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Abstract

Fiber-optic parametric amplifiers (FOPAs) can be used in lightwave systems for several

signal-processing applications including optical amplification, phase conjugation, and

wavelength conversion. In principle, FOPAs can provide high gain uniform over a wide

wavelength range (> 100 nm). What is more, FOPAs add little noise to the amplified

signal. FOPAs can have noise figure as low as 0 dB when operated in the phase-sensitive

mode and 3 dB in the phase insensitive mode. However, in practice, these advantages

of FOPAs are compromised. In this work, I investigate several factors that limit the

performance of FOPAs, and propose practical schemes to minimize those limitations.

FOPAs can provide a relatively large gain bandwidth because the gain spectrum of

FOPAs is not determined by material resonances but by the phase-matching condition.

For the same reason, FOPAs are very sensitive to perturbations stemming from fiber

irregularities. One such irregularity is that fiber dispersion varies randomly along the

fiber length. My numerical modeling showed that, because of such variations, FOPA

gain spectrum cannot maintain its flatness and also that FOPA gain profile changes from

one fiber to the other. Using stochastic methods, an analytic theory is developed that

can predict an “average gain spectrum.” This analytic theory can be used to show that

flatness of FOPA gain is recovered at the expense of reducing the gain bandwidth.

Another fiber irregularity that affects FOPA gain spectrum is the residual birefrin-

gence. During the fiber-drawing process, the cross section of fiber core inevitably devi-

ates from perfect circular symmetry. As a result, all non-polarization maintaining fibers

exhibit residual birefringence. Both the magnitude of birefringence and the direction of
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its principal axis vary along the fiber length as well as in time. Because of residual bire-

fringence, state of polarizations of the propagating fields change randomly also. Since

the underlying four-wave mixing (FWM) process depends on the state of polarizations

of the interacting fields, FOPA gain profile cannot maintain its flatness, and changes

in time. The impact of residual birefringence on dual-pump FOPAs are investigated

by means of numerical simulations. It is shown that residual birefringence also causes

a trade off between flatness of FOPA gain spectrum and FOPA gain bandwidth. The

FOPA gain bandwidth required to maintain a flat gain profile is determined.

FOPAs can be used for all-optical signal processing applications since the underly-

ing FWM process responds almost instantaneously. However, the ultrashort response

time of FWM makes FOPAs susceptible to pump noise. This becomes a limitation on

the noise properties of FOPAs. I investigated the impact of pump noise on the amplified

signal in the context of intensity noise transfer. It is shown that the group-velocity dif-

ference between the signal and pumps play an important role and reduces the transfer

of intensity noise from the pump to the signal.

Another limitation of FOPAs is that, since the efficiency of FWM process depends

on polarization states of the interacting fields, FOPA gain becomes sensitive to input po-

larization of the signal. There are several schemes that have been proposed to eliminate

polarization dependence of FOPA gain. However, in the case of single-pump FOPAs

the existing methods are cumbersome to implement. In this work, I propose a relatively

simple way to achieve polarization-insensitive gain by using a highly birefringent fiber.
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1 Introduction

Fiber-optic parametric amplifiers (FOPAs) employ the nonlinear phenomenon of four-

wave mixing (FWM) to transfer energy from one or two strong pump fields to weak

signal fields. FWM is a parametric process stemming from the third-order nonlinear

response of materials [1]–[3]. The first experiment that demonstrated FWM in fiber

dates back to 1974 [4]. Since then, FOPAs have proved to be a versatile tool for impor-

tant applications [3], [5]. Among these applications are periodic signal amplification

for communication systems [6], [7], broadband wavelength conversion [8]–[12], phase

conjugation [13]–[17], phase-sensitive amplification [18]–[20], ultrafast optical sam-

pling [21], all-optical time-division demultiplexing [22]–[24], optical switching [25],

and entangled photon-pair generation [26].

1.1 Historical Review of Previous Work

Early work on FWM in fibers was limited because of the lack of good-quality fibers and

pump sources. Fibers were attractive as a nonlinear medium not because of their high

nonlinearity but because they can increase the nonlinear interaction length by confining

the optical fields to a tight area and guiding them in the same spatial mode over long

distances [3]. In principle, the nonlinear interaction length can be as large as the fiber

length. However, in early experiments the nonlinear interaction length was limited
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because fibers had large dispersion, high losses, and also because tunable, powerful,

continuous-wave (CW) lasers were not readily available in the wavelength region of

interest [4], [27].

Fast growth of the field of fiber-optic communications in the eighties and nineties

provided the technology that was needed to make the FOPAs practical. First came

the telecommunication fibers having low losses and low dispersion in the wavelength

region near 1.3 and 1.5 µm, [28], [29]. The second big leap was the introduction

of erbium-doped fiber amplifiers [30] and high-quality, tunable semiconductor lasers

capable of providing required high power levels [22], [31]. The final step was the

introduction of highly nonlinear fibers and the so-called micro-structured fibers [33],

[34]. These fibers can increase the effective fiber nonlinearity by a factor of more than

100. Moreover the dispersive properties of microstructured fibers can be tailored easily,

providing an additional flexibility in designing FOPAs.

Advances in fiber-optic communication systems provided FOPAs not only with the

technology that was essential but also with the motivation to make better FOPAs. Mod-

ern optical communication systems require not only signal amplification periodically

but also devices that are capable of ultrafast, all-optical, signal processing [28]. FOPAs

are attracting considerable attention because they can provide broadband amplification

which can cover the entire telecommunication window, and thus, replace erbium-doped

fiber amplifiers used commonly for signal amplification [5]–[19]. FOPAs are also an

ideal candidate for ultrafast, all-optical, signal processing because of an instantaneous

electronic response of the silica nonlinearity responsible for FWM in optical fibers.

Moreover, amplification provided by FOPAs is accompanied with relatively low noise,

allowing operation close to the quantum limit [18]–[20].
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1.2 Thesis Objective

The objective of this thesis is to develop a comprehensive theory of FWM that takes

into account the vectorial nature of FWM process, which can be applied to both sin-

gle and dual-pump FOPAs. This theory is then used to study the impact of fiber im-

perfections on parametric amplification. For instance, the effect of randomly varying

zero-dispersion wavelength of the fiber on the FOPA gain band-width and gain spec-

trum uniformity is investigated using a stochastic approach. The full vectorial nature

of the theory developed for FWM allows for an understanding of the effects of residual

birefringence on the FOPA gain.

The comprehensive theory of FWM is then used to understand the impact of pump

noise on the amplified signal and idler fields. The theory points out the potential mech-

anisms through which pump noise can be transferred to the signal. In particular, the

effect of group-velocity difference between the pumps and the signal is taken into ac-

count when calculating the degree of signal degradation. Since these equations can

describe the vectorial nature of FWM process, the impact of variations in the polariza-

tion state of the pumps on the signal gain can also be calculated.

Finally, a simple scheme for making polarization-insensitive single-pump FOPA is

proposed through a detailed analysis of FWM in highly-birefringent fibers.

