 
obtained  in [4] if we set b = 1 (no four-wave  mixing). 
The nonlinear gain g N L  ( wj) can be  evaluated  numerically 
[4], [6] and  depends, in general, on the band-structure 
details as both  the density of states D and the dipole  mo- 
ment p vary  with  the transition frequency wT. Note also 
that  the integrations in (17)-(19) should be made in the 
momentum  space in order to take into  account  the non- 
parabolicity of  the  conduction  band [6]. Since  our  purpose 
is to study the qualitative dependence  of  the nonlinear gain 
on various physical parameters,  we  evaluate  the integrals 
approximately  using  the  method of [5] .  

The approximation is based  on  the  observatian that the 
main contribution to the integral in (17) and (18) comes 
from  a region I wT - wk I I y. We assume  that f ( w T )  
varies slowly in this essential region of integration and 
can  be  approximated by 

This  allows us to evaluate  the integrals using the  method 
of contour  integration. By closing the  contour in the  lower 
half complex wT plane, we find that  a single pole at wT = 
wk - iy contributes to the integral.  The result is 
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where 

Qjk = W j  - W k  (25 1 
is the beat frequency.  We  have  assumed that the  dipole 
moment p is nearly constant  over  the  width of the  longi- 
tudinal-mode  spectrum so that  the saturation intensity I, 
is the same  for  all  modes.  It  can  be  shown  using (16) that 
f ( w k )  is approximately proportional to the linear gain 
g L ( W k ) ,  i.e., 

Using (23)-(26) in (21), we finally obtain 

where bj = b ( w j )  is assumed to be  real, 

are the intraband  relaxation  times,  and 

is a  dimensionless  parameter related to the slope of the 
gain curve at W k .  Since Olk is nonzero for modes  oscillating 
away  from  the  gain  peak,  the  spectrum  of nonlinear gain 
g N L  in general  has  an  asymmetric  component. As is evi- 
dent from (27), the  form  of  nonlinear gain is more  com- 
plicated than  assumed previously [ l o ] ,  [ 141, [ 151 based 
on  a  phenomenological  approach [ 171. In  the next section, 
we consider simplification of the general expression (27) 
and  discuss  the  conditions  under  which  the  phenomeno- 
logical approach is valid. 

IV.  COMPARISON TO PREVIOUS  WORK 

The  asymmetry in the  longitudinal-mode interaction 
was first studied by Bogatov et al. [16]. Their treatment 
is applicable  when  the beat frequency Q, is comparable  to 
the spontaneous  recombination rate ( - lo9 s- ' ) of  elec- 
trons.  For  a  semiconductor  laser  of  typical length 250 pm, 
the beat frequency  between  the  two  neighboring  modes 
exceeds 10" Hz. The  carrier density in the  active region 
cannot  respond at such  high  frequencies.  Noting that the 
intraband relaxation time of electrons is typically 1 ps, 
Ishikawa et a2. [17] suggested that results of [16] can  be 

used  if the  spontaneous  carrier  lifetime is replaced by the 
intraband relaxation time.  Based  on  this  suggestion,  Man- 
ning et al. [ l o ]  used  the  following  expression  for  the  non- 
linear  gain (in our notation): 

where B is the strength parameter.  The  parameters CY and 
r do not have  a  clear physical interpretation  as they have 
been  introduced  phenomenologically.  In  the  analysis of 
[ 161, CY is the linewidth enhancement  factor defined as the 
ratio of  the real-to-imaginary parts of the carrier-induced 
change in the susceptibility.  This  interpretation  for CY in 
(30) is incorrect  since  the total carrier density remains un- 
affected in the intraband relaxation  processes.  Similarly, 
it is not clear  whether  the  intraband relaxation time r in 
(30) should be identified with ru,  r,, or rin since  all  occur 
in the  general  expression (27) for  the  nonlinear  gain. 