1.3 Thesis Organization

Chapter 2 shows a derivation of the vector nonlinear Schrödinger equation which de-

scribes nonlinear evolution of optical fields in fibers. From the vector NLS equation,

vectorial FWM equations are derived. These equations are used in later chapters when-

ever states of polarization of the fields involved in the FWM process have to be taken

into account. At the end of this Chapter, the vectorial FWM equations are reduced to a

simple scalar form to discuss a few basic properties of the FWM process.
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In Chapter 3, basic aspects of parametric amplification are discussed in terms of the

role of phase matching, the schemes used for satisfying the phase-matching condition

in single- and dual-pump FOPAs, and the dependence of parametric gain on the states

of polarization of the interacting fields. Examples of experiments that used FOPAs for

several different applications are described and their performances are summarized.

Chapter 4 investigates the impact of fiber imperfections on the FOPA gain band-

width and flatness of the gain spectrum. Two common imperfections of most fibers

are random variations in the dispersion along the fiber length, and polarization-mode

dispersion induced by randomly varying residual birefringence.

Chapter 5 shows that the noise associated with two pumps is a major source of sig-

nal degradation. It is shown that preparation of FOPA pumps is usually done in multiple

stages during which pumps can be distorted through three different mechanisms. These

mechanisms are introduced and their impacts on the amplified signal and idler are dis-

cussed separately. For each degradation mechanism a simple solution is provided.

Chapter 6 discusses FWM in a highly birefringent fiber. It is proposed in this Chap-

ter that a highly birefringent fiber can be used to achieve polarization-independent gain

in single-pumped FOPAs. This scheme is superior to the existing techniques because

of its simplicity.
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2 Theoretical Framework

The FWM process originates from the nonlinear response of bound electrons to the

intense optical waves propagating inside nonlinear media such as silica fibers. When

two intense pump waves at frequencies ω1 and ω2 copropagate inside an optical fiber,

they can force the bound electrons to oscillate almost instantaneously at any frequency

stemming from the mixing of these waves. Even though the potential provided by silica

molecules confines electrons to their original atom, electrons respond to the applied

electromagnetic field by emitting secondary waves not only at the original frequencies

ω1 and ω2 (linear response), but also at two new frequencies denoted as ω3 and ω4

(third-order nonlinear response).

2.1 Basic Properties of FWM

Physically, two photons at the original frequencies are scattered elastically into two new

photons at frequencies ω3 and ω4 as shown in Fig. 2.1.

The total energy and momentum of the original two photons are conserved during

FWM. Noting that photon energy and momentum are h̄ω and h̄β , respectively, for an

optical field of frequency ω propagating with the propagation constant β , the conser-
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Virtual level

ω3 ω3ω1

ω2

ω1 ω4 ω4
ω1

Degenerate Non-degenerate

Single Pump Dual Pump

Figure 2.1: Degenerate and nondedenerate FWM process depicted on an energy level

diagram.

vation relations take the form:

ω1 +ω2 = ω3 +ω4, (2.1)

β (ω1)+β (ω2) = β (ω3)+β (ω4), (2.2)

Only the magnitude of wave vectors appears in Eq. (2.1), because all four waves prop-

agate along the same direction in single-mode fibers. Since β (ω j) governs the phase

shift experienced by the jth wave, Eq. (2.2) is also referred to as the phase-matching

condition [2].

A question that must be answered is what determines the frequencies ω3 and ω4

during the FWM process. If only the pump beams are incident on an optical fiber,

the new waves grow from noise and their frequencies are determined by the phase-

matching condition through spontaneous FWM. In practice, the efficiency of the FWM

process is enhanced by seeding it. Seeding is accomplished by launching a signal wave

at the frequency ω3. The probability of creating photons at the frequency ω4 depends

on how many photons at ω3 already exist inside the fiber. As a result, the FWM process

is stimulated, and new photons at ω3 and ω4 are created with an exponential growth

rate, provided the phase-matching condition is nearly satisfied. It is common to refer to

the fourth wave at the frequency ω4 as the idler wave, following the terminology used

in the microwave literature. It is not obligatory to launch two separate pump beams for

FWM to occur. The same process can occur even when the two pump photons have the
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same frequency (degenerate FWM). The general case of two independent pump beams

is called nondegenerate FWM.

2.2 Maxwell’s and Helmholtz’s Equations

So far, the FWM process is discussed without referring to the medium in which it

takes place. To describe FWM in a fiber correctly, the guiding nature of the fiber has

to be taken into account. Propagation of intense optical fields in fibers is described

by the nonlinear Schödinger equation. Using this equation, the nonlinear evolution of

the four fields involved in FWM (as well as other nonlinear processes) can be studied.

Starting point for derivation of the nonlinear Schödinger equation is the set of Maxwell

equations:

∇ ·D = ρ, (2.3)

∇ ·B = 0, (2.4)

∇×E = −∂B

∂ t
, (2.5)

∇×H = J +
∂D

∂ t
, (2.6)

where D and B are electric and magnetic flux densities, E and H are electric and

magnetic field vectors, ρ is the charge density, and J is the current density vector.

The electric and magnetic flux densities, D and B, are related to the electric and

magnetic field vectors, respectively, as follows:

D = ε0E +P , (2.7)

B = µ0H +M , (2.8)

where ε0 is the vacuum permittivity and µ0 is vacuum permeability. The induced elec-

tric and magnetic polarizations P and M account for the material response.

The equation that describes the propagation of the electric field can be written in

terms of a single, second-order, partial differential equation known as the electromag-
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netic wave equation. First, taking the curl of Eq. (2.5) and using Eqs. (2.6) and (2.8)

we obtain

∇×∇×E =−∂ (∇×B)
∂ t

=−µ0ε0
∂ 2E

∂ t2 −µ0
∂ 2P

∂ t2 −µ0
∂J

∂ t
− ∂ (∇×M)

∂ t
. (2.9)

As fibers do not typically contain free charges, (ρ = 0 and J = 0) and have a non-

magnetic nature, the last two terms in Eq. (2.9) can be dropped. Left-hand side of the

equation can be simplified through the identity

∇×∇×E = ∇(∇ ·E)−∇
2E =−∇

2E, (2.10)

where Eq. (2.3) is used in the last step. With these simplifications Eq. (2.9) becomes

∇
2E− 1

c2
∂ 2E

∂ t2 =
ε0

c2
∂ 2P

∂ t2 , (2.11)

where the definition for the speed of light c = (µ0ε0)−
1
2 is used.

The induced polarization P is typically a complicated function of the electric field.