Let us consider  the  conditions  under  which the general 
result (27) takes  the  form  of (30). One possibility consists 
of neglecting the  second  term in (27) and then identifying 
CY by cyk and r by rin / 2 .  The second  term is indeed ex- 
pected to small for  Fabry-Perot  lasers  because of a  near 
cancellation of x2 and xFWM contributions to the  nonlinear 
gain.  Using  the results of [5] ,  we  estimate that the  con- 
tribution of the  second  term is - 4 percent or  less.  Thus, 
to a  good  degree of approximation,  the  nonlinear gain can 
be obtained by setting bj = 0 in (27). For Fabry-Perot 
lasers, the nonlinear gain  then  becomes 

(31 1 
A comparison  of (30) and (31) explains why the  phenom- 
enological expression (30) has been so successful in ex- 
plaining the experimental data [ 101, [ 141. In  general, both 
CY and B in (30) should  be  made  mode  dependent  for  a 
more  accurate  representation  of  the  nonlinear  gain. 

The situation is different for  DFB  lasers where  the  dom- 
inant mode is usually displaced from  the gain peak.  The 
four-wave  mixing contribution can  then  become vanish- 
ingly small because  of  the  phase  mismatch. An approxi- 
mate  expression for g N L  is obtained  from (27) by setting 
bj = 1. To simplify it further,  we  consider  the relative 
magnitudes  of r,, rl,, and rin. Numerical values of  the in- 
traband relaxation times  for  the  InGaAsP material are not 
known  accurately,  and  their  estimates  vary  widely.  Asada 
and  Suematsu [6] have  used r, = 0.2 ps, r, = 0.07 ps, 
and rin = 0.1 ps in their  calculation of the  nonlinear  gain. 
On the  other  hand,  Kazarinov et aZ. [5]  have  used r, = 1 
ps and rin = 0.1 ps in fitting their data on  the  gain spectra 
of GaAs lasers. In general, r ,  is expected to be  large  com- 
pared to both r ,  and rin. If we keep  the  dominant  contri- 
bution in (27),  the nonlinear  gain  for  DFB  lasers  can  be 
approximated by 
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where the  two  terms  in  (27)  have  been  combined by using 
the  &function  notation ( 6 j k  = 1 if j = k and  zero  other- 
wise). This result should  be  compared  to the phenome- 
nological expression (30). It shows  that  the relevant in- 
traband relaxation time  is  the energy relaxation time I-, of 
conduction-band  electrons. 

The  asymmetric  nature  of the nonlinear  gain  is gov- 
erned by the parameter a k  [defined by (20)]  which  is re- 
lated to the  slope  of the gain profile. To estimate ( Y k ,  we 
approximate  the  gain profile by 

where up is  the frequency  at  which the gain  peaks  and 
2Ao is  the full width at half maximum (FWHM). Using 
(29) and (33),  we obtain 

1 g ( 4  
(Yk = - 

rinAw ( " ~ o o k )  g(wk)' (34) 

Typical  values  of the gain  bandwidth  (FWHM) for 
InGaAsP  lasers are 40-50 nm. Using T~~ = 0.1 ps, we 
estimate  that T~~ A u  - 1 .  Thus,  an order-of-magnitude 
estimate of ct!k is  given by AXk/20 where AXk is  the wave- 
length  separation  of the mode  (in  nanometers)  from the 
gain peak. Such  values  of ak are too  small to explain the 
observed  shift of the  mode  spectrum  toward  longer  wave- 
lengths  with an increase  in the drive  current. It appears 
that some  other effect is  required  to  explain the data of 
[lo] and  [17]. 

V. SELF AND CROSS SATURATION 
The  nonlinear  gain  given by (27) is responsible for  the 

reduction in  optical  gain  under  lasing  conditions. The 
physical mechanism behind gain  reduction  is  spectral  hole 
burning that leads  to  gain saturation. Both self-saturation 
[ j  = k in (31) and (32)]  and cross-saturation  terms con- 
tribute  in  determining the net gain  reduction  occurring for 
a particular  longitudinal  mode. For its use  in  multimode 
rate  equations,  it  is useful to  write the nonlinear gain in 
terms of photon density defined by  [4]-[6] 

(35) 

where ng is  the  group  index  and hwo is  the photon energy. 
The  nonlinear  gain  reduction then becomes 

g N L ( o j )  = -gL(wO) p j k S k  (36) 

where gL(  w o )  is  the gain of the  dominant  mode.  From 
(32) and (36),  the saturation coefficient is  given by 

where we  have used (20) for  the saturation intensity I,. A 
slightly different expression  is  obtained for Fabry-Perot 
lasers using (31) and  (36).  The saturation coefficient de- 
pends on  the spatial distribution of the optical  mode 
through Cjk/ Cj. To evaluate it, we  consider a strongly 
index-guided  semiconductor laser whose  waveguide  sup- 
ports a single  lateral  and  transverse  mode.  The field dis- 
tribution is  then  approximated by 

F , ( r )  = U ( x ,  y )  sin ( k j z )  (38) 

where kj = nj o j / c  and U ( x ,  y )  is  the  spatial distribution 
of the fundamental  waveguide  mode.  Averaging over the 
active  volume, we obtain  [4] 

cjk - ( ~ 4 ( r )  F k ( r ) ( Z )  - (2  + 6 j k ) r '  
- - 

417 (39) 
( I F k W  1 2 )  

where r is the confinement factor and 

where  the  integration  is over  the waveguide  cross section 
u. Both I" and I' are dimensionless  quantities  since  we 
have used a normalization  scheme  where U ( x ,  y )  is di- 
mensionless. 

A quantity of  practical  interest is the  self-saturation 
coefficient po0 for  the main mode.  Using (37) and (39), it 
is given by 

It can  be easily verified that poo is  the same  whether  we 
use (31) or (32) for  the nonlinear gain.  The self-saturation 
coefficient poo, which  leads  to a nonlinear  suppression of 
the  dominant  mode gain by a factor of 1 - /300So, is known 
to  dramatically affect the dynamic  response of semicon- 
ductor  lasers [lo]-[14]. 

We now use (41) to  estimate po0 and  compare the  esti- 
mated value  to the known  experimental  values.  The  only 
geometry-dependent  parameter  is the ratio I?' /I?. Its  eval- 
uation requires knowledge of the waveguide  mode U ( x ,  
y ) .  To simplify  the  calculation, we assume that U ( x ,  y )  
can  be  approximated by a Gaussian  in both the  lateral  and 
transverse  directions, i.e.,  

~ ( x ,  y )  = exp ( -x2/2u$) exp ( -y2/20i) 

The integration over  the waveguide  cross section in (40) 
can  be readily carried  out  in  terms of the error  functions. 
For  an  active  layer  of width w and  thickness d, we  obtain 
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Using  typical values d/aT = 0.4 and w / a, = 3, we  es- 
timate that I” / r  2: 0.7.  We use  this  value  for  our  cal- 
culation of boo. The  dipole  moment f i  for  semiconductor 
lasers has  been  estimated by Asada  and  Suematsu  [6]. 
Using  their  result, 

p = 4(7-), (.> (A) = 3.5Xg(ccm) 

where X, is  the  bandgap  wavelength.  For  a  0.82  pm  GaAs 
laser  and  a 1.3  pm  InGaAsP  laser, p = 4.6 X cm 
and p = 7.3 X cm, respectively. 

Consider first the  case of GaAs  lasers.  The intraband 
relaxation times  for  GaAs  have  been  estimated  both the- 
oretically and  experimentally  [21],  [22].  Using the rep- 
resentative values rin = 0.1  ps, 7 ,  = 0.07  ps, r, = 0.2 
ps, n = 3.4,  and ng = 4 in (41),  we  obtain boo = 2.7 X 
10- l 8  cm3.  Johnson  and  Mooradian [23] have recently ob- 
tained a  self-saturation coefficient of 1.3  W-’ from  their 
transient measurements of the  carrier density in a  GaAlAs 
laser.  To  obtain boo, we need  the relationship between  the 
photon density and the output power  for the specific laser 
used in the  experiment.  This is not known  since several 
laser  parameters  have not been specified in [23]. If we use 
a representative value  of  3 X l O I 4  photons /cm3  at 1 mW 
of output  power, boo = 4.3 X cm3.  This  value is 
in reasonable  agreement  with  the theoretical estimate. 