In the case of fibers, the electric field is rarely intense enough to necessitate knowing

the exact dependence of P on E. Such dependence is usually studied by expanding the

induced polarization in a Taylor series as a function of the electric field strength and

retaining only those terms that become significant. In fibers, the first nonlinear term

that becomes important is the third-order term (because the even-order terms vanish for

a medium exhibiting the inversion symmetry). Retaining only the first-and third-order

terms, the induced polarization can be separated into a linear and a nonlinear part as

P = PL +PNL. (2.12)

The linear and nonlinear parts of the induced polarization can be expressed as

PL(r, t) = ε0

∫
∞

−∞

χ(1)(t− t ′) ·E(r, t ′)dt ′, (2.13)

and

PNL(r, t) = ε0

∫ ∫ ∫ t

−∞

χ(3)(t− t1, t− t2, t− t3)

...E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3 (2.14)
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where χ(1) and χ(3) are the first- and third-order susceptibilities representing the re-

sponse of the material. In general, neither linear nor nonlinear response of the material

is instantaneous. The delayed linear response leads to material dispersion as well as

intrinsic material loss, and it is also response is responsible for the nonlinear resonant

processes such as the Raman and Brillouin scattering. FWM, on the other hand, is a

nonresonant nonlinear process that is produced by the instantaneous part of the third-

order susceptibility. In designing FOPAs, special care is taken to ensure that contribu-

tion of Raman and Brillouin scattering remains small compared to FWM and can be

neglected. With this approximation, the nonlinear induced polarization can be written

as

PNL(r, t) = ε0χ
(3)...E(r, t)E(r, t)E(r, t). (2.15)

For typical electric field strengths, the contribution of the nonlinear part of induced

polarization is much smaller compared to the linear part. This feature allows us to treat

the effect of the nonlinear contribution in a perturbative manner. In the first step, the

nonlinear part is assumed to vanish, i.e. PNL ≈ 0. As a result of this simplification

Eq. (2.11) reduces to a linear equation and it takes a simpler form in the frequency

domain known as Helmholtz Equation :

∇
2Ẽ(r,ω)+

ε(r,ω)ω2

c2 Ẽ(r,ω) = 0, (2.16)

where, Ẽ(r,ω) is the Fourier transform of E(r, t) defined through the relation

Ẽ(r,ω) =
∫

∞

−∞

E(r, t)exp(iωt)dt. (2.17)

The quantity ε(r,ω) is known as the dielectric constant of the material and is related

to the linear susceptibility as

ε(r,ω) = 1+ χ̃(1)(r,ω). (2.18)

The real and imaginary parts of dielectric constant can be used to define the refractive

index n(ω) and absorption coefficient α(ω) through relation

ε = (n+ iαc/2ω)2. (2.19)
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Using Eqs. (2.18) and (2.19), the refractive index and the absorption coefficient can be

written approximately as

n = 1+
1
2

Re[χ̃(1)], (2.20)

α =
ω

2c
Im[χ̃(1)]. (2.21)

2.3 Modes of Optical Fibers

Because of the cylindrical symmetry of the fiber it is suitable to write Eq. (2.16) as

∂ 2Ẽ

∂ρ2 +
1
ρ

∂ Ẽ

∂ρ
+

1
ρ2

∂ 2Ẽ

∂φ 2 +
∂ 2Ẽ

∂ z2 +n2k2
0Ẽ = 0, (2.22)

where ρ , φ and z are the cylindrical coordinates and k0 = ω/c is the propagation con-

stant in free space. A similar equation can be obtained for the magnetic field H̃ . Since

the electric and magnetic fields have to satisfy the Maxwell’s equations, only two out

of the six components Ẽρ , Ẽφ , Ẽz, H̃ρ , H̃φ and H̃z are independent. It is customary to

solve for Ẽz and H̃z independently, both of which satisfy Eq. (2.22), and obtain the rest

of the field components from these two using the Maxwell’s equations.

The Helmhotz equation for the z component of the electric field can be solved using

the method of separation of variables. For this purpose a solution of the following form

is assumed

Ẽz = F(ρ)exp(±imφ)exp(iβ z). (2.23)

Inserting Eq. (2.23) into Eq. (2.22) the following equation is obtained

∂ 2F
∂ρ2 +

1
ρ

∂F
∂ρ

−
(

m2

ρ2 +β
2−n2k2

0

)
F = 0. (2.24)

Equation (2.24) has solutions in the form:

F(ρ) =

 Jm(ηρ), ρ ≤ a,

Km(ζ ρ), ρ ≥ a,
(2.25)
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where Jm and Km are the Bessel and modified Bessel functions, respectively, η =

(n2
1k2

0 − β 2)1/2, ζ = (β 2 − n2
2k2

0)
1/2, a is the radius of the fiber core, and n1 and n2

are the refractive indices of the core and the cladding of the fiber, respectively. Solution

for H̃z can be found in the same manner. Once the z components of the fields are found,

rest of the field components can be determined from Maxwell’s equations. Since fibers

do not have any free charges across the boundary between the core and the cladding,

the tangential components of the fields have to be continuous. Imposing this condi-

tion on the solution obtained for the fields results in the following eigenvalue equation

involving the propagation constant β :[
J′m(ηa)

ηJm(ηa)
+

K′
m(ζ a)

ζ Km(ζ a)

][
J′m(ηa)

ηJm(ηa)
+

n2
2

n2
1

K′
m(ζ a)

ζ Km(ζ a)

]
=

[
mβk0(n2

1−n2
2)

an1ζ 2η2

]2

. (2.26)

Depending on the fiber parameters a, n1 and n2, in general, Eq. (2.26) has multiple

solutions for every integer value of m. These solutions for the propagation constant

are denoted as βnm and the corresponding field distributions are called HEnm or EHnm,

depending on whether the axial component of the electric field or the magnetic field

dominates. Each of these solutions correspond to a transverse mode supported by the

fiber.

According to Eq. (2.25), the electric field is not confined entirely in the fiber core

but experiences the refractive indices of both the core and the cladding. Therefore, it

is useful to introduce an effective refractive index defined as n̄ = β/k0. Its physical

significance can be understood from the fact that, for a given fiber design, a transverse

mode of the fiber is a guided mode as long as its effective index satisfies the condition

n2 < n̄ < n1. Clearly, if the effective index is smaller than the cladding index, the field

cannot be guided by the fiber since it cannot experience total internal reflection. Indeed,

Eq. (2.25) shows that when n̄ < n2, ζ becomes imaginary, therefore, the portion of the

field in the cladding does not decay anymore. This condition can be used to design

single-mode fibers that support only the fundamental mode. Single-mode fibers are the



12

most commonly used fibers since they have better spatial beam quality and they do not

suffer from intermodal dispersion.

The fundamental mode of fibers is the HE11 mode. This mode is dominated by the

transverse components, and its axial component can be neglected. Even though fibers

can be designed to guide only the fundamental mode, in the transverse plane, the elec-

tric field can be decomposed into two orthogonally polarized components. Therefore,

even single-mode fibers support two distinct modes known as the polarization modes.

If the electric field is polarized along the x–axis, the fundamental mode takes the fol-

lowing form

Ẽx =

{
E0[J0(ηρ)/J0(ηa)]exp(iβ (ω)z), ρ ≤ a,

E0 [K0(ζ ρ)/K0(ζ a)]exp(iβ (ω)z), ρ ≥ a,
(2.27)

where E0 is the field amplitude.

In a fiber with perfect cylindrical symmetry, the two polarization modes are de-

generate in the sense that they have the same transverse profile as well as the same

propagation constant. If this symmetry is broken, either on purpose or due to manufac-

turing defects, the two polarization modes cease to be degenerate. In general, deviations

from cylindrical symmetry are small enough that they do not affect the transverse-mode

distribution but change the propagation constants of the two polarization components

slightly. In this case the fiber is said to exhibit birefringence. It is useful to introduce a

quantity called the degree of birefringence B = |n̄x− n̄y|, where n̄x and n̄y are the effec-

tive refractive indices experienced by the polarization components of the field along x

and y axes, respectively. In practice, it is difficult to reduce the degree of birefringence

below 10−7 because of an imperfect circular shape, and the stress and strain induced

during the fiber-drawing process. What is more, since such residual birefringence can-

not be controlled, the orientation of the slow and fast axes vary along the fiber length.
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2.4 Third-order Nonlinear Response

The next step is to incorporate the effect of third-order nonlinearity into Eq. (2.11).

To do that, a few approximations and simplifications are needed. The first of these

simplifications comes from the assumption that the field is quasi-monochromatic. This

assumption, also known as the slowly-varying envelope approximation, is valid when-

ever the spectral spread ∆ω of the field is much smaller than the central frequency ω0

of the spectrum. This approximation remains valid until the width of the field envelope

reduces to below a few optical cycles. The second simplification is due to the fact that

nonlinear induced polarization is much smaller than the linear induced polarization and

it does not affect the transverse field distribution to the first order. Finally, it is assumed

that the dipole approximation is valid and the material response is local. With these

assumptions in mind, the electric field can be written as

E(r, t) =
1
2
[x̂Ex(r, t)+ ŷEy(r, t)]exp(−iω0t)+ c.c., (2.28)

where x̂ and ŷ are unit vectors, Ex and Ey are the two polarization components of the

slowly varying envelope in the linear basis. The optical field is propagating along the z

axis with an unchanging transverse profile.

The material response of the fiber can also be separated into its slowly varying

envelope and its rapidly oscillating carrier frequency in a similar way as

P (r, t) =
1
2
{x̂[PLx(r, t)+PNLx(r, t)]+ ŷ[PLy(r, t)+PNLy(r, t)]}exp(−iω0t)

+ c.c. (2.29)

Using Eqs. (2.13), (2.15), (2.28) and (2.29), the expression for the slowly varying

envelope of the induced polarization becomes

PLi(r, t) = ε0

∫
∞

−∞
∑

j
χ

(1)
i j (t− t ′)E j(r, t ′)exp[iω0(t− t ′)]dt ′, (2.30)

PNLi(r, t) = ε0
3
4 ∑

j,k,l
χ

(3)
i jklE j(r, t)Ek(r, t)El(r, t)∗, (2.31)
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where i, j, k, and l stand for x or y. In deriving Eq. (2.31), the induced nonlinear

polarization at the third harmonic of the electric field is ignored since this process rarely

satisfies the phase-matching condition to have an appreciable contribution. The factor

of three in the expression is the number of ways the three fields can mix up to create a

response at the carrier frequency.

In an isotropic medium such as an optical fiber, the elements of the nonlinear sus-

ceptibility tensor cannot be completely independent but must satisfy several relations

imposed by the material symmetry. As a result, the number of independent elements of

χ(3) reduce to three and they satisfy the following relation

χ
(3)
i jkl = χ

(3)
xxyyδi jδkl + χ

(3)
xyxyδikδ jl + χ

(3)
xyyxδilδ jk, (2.32)

where δi j is the Kronecker delta function. Using Eq. (2.32), nonlinear part of the in-

duced polarization can be written as

PNLi =
3ε0

4 ∑
j

(
χ

(3)
xxyyEiE jE∗j + χ

(3)
xyxyE jEiE∗j + χ

(3)
xyyxE jE jE∗i

)
. (2.33)

The relative contributions of the three independent terms are determined by the physical

origin of the nonlinear process. In fibers and other materials where the nonlinearity

is mainly of electronic origin, all of the three independent terms contribute equally.

Finally, using Eq. (2.32) they can be expressed in terms of the single parameter χ
(3)
xxxx

1
3

χ
(3)
xxxx = χ

(3)
xxyy = χ

(3)
xyxy = χ

(3)
xyyx. (2.34)

Equation (2.33) can be simplified even further using Eq. (2.34) to become

PNLi =
ε0χ

(3)
xxxx

4 ∑
j

(
EiE jE∗j +E jEiE∗j +E jE jE∗i

)
. (2.35)

The explicit forms of nonlinear induced polarization along the x- and y-axis becomes

PNLx =
3ε0χ

(3)
xxxx

4

[(
|Ex|2 +

2
3
|Ey|2

)
Ex +

1
3

E∗x E2
y

]
, (2.36)

PNLy =
3ε0χ

(3)
xxxx

4

[(
|Ey|2 +

2
3
|Ex|2

)
Ey +

1
3

E∗y E2
x

]
. (2.37)
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The equations governing the evolution and interaction of the two polarization com-

ponents of the field can be written in a compact form in the Jones space. In this notation,

complex valued electric field components are represented by the elements of a vector

as shown in the following example:

|E(r, t)〉=

 Ex(r, t)

Ey(r, t)

 , |P(r, t)〉=

 Px(r, t)

Py(r, t)

 . (2.38)

With this notation, Eqs. (2.36) and (2.37) can be written in a simpler form as

|PNL〉= ε0
↔
ε NL|E〉,

↔
ε NL =

3χ
(3)
xxxx

4

 |Ex|2 + 2
3 |Ey|2 1

3E∗x Ey

1
3E∗y Ex |Ey|2 + 2

3 |Ex|2

 . (2.39)

Complex valued 2×2 matrices such as the one shown in Eq. (2.39) can also be repre-

sented in a simpler form by introducing the Pauli matrices defined as

σ1 =

 1 0

0 −1

 σ2 =

 0 1

1 0

 σ3 =

 0 −i

i 0

 . (2.40)

Together with the identity matrix σ0 these matrices form a complete set in the sense

that any 2×2 matrix can be written as a linear combination of them, for example

↔
ε NL =

3χ
(3)
xxxx

4

[
5
6
〈E|E〉σ0 +

1
6
〈E|σ1|E〉σ1 +

1
6
〈E|σ2|E〉σ2−

1
6
〈E|σ3|E〉σ3

]
. (2.41)

To make the notation more compact, one can show that |PNL〉= (3ε0χ
(3)
xxxx/4)Γ|E(r, t)〉

where

Γ = 〈E|E〉σ0−
1
3
〈E|σ3|E〉σ3. (2.42)

Written this way, the two contributions to the nonlinear response of the material can

be identified. The first term on the left-hand side of Eq. (2.42), depends only on the

total power of the field and it affects both polarization components of the field equally.

Therefore contribution of this term is said to be isotropic. The second term is a traceless

matrix and it leads to what is known as the nonlinear birefringence. When the electric

field is linearly or circularly polarized, the second term in Eq. (2.42) vanishes and it
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does not experience nonlinear birefringence. In contrast, any elliptically polarized field

experiences an effective birefringence and propagates in a way that transfers the energy

back and forth between the two polarization components.