We now consider  the  case of InGaAsP  lasers.  The  in- 
traband relaxation times  for  InGaAsP  are not known  ac- 
curately.  Their values are expected to be slightly larger 
than those for  GaAs  lasers;  for  our  estimate, we have  cho- 
sen rin = 0.12  ps, 7 ,  = 0.07  ps, and 7,  = 0.3  ps.  For  1.3 
pm  InGaAsP  lasers, we obtain boo = 6.6 X cm3 if 
we use n = 3.3, n, = 4, and p = 7.3 X cm.  Since 
the dipole  moment p increases linearly with  the  wave- 
length, boo scales linearly with  the  wavelength.  Thus, boo 
increases by nearly 20  percent  for  1.55  pm  InGaAsP  la- 
sers if  we assume that all  other  parameters in (41)  remain 
the same. 

Experimental  estimates  of boo for  InGaAsP  lasers vary 
widely.  Tucker [ 111 has  used  a  value as high as 6.7 x 

cm3,  while  others  have  estimated it to be  lower as 
much as by one  order  of  magnitude.  One  can  estimate boo 
using the  measurements of small-signal  modulation re- 
sponse [ 111, [ 131, [24].  One  method consists of relating 
boo to the height M p  of the resonance  peak [ 111 : 

A 
Mp 2: ~ 

2a vR 600 

where A is the gain coefficient and vR is the relaxation- 
oscillation frequency.  We  use  the  measurements of Bow- 
ers et al. [13,  Fig.  l l ]  and  adopt  their  value A = l . 8  X 

cm3/s.  For  a specific 1.3  pm  InGaAsP  laser, their 
data show that Mp 2: 11 at V R  = 3.5  GHz, while Mp = 5 
at vR = 8 GHz. From  (42),  we  obtain 000 = 7.2 x lo-’* 
cm3, which is in excellent  agreement  with the theoretical 

FREQUENCY 

Fig. 1. Schematic  illustrations  of  the  gain  and loss profiles  for  a  DFB 
semiconductor  laser. A a  - Ag is  the  net  gain  margin  for  the  side  mode 
(occurring  near  the  gain  peak  at w ,  and cyth is the  threshold  gain of the 
main  mode  near  the  Bragg  wavelength wo. 

value. A similar  value  is inferred from  the  measurements 
shown  in  [24, Fig. 121. 

The  experimental  and  theoretical values of boo agree 
with  each  other  within  a  factor of 2  for both  GaAs  and 
InGaAsP  lasers.  One  cannot  expect  a  better  agreement in 
view of the uncertainities associated  with  the material pa- 
rameters as well as  experimental  measurements.  The 
agreement  between  the theory and  the  experiment lends 
support to  the  hypothesis that spectral  hole  burning is the 
dominant  mechanism  for  the  nonlinear  gain in semicon- 
ductor  lasers.  Expression  (41) relates the  self-saturation 
coefficient to  the  material  and  laser  parameters  and  pre- 
dicts the boo = 0.6- 1 X cm3  for  InGaAsP  lasers, 
depending on  the  laser  wavelength  and  other  design pa- 
rameters. 

VI.  APPLICATION TO DFB LASERS 
As a specific application  of  the nonlinear-gain theory, 

we apply it to study the  range  of  single-longitudinal-mode 
operation of  DFB  lasers.  Such  lasers  can  be  modeled by 
considering only  two  modes, referred to as  the  main and 
side  modes.  For  a  DFB  laser  with  uncoated  facets,  the 
Fabry-Perot  mode  closest to the  gain  peak is often  the 
dominant  side  mode. The wavelengths of the  main  and 
side  modes  can differ significantly (as much as by 10 nm 
or  more),  depending  on  the  deviation of the gain peak 
from the Bragg  wavelength.  The  coupled-mode  equations 
for the main  and  side  modes are 

$0 ug[go(l - booso - P O l s I )  - ~ r h ] . ~ o  + ~ . s p  (43) 

$1 = ug[go(l -  los so - ~ 1 1 ~ 1 )  - (arb + AQ 

- A d ]  SI + R s p  (44 1 
where ug = c / n ,  is the  group  velocity, R, is the rate of 
spontaneous  emission, a!th is the threshold gain of the main 
mode (in the  absence of mode  coupling), Aa! is the gain 
margin (excess gain required by the  side  mode to reach 
threshold),  and Ag is the reduction in Aa! due  to gain roll- 
off (see  Fig.  1). 