2.5 Vectorial NLS Equation

To proceed further, it is useful to transform Eq. (2.11) into the Fourier domain using

the following definition for the Fourier transform

|Ẽ(r,ω−ω0)〉=
∫

∞

−∞

|E(r, t)〉exp[i(ω−ω0)t]dt. (2.43)

Taking the Fourier transform of the nonlinear induced polarization |PNL〉 would result

in complicated convolutions. However, based on the fact that the nonlinear contribution

of the material response is only perturbative in nature, and also under the slowly varying

envelope approximation, the nonlinear terms such as 〈E|E〉 and 〈E|σ3|E〉 appearing in

the expression of |PNL〉 can be treated as constants. Using Eqs. (2.13), (2.39) and (2.42)

together with the slowly varying envelope approximation, Eq. (2.11) can be written in

the Fourier domain as

∇
2|Ẽ〉+↔

ε(ω)k2
0|Ẽ〉= 0, (2.44)

where k0 = ω/c and
↔
ε(ω) =

↔
ε L(ω)+

↔
ε NL is the dielectric tensor incorporating both

the linear and nonlinear material response, and
↔
ε NL is given in Eq. (2.39). The linear

part of the dielectric tensor is defined as

↔
ε L(ω) = εL0(ω)σ0 +~εL(ω) ·~σ, (2.45)

where εL0 = 1 +(χ̃
(1)
xx + χ̃

(1)
yy )/2 is the isotropic contribution and~εL(ω) ·~σ ≡ εL1σ1 +

εL2σ2 + εL3σ3 is the anisotropic contribution to the dielectric constant with
↔
ε L1 =

(χ̃
(1)
xx − χ̃

(1)
yy )/2,

↔
ε L2 = (χ̃

(1)
xy + χ̃

(1)
yx )/2 and

↔
ε L3 = i(χ̃

(1)
xy − χ̃

(1)
yx )/2.

Equation (2.44) can be solved using the method of separation of variables and as-

suming that the electric field is of the form

|Ẽ(r,ω−ω0)〉= F(ρ)|Ã(z,ω−ω0))〉exp(±imφ)exp(iβ0z), (2.46)
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where ρ , φ and z are the cylindrical coordinates, z being the propagation direction

along the fiber, and β0 is the wave number of the field at the carrier wavelength to be

determined later from the boundary conditions. The transverse profile of the field distri-

bution is assumed to be the same for both polarization components since the anisotropic

contribution to the dielectric tensor is typically orders of magnitude smaller compared

to the isotropic part. Inserting Eq. (2.46) into Eq. (2.44) the following equations are

obtained (
∂ 2F
∂ρ2 +

1
ρ

∂F
∂ρ

− m2F
ρ2

)
σ0 +

(
↔
β

2
−↔

ε(ω)k2
0

)
F = 0, (2.47)

∂ 2|Ã〉
∂ z2 +2iβ0

∂ |Ã〉
∂ z

+(
↔
β

2
−β

2
0 )|Ã〉= 0. (2.48)

The dielectric constant in Eq. (2.47) can be approximated in terms of the refractive

index as follows

↔
ε = εL0(ω)σ0 +~εL(ω) ·~σ +

↔
ε NL ≈ (n2 + inα/k0)σ0 +2n~δn ·~σ +2n↔n2, (2.49)

where n is the average of the refractive indices along the fast and slow axes and ↔n2 is

the nonlinear index. The Stokes vector ~δn points in the direction of the fast birefrin-

gence axis and its magnitude gives the refractive index difference between the slow and

fast axes. These three quantities are related to different contributions of the dielectric

constants as follows

n2(ω)+
in(ω)α

k0
= εL0(ω), ~δn =

~εL(ω)
2n

,
↔n2 =

↔
ε NL

2n
. (2.50)

In the absence of fiber birefringence and the nonlinear contribution to the dielectric

constant Eq. (2.47) reduces to Eq. (2.24), which has a solution given by Eq. (2.27).

Since the nonlinear and anisotropic terms are small, their effect can be studied by per-

turbation. As a first-order approximation, the nonlinear and anisotropic terms do not

affect the transverse field distribution but only modify the propagation constant slightly

as follows:
↔
β = β (ω)σ0 +

↔
δβ . (2.51)
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The change in the propagation constant due to the fiber nonlinearity and birefrin-

gence can be calculated by inserting the zeroth-order solution given by Eq. (2.25) into

Eq. (2.47), and ignoring terms that are higher than first order. By requiring that
↔

δβ

satisfies the equation in the first order gives

↔
δβ =

nk2
0

β (ω)

[
iα
2k0

σ0 +~δn(ω) ·~σ +
∫∫

∞

∞
|F(x,y)|2↔n2(x,y)dxdy∫∫

∞

∞
|F(x,y)|2dxdy

]
. (2.52)

Once the propagation constant is determined, equation describing the evolution of

the field along the fiber can be found from Eq. (2.48) in the form

∂ |Ã〉
∂ z

= i
{

[β (ω)−β0]σ0 +
↔

δβ

}
|Ã〉, (2.53)

where the second derivative with respect to z is neglected on the basis of slowly vary-

ing envelope approximation and (
↔
β

2
−β 2

0 σ0) is assumed to be approximately equal to

2β0(
↔
β −β0σ0).

Equation (2.53) can be inverse-Fourier-transformed to obtain the propagation equa-

tion in the time domain. However, the exact frequency dependence of β (ω) and
↔

δβ (ω)

may be complicated, or may not be fully known. As an approximation, it is customary

to expand them in a Taylor series around the carrier frequency and retain only those

terms that can contribute significantly for a given spectral width of the field. Using this

simplification, the propagation equation in the time domain becomes

∂ |A〉
∂ z

=−α

2
|A〉+ i~b0 ·~σ|A〉−~b1 ·~σ

∂ |A〉
∂ t

−β1
∂ |A〉
∂ t

− i
β2

2
∂ 2|A〉
∂ t2

+ iγ
[
〈A|A〉σ0−

1
3
〈A|σ3|A〉σ3

]
|A〉, (2.54)

where α is the loss coefficient, ~b0 = k0
~δn(ω0) is the fiber birefringence at the carrier

wavelength,~b1 = [∂ (k0
~δn)/∂ω]ω=ω0 is the polarization-mode dispersion (PMD) vec-

tor, β1 and β2 are the first and second order terms in the Taylor expansion of propagation

constant β (ω) around the carrier frequency, and γ defined as

γ =
3χ

(3)
xxxxk0

8nAeff
, (2.55)
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where Ae f f is the effective mode area defined as

Ae f f =

(∫∫
∞

∞
|F(x,y)|2dxdy

)2∫∫
∞

∞
|F(x,y)|4dxdy

. (2.56)

Defining Ae f f in this form, the quantity 〈A|A〉 represents optical power.

Equation (2.54) is called the vectorial nonlinear Schrödinger equation, which de-

scribes nonlinear evolution of a quasi-monochromatic optical field with an arbitrary

state of polarization (SOP) in a birefringent and dispersive fiber. It is instructive to

go through the individual terms in Eq. (2.54) and attach a physical meaning to them.

Starting with the dispersive terms, β1 = 1/vg is the inverse of the group velocity. In de-

scribing a single field, this term can be omitted by switching to a frame moving at the

speed vg along the z direction. However, when describing spectrally distinct fields and

their interactions, the group-velocity difference between these fields can lead to signif-

icant walk off, which needs to be included properly. Group-velocity dispersion (GVD)

is described by the β2 term. Loosely speaking, because of β2 different spectral compo-

nents of a field have different group velocities, and this leads to broadening of the pulse

in the time domain. It is useful to define a length scale LD, called the dispersion length,

at which a pulse goes through noticeable broadening:

LD =
T 2

|β2|
, (2.57)

where T is a measure of pulse width. When the total length of the fiber L is much

shorter than LD it is usually safe to ignore the effects of fiber dispersion.

Fiber birefringence at the carrier frequency is described vector ~b0. This vector

points in the direction of the fast birefringence axis in the Stokes space. Its magni-

tude is proportional to the fiber birefringence. Because of fiber birefringence, the two

polarization components of the field aligned with the fast and slow axes of the fiber

have different phase velocities. This causes periodic rotation of the polarization vector

of the field if it initially lies in any direction other than the fast or slow axis. The period
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of this rotation, LB, is called the beat length and it is inversely proportional to fiber

birefringence as

LB =
2π

b0
, (2.58)

where b0 = |~b0|.

If the field has a wide spectrum, different polarization components of the field ex-

perience not only different phase velocities but also different group velocities. The axes

that are parallel and orthogonal to the polarization-mode dispersion vector~b1 are the

directions in which group velocity is maximum and minimum, respectively. The differ-

ence between the maximum and minimum group velocities is related to the magnitude

of the PMD vector as

b1 =
1

vgy
− 1

vgx
, (2.59)

where b1 = |~b1| is the differential group delay, and vgx and vgy are the group veloci-

ties along the x and y axis, which are also assumed to be the fast and slow axes of the

fiber, respectively. If two polarization components of a field travel with different group

velocities a pulse splits in the time domain. Hence it experiences polarization-mode

dispersion. The effect of a PMD vector in the frequency domain is that different fre-

quency components experience different amounts of birefringence. Unless, the SOP of

a field is parallel to the fast or slow axis, different frequency components of the field

rotate at different rates, which leads to polarization diffusion.

The terms involving the nonlinear parameter γ in Eq. (2.54) describe the nonlinear

evolution of the field. In the absence of linear terms, Eq. (2.54) has the following formal

solution

|A(z, t)〉= exp
[

iγPz− iγ
3

∫ z

0
〈A(z′, t)|σ3|A(z′, t)〉σ3dz′

]
|A(0, t)〉, (2.60)

where P = 〈A|A〉 is the total power. One effect of fiber nonlinearity is to introduce a

power dependent phase shift, therefore it is said to cause self-phase modulation (SPM).

If the field has a time-dependent power profile, SPM introduces time-dependent phase
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shifts and thus broadens the field spectrum. In the special cases in which the initial SOP

of the field is linear or circular, the exponent in Eq. (2.60) simplifies to scalar quantities

iγPLz and 2iγPLz/3, respectively. However, for any other elliptically polarized field,

the exponent in Eq. (2.60) is not scalar. Therefore, these fields experience an effec-

tive birefringence that depends on the total pump power, as well as on its polarization

state. As a result, elliptically polarized fields are said to experience nonlinear polariza-

tion rotation. Nonlinear processes are discussed in more detail in the context of FWM

equations.

2.6 Vectorial FWM Equations

The vectorial nonlinear Schrödinger equation can be used to describe various nonlin-

ear processes that take place in a FOPA. An important nonlinear process is four-wave

mixing (FWM); it allows power transfer from one or more strong pump fields to the

so-called signal and idler fields. Launching only the strong pump fields leads to spon-

taneous parametric scattering. The process becomes stimulated when a weak signal

field is launched together with the pump. As a result, the signal field is amplified and at

the same time the idler is created such that the four fields satisfy the energy conservation

requirement

ω1 +ω2 = ω3 +ω4, (2.61)

where ω1, ω2, ω3 and ω4 are the frequencies for the two pumps, signal and idler re-

spectively. If only a single pump is used, energy conservation requirement becomes

2ω1 = ω3 +ω4.

As the four interacting fields are spectrally distinct, it is possible to obtain a separate

equation for each field that explicitly shows the nonlinear interaction among them. To

do this, the field is assumed to have the following form

|A(z, t)〉=
4

∑
m=1

|Am(z, t)〉exp{−iβ (ω0)z− i(ωm−ω0)t}. (2.62)
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Substituting Eq. (2.62) into Eq. (2.54) and separating different frequency components

we obtain

∂ |A j〉
∂ z

= L (ω j)|A j〉+ iγ
{
〈A j|A j〉−

1
3
〈A j|σ3|A j〉σ3

+
4

∑
m6= j

[
〈Am|Am〉+ |Am〉〈Am|−

1
3

(
〈Am|σ3|Am〉+σ3|Am〉〈Am|

)
σ3

]}
|A j〉

+ iγ
[
|A3〉〈A∗4|+ |A4〉〈A∗3|−

σ3

3

(
|A3〉〈A∗4|+ |A4〉〈A∗3|

)
σ3

]
|A∗3− j〉e−i∆β z, (2.63)

∂ |Ak〉
∂ z

= L (ωk)|Ak〉+ iγ
{
〈Ak|Ak〉−

1
3
〈Ak|σ3|Ak〉σ3

+
4

∑
m6=k

[
〈Am|Am〉+ |Am〉〈Am|−

1
3

(
〈Am|σ3|Am〉+σ3|Am〉〈Am|

)
σ3

]}
|Ak〉

+ iγ
[
|A1〉〈A∗2|+ |A2〉〈A∗1|−

σ3

3

(
|A1〉〈A∗2|+ |A2〉〈A∗1|

)
σ3

]
|A∗7−k〉ei∆β z, (2.64)

where, j = 1 or 2, k = 3 or 4, m runs from 1 to 4, and ∆β is the wave-vector mismatch

given by

∆β = β (ω3)+β (ω4)−β (ω1)−β (ω2). (2.65)

The linear operator L (ωm) governs the evolution of the fields in the absence of non-

linearity and is given by

L (ωm) =−α

2
+ i

(
~b0(ωm)+ i~b1(ωm)

∂

∂ t

)
·~σ

+β (ωm)−β1(ωm)
∂

∂ t
− i

β2(ωm)
2

∂ 2

∂ t2 . (2.66)

In Eqs. (2.63) and (2.64) the terms containing the nonlinearity coefficient γ show

explicitly the nonlinear interactions among the fields. The first two terms are the SPM

terms since they depend only on the field itself, and their only effect is to modify the

phase of the field. Similarly, the terms gathered within the summation symbol only af-

fect the phase of the field. Since these terms only consist of other fields, they are called

the cross-phase modulation (XPM) terms. The last four terms are responsible for the

FWM process. Unlike the SPM and XPM terms, the FWM terms are not purely imag-

inary; as a result, FWM can lead to power exchange among the fields. The efficiency



23

of the energy exchange depends on the wave-vector mismatch ∆β as well as on how

strong the fields are.