The  gain go varies with  the  carrier density N and is ob- 
tained by solving 

where  we  have  neglected  the nonlinear-gain terms  as they 
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are small compared  to go.  They are, however, retained in 
(43)  and (44) since  their  magnitude is comparable  to go 
- 01th. For  simplicity, we  also neglect A g  in (45) since 
A g  << go in most practical  cases  of  interest. In  (459, I is 
the injected current, V is  the active  volume,  and r, is  the 
spontaneous  carrier  lifetime.  Assuming a linear variation 
of the gain with the carrier density,  the steady-state so- 
lution of (45) yields 

where a is  the gain coefficient, No is the carrier density at 
transparency,  and 

(47) 

is  the threshold current. The parameter = ( ugars) 
governs  gain  saturation  occurring due  to interband  tran- 
sitions. Using typical  parameter  values  appropriate for 
InGaAsP  lasers,  we  estimate  that - 1015 crnp3. 

To obtain the stable  steady-state  solutions  of the cou- 
pled-mode  equations,  we  substitute (46) in (43) and  (44). 
We  neglect the spontaneous-emission term R, for sim- 
plicity since  it  does not affect the steady-state  behavior 
significantly. Defining a dimensionless  measure of the 
photon density (or, equivalently, the mode  power) by 

Ai = s,/S ( i  = 0, 1)  (48) 

we  obtain the coupled-mode  equations 

(49) 

where r,, = ( ugck!,h)-I is the photon lifetime  and 

r = ( h  - Ag)/CUth (51 1 
is the  relative  gain  margin.  In the absence of gain nonlin- 
earities ( P C  = 0 j ,  the only stable solution of (45) and (46) 
when r > 0 is 

A0 = I / l t h  - 1, A ]  = 0,  (52) 

showing that the side  mode remains suppressed  at all 
pumping levels as  long as r > 0. 

We now show that in the presence of gain  nonlineari- 
ties,  the  solution  (52)  becomes  unstable  above a critical 
current I,--. This  can be seen most readily within the 
framework of third-order  perturbation theory. Linearizing 
(49) and (50) in A,  and A , ,  we  obtain 

rpAo = (a0 - PoAo - eolAl)Ao (53) 

qJkl = ( 0 1 1  - PIA1 - eloAo)Al (54) 

where 

I I 
Ith 

( y o = - -  1, ( X I = - -  1 - r  
I t h  

The  stable  steady-state  solutions of (53) and (54) are well 
known [2] and  depend on the coupling coefficient 

Since Pol can  be larger  or smaller than Po0 depending  on 
the  mode  separation [see  (37)],  the numerical value of C 
- 1  changes  from  positive  to negative as the  mode  sep- 
aration 1 Qol 1 increases.  Since (53) and (54) permit the 
two-mode  solution for C < 1, both modes  can  oscillate 
simultaneously when their separation  exceeds a critical 
value. This result shows how the single-frequency range 
of  DFB  lasers  can  depend on the  mismatch of the Bragg 
wavelength from the gain peak. 

To obtain the  critical  value of mode  separation  above 
which C < 1, we neglect the asymmetry  parameter o(k in 
(-37) for  simplicity  and  obtain 

(59) 

where 

is a dimensionless  measure of mode  separation.  Since Pol 
= Poo when 6 = 1, C I 1 in (58) when 6 2 1.  Thus, the 
two-mode  solution  is  possible when the  mode separation 
Av 2 1 /(27rr,). Using r, = 0.3 ps,  the condition be- 
comes Av > 0.5 THz. This  corresponds to a wavelength 
separation AA > 4 nm at  1.55  pm. 