Equations (2.63) and (2.64) describe the general case where the signal and idler

fields can be as strong as the pumps. In fact, these equations are symmetric in the sense

that subscripts 1 and 2 can be exchanged freely with 3 and 4, which also shows that

energy flow can be from pumps to the signal and idler or vice versa. In practice, pump

fields are much stronger than the signal and idler fields. Assuming weak signal and

idler fields, we can drop those terms that are proportional to signal or idler amplitudes

in Eq. (2.63) and linearize Eq. (2.64) in terms of the signal and idler fields as follows

∂ |A1〉
∂ z

= L (ω1)|A1〉+ iγ
[
〈A1|A1〉+ 〈A2|A2〉+ |A2〉〈A2|

− 1
3

(
〈A1|σ3|A1〉+ 〈A2|σ3|A2〉+σ3|A2〉〈A2|

)
σ3

]
|A1〉, (2.67)

∂ |A3〉
∂ z

= L (ω3)|A3〉+ iγ
2

∑
m=1

[
〈Am|Am〉+ |Am〉〈Am|

− 1
3

(
〈Am|σ3|Am〉+σ3|Am〉〈Am|

)
σ3

]
|A3〉

+ iγ
[
|A1〉〈A∗2|+ |A2〉〈A∗1|−

σ3

3

(
|A1〉〈A∗2|+ |A2〉〈A∗1|

)
σ3

]
|A∗4〉ei∆β z, (2.68)

where equations for the second pump and the idler can be obtained by exchanging the

subscript 1 with 2 in Eq. (2.67) and 3 with 4 in Eq. (2.68). Note also that as a result

of neglecting terms that are proportional to signal and idler fields in Eq. (2.67), pump

fields remain undepleted.

In many applications, continuous-wave (CW) or quasi-CW pumps are used. In this

case, Eqs. (2.67) and (2.68) can be simplified even further since pumps retain their

temporal profile. The change in the temporal profile of the pump is negligible as long

as fiber is much shorter than the dispersion length L < LD. When the pump fields have

a narrow spectral width, and fiber losses are neglected for a relatively short fiber, the

terms related to linear propagation of the fields L (ωm) in Eqs. (2.67) and (2.68) can be

simplified to

L (ωm)≈ i~b0(ωm) ·~σ. (2.69)
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With these simplifications, it can be shown easily that pump powers remain unchanged

during the propagation:
∂ 〈A1|A1〉

∂ z
=

∂ 〈A2|A2〉
∂ z

= 0. (2.70)

However, pump phases and polarizations can still evolve in a complicated manner de-

pending on their initial values. Making use of the fact that pump powers remain con-

stant, and by introducing a change of variables such that

|B1〉= exp
[
i
(
〈A1|A1〉+ 〈A2|A2〉

)
z
]
|A1〉, (2.71)

|B3〉= exp
[

i
(
〈A1|A1〉+ 〈A2|A2〉+

∆β

2

)
z
]
|A3〉. (2.72)

Equations (2.67) and (2.68) can be written as

d|B1〉
dz

= i~b0(ω1) ·~σ|B1〉

+ iγ
[
|B2〉〈B2|−

1
3

(
〈B1|σ3|B1〉+ 〈B2|σ3|B2〉+σ3|B2〉〈B2|

)
σ3

]
|B1〉, (2.73)

d|B3〉
dz

= i~b0(ω3) ·~σ|B1〉+ i
∆β

2
|B3〉

+ iγ
2

∑
m=1

[
|Bm〉〈Bm|−

1
3

(
〈Bm|σ3|Bm〉+σ3|Bm〉〈Bm|

)
σ3

]
|B3〉

+ iγ
[
|B1〉〈B∗2|+ |B2〉〈B∗1|−

σ3

3

(
|B1〉〈B∗2|+ |B2〉〈B∗1|

)
σ3

]
|B∗4〉. (2.74)

Once again, equations for the evolution of the second pump and the idler can be found

by exchanging the subscripts 1 by 2 and 3 by 4.

The preceding FWM equations are derived for the more general case in which two

pumps with distinct frequencies are used. FWM equations in the case of a single-

pump FOPA can also be derived by the same procedure. These equations can also be

obtained from the dual-pump FWM equations (2.73) and (2.74) by putting |A2〉= 0, in

Eq. (2.73) and by replacing both |A2〉 and |A1〉 by |A1〉/
√

2 in Eq. (2.74). The FWM

equations Eq. (2.63) that include pump depletion can also be used to get the single-

pump equations in the same way.
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2.7 Scalar FWM Equations

Even though Eqs. (2.73) and (2.74) are linear equations, they do not have a closed form

analytical solution since in general pumps undergo a complicated nonlinear polarization

rotation depending on their initial SOPs. It is possible to get solutions in the special

cases in which pumps retain their SOPs. It is easy to verify from Eq. (2.67) that if

the fiber has negligible birefringence, and both pumps are either linearly or circularly

polarized such that their SOPs are either parallel or orthogonal, then pumps do not

undergo nonlinear-polarization rotation. In fact, these four cases are frequently used in

practice. Among these four schemes, it is instructive to examine the situation when all

fields have the same linear SOP. Assuming that a field with narrow spectral bandwidth

are traveling in a fiber with small birefringence and that fiber losses can be neglected,

the solution of Eq. (2.73) for the non-depleted pumps can be written as follows

B1(z) = B1(0)exp(2iγP2z), (2.75)

B2(z) = B2(0)exp(2iγP1z). (2.76)

Inserting the solution for the pump fields into Eq. (2.74) for the signal and a similar

equation for the idler leads to:

dB3

dz
=

i
2

κB3 +2iγB1B2B∗4, (2.77)

dB4

dz
=

i
2

κB4 +2iγB1B2B∗3, (2.78)

where Bk is the scalar field amplitude for the kth field defined as |Bk〉= Bk|l〉 and |l〉 is

an arbitrary unit vector with real components in a linear basis. κ = ∆β + γ(P1 +P2) is

called the phase-mismatch parameter. It incorporates phase mismatch originating from

fiber dispersion as well as the imbalance in the nonlinear phase shift experienced by the

two pumps, and the signal and idler. P1 and P2 are the pump powers.

Equations (2.77) and (2.78) can be used to find equations for the evolution of signal

and idler powers P3 = |B3|2 and P4 = |B4|2 as [35]

dP3

dz
=

dP4

dz
= 2

√
P1P2P3P4 sin(θ), (2.79)
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where θ = φ3 + φ4 − φ1 − φ2 describes the accumulated phase mismatch among the

four waves. Here φ j is the phase of the field B j, i.e., B j =
√

Pj exp(iφ j). When the two

pumps are assumed to remain undepleted, φ1 and φ2 maintain their initial values, and

the accumulated phase mismatch is governed by

dθ

dz
= κ +2γ cosθ

√
P1P2(P3 +P4)√

P3P4
. (2.80)

Equation (2.79) shows clearly that the growth of the signal and idler waves inside a

fiber is determined by the phase-matching condition. When θ = π/2, the signal and

idler extract energy from the two pumps. In contrast, when θ =−π/2, energy can flow

back to the two pumps from the signal and idler. If only the two pumps and the signal

are launched into FOPA initially, the idler wave is automatically generated by the FWM

process. This can be seen from Eq. (2.78). Even if B4 = 0 at z = 0, its derivative is not

zero as long as B3(0) is finite. Integrating this equation over a short fiber section of

length ∆z, one obtains ∆B4 ≈ 2iγB1B2B∗3(0)∆z. The factor of i provides an initial value

of π/2 for θ and shows that the correct phase difference is automatically picked up by

the FWM process [35]. If κ = 0 initially (perfect phase matching), Eq. (2.80) shows

that θ will remain frozen at its initial value of π/2. However, if κ 6= 0, θ will change

along the fiber as dictated by Eq. (2.80), and energy will flow back into the two pumps

in a periodic fashion. Thus, phase matching is critical for signal amplification and idler

generation.
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3 Parametric Amplifiers

Fiber-optic parametric amplifiers (FOPAs) are based on the FWM process. However,

the gain produced by FOPAs cannot be described by the FWM process itself. Important

FOPA properties such as available gain bandwidth and gain uniformity depend on the

phase-matching condition. This Chapter discusses in detail how FOPAs are designed

to yield wide and uniform gain bandwidths.