The  critical pumping level Z,, above which the  side 
mode  starts to oscillate  can  be  obtained by the require- 
ment [2] that the effective mode gain 

Using (55)-(57), we  obtain 

Since PIIS << 1, it can  be neglected in  the numerator. 
Using (51) and (59) in  (62),  the  critical pumping level 
above  which the  side mode  starts  oscillating  is  given by 

Note  that the gain rolloff A g  is also 6 dependent. For a 
parabolic gain profile (33), it varies as 
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WAVELENGTH OFFSET (nm)  

FREQUENCY DEVIATION, 6 
Fig.  2.  Variation  of  the  critical  pumping  level Ier/ I th with  the  normalized 

mode  separation 6 for  three  values  of  the  relative  gain  margin Aa/ath .  
Upper  scale shows the  mode  separation  in  nanometers  using X = 1.55 
pm  and 7, = 0.3 ps. 

Fig. 2 shows  the  variation of &,./It, as a  function of 6 
for p,,S = 0.05, r, = 0.3 ps,  and AUT, = 5 .  Three  curves 
are  shown  corresponding to three values of the relative 
gain margin Aa / a t h  ranging  from 0.1 to 0.2. The  side 
mode  can  reach  the threshold at relatively low values of 
the pumping  level  when the DFB-wavelength offset from 
the gain peak  exceeds  a  certain  value.  These  results  are 
different from  those  given in 1151 because  a different 
expression (30) for  the  nonlinear gain was  used therein. 
Nonetheless,  the  main  conclusion  remains  the  same:  one 
should  attempt  to  reduce  the  mismatch  of  the  Bragg  wave- 
length from  the gain peak in order to increase  the  single- 
frequency  range of DFB lasers.  The  tolerable mismatch 
depends  on  parameters  such  as  the relative gain  margin 
and  the intraband relaxation time  and  can  be as small as 
2 nm for A a / a t h  5 0.1 and 7, = 1 ps. 

Let us briefly consider  the  case 6 < 1 .  Since  the cross 
saturation is more effective than self saturation [see (59)], 
the  coupling coefficient C > 1. Even  though the  two 
modes  cannot  oscillate  simultaneously  in  the strong-cou- 
pling regime,  a  jump from  main  mode to side  mode  can 
occur  in  a  bistable  manner  when  the effective mode gain 
for  the  main  mode  becomes  negative, i.e., when [2] 

‘yI) = ‘yo - ( @ o , / P o h  < 0. (65) 
Using (55)-(57), this occurs  when 

If we use typical values r = 0.1 for  the  relative gain mar- 
gin and poOs = 0.05 for  the nonlinear-gain suppression, 
we  find that the  side  mode  does not reach threshold until 
1 > 7 1 t h .  Thus,  a  large range  of single-longitudinal mode 
operation can be ensured in the strong coupling  regime by 
making 6 < 1. Note that the  third-order perturbation the- 
ory is not expected to hold  for  such  large values of I/&,, 

However,  the  qualitative  conclusions  remain valid even 
when (49) and (50) are used to obtain  the  steady-state so- 
lutions. 

VII. CONCLUSIONS 
We  have  obtained  an  analytic  expression  for  the  non- 

linear  gain  in  multimode  semiconductor  lasers  using  the 
density-matrix formalism  together  with  several  simplify- 
ing assumptions. In general,  the  nonlinear gain is found 
to consist of  the  symmetric  and  asymmetric  components. 
However,  the  asymmetry  does not have  its  origin in the 
carrier-induced index  change,  but is related to the  slope 
of  the gain profile. We  discuss  in  detail  the  similarities 
and  the differences between  our result and  a  phenomeno- 
logical expression  of  the  nonlinear gain used in previous 
work [ 101, [ 141, [ 171. The  general  expression  for the non- 
linear gain is used to obtain  the  range of singie-longitu- 
dinal-mode  operation of DFB  lasers  using  a  two-mode 
model.  It is shown that gain nonlinearities can signifi- 
cantly reduce  the  range of single-longitudinal-mode  op- 
eration when the Bragg  wavelength  has  a  large offset from 
the gain peak.  We  have  also  used  the  theory  to  obtain  an 
analytic expression  for  the  self-saturation coefficient that 
leads to a reduction in the  gain  with  an  increase in the 
laser  power.  The predicted values of this nonlinear-gain 
parameter  are  in  agreement  with  the  experimentally  de- 
duced values for  both  GaAs  and  InGaAsP  lasers. 
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