FOPAs can be divided into two broad categories depending on whether they use

a single pump or two pumps at different frequencies. In Section 3.1, a simplified

scalar FWM theory is used to introduce the basic concepts of FOPAs in the case of

single-pump FOPAs. Section 3.2 introduces dual-pump FOPAs, and discusses their

differences, and advantages by comparing to single-pump FOPAs. In Section 3.3, the

polarization-dependence of FOPAs is discussed in detail for both single-and dual-pump

FOPAs, by making full use of the vectorial nature of FWM equations derived in Chap-

ter 2. Finally, in Section 3.4, several important applications that make use of FOPAs

are described, and the limitations of FOPAs are discussed.
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3.1 Single-Pump Parametric Amplifiers

In this Section the focus is on a simpler case in which a single intense pump is launched

into a fiber together with the signal, and a single idler wave is generated through the

degenerate FWM process. FWM equations in the case of single-pump FOPAs can be

derived starting from Eqs. (2.73) and (2.74). Assuming for the sake of simplicity that

all fields are linearly polarized along x-axis, |Bk〉= Bkx̂, simple scalar FWM equations

can be obtained by putting B2 = 0 in Eq. (2.73) and replacing both B1 and B2 by B1/
√

2

in Eq. (2.74). With these simplifications, signal and idler equations become:

dB3

dz
=

i
2

κB3 + iγB2
1B∗4 (3.1)

dB4

dz
=

i
2

κB4 + iγB2
1B∗3 (3.2)

where in this case κ = ∆β +2γP1. Equations (3.1) and (3.2) can easily be solved to find

the signal gain. These equations can also be integrated in an elegant fashion by making

use of the Pauli spin matrices. With the use of Pauli spin matrices Eqs. (3.1) and (3.2)

can be written as
d

d z

 B3

B∗4

 =~g ·~σ

 B3

B∗4

 , (3.3)

where [B3,B∗4]
T does not correspond to any physical vector but is merely a mathematical

construct and~g = [iκ/2,−γIm(B2
1),−γRe(B2

1)] is a constant vector. Equation (3.3) can

be integrated formally to obtain B3(L)

B∗4(L)

 = exp(~g ·~σL)

 B3(0)

B∗4(0)

 . (3.4)

The exponential matrix can be expanded as follows

exp(~a ·~σ) = cosha+ â ·~σ sinha, (3.5)
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where~a is any three-component vector with a =
√

~a ·~a and â =~a/a. Using this relation

in Eq. (3.4), solutions for the signal and idler fields is found to be

B3(L) = B3(0)
[

cosh(gL)+
iκ
2g

sinh(gL)
]
+B∗4(0)

iγB2
1

g
sinh(gL), (3.6)

B4(L) = B4(0)
[

cosh(gL)+
iκ
2g

sinh(gL)
]
+B∗3(0)

iγB2
1

g
sinh(gL), (3.7)

where the parametric gain coefficient g is given by (with P1 = |B1|2)

g =
√

~g ·~g =
√

(γP1)2− (κ/2)2. (3.8)

Signal gain at the end of the fiber, defined as G(ω3) = |B3(L)/B3(0)|2, can be found

from Eq. (3.6). In particular, when there is no idler field at the input of the fiber, the

signal gain becomes

G(ω3) =
[
1+(1+κ

2/4g2)sinh2(gL)
]
. (3.9)

Equation (3.8) shows that the parametric gain is reduced by phase mismatch κ and

is maximum when κ = 0. Both the nonlinear (SPM and XPM) and the linear effects

(fiber dispersion) contribute to κ . Although the nonlinear contribution is constant at

a given pump power, the linear phase mismatch depends on the wavelengths of the

three waves. To realize net amplification of the signal, the parametric gain g should be

real. Thus, tolerable values of the linear phase mismatch ∆β are limited to the range

−4γP1 ≤ ∆β ≤ 0. The FOPA gain is maximum when the phase mismatch κ approaches

zero, or when ∆β = −2γP1. This relation indicates that optimal operation of FOPAs

requires some amount of negative linear mismatch to compensate for the nonlinear

phase mismatch. In fact, the bandwidth of the gain spectrum is determined by the

pump power and the nonlinear parameter γ . Figure 3.1 shows this dependence clearly

by plotting the parametric gain coefficient g as a function of ∆β for three different

power levels of the pump [3].

The linear phase mismatch ∆β depends on the dispersion characteristics of the fiber.

As the signal and idler frequencies are located symmetrically around the pump fre-
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Figure 3.1: Parametric gain coefficient g for a single-pump FOPA as a function of linear

phase mismatch at three pump powers P1 for a fiber with γ = 10 W−1/km.

quency (ω4 = 2ω1−ω3), it is useful to expand ∆β in a Taylor series around the pump

frequency as [31]

∆β = β (ω3)+β (ω4)−2β (ω1) = 2
∞

∑
m=1

βmp
(ω3−ω1)2m

(2m)!
, (3.10)

where βmp = (d2mβ/dω2m)ω=ω1 . This equation shows that only even-order dispersion

parameters evaluated at the pump frequency contribute to the linear phase mismatch.

Clearly, the choice of the pump wavelength is very critical while designing a FOPA.

The linear phase mismatch ∆β is dominated by the second-order dispersion parameter

β2p when the signal wavelength is close to the pump but by the fourth- and higher-order

dispersion parameters (β4p, β6p, etc.) when the signal deviates far from it. Thus, the

ultimate FOPA bandwidth depends on the spectral range over which the linear phase

mismatch is negative but large enough to balance the constant positive nonlinear phase

mismatch of 2γP1. This can be achieved by slightly displacing the pump wavelength

from the ZDWL of the fiber such that β2p is negative but β4p is positive.
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Figure 3.2: Gain spectra for a single-pump FOPA for several values of pump detuning

∆λp = λ1−λ0 from the ZDWL λ0. The parameters used are γ = 2 W−1/km, P1 = 0.5 W,

L = 2.5 km, β3 = 0.1 ps3/km, and β4 = 10−4 ps4/km.

One should relate the parameters β2p and β4p to the fiber-dispersion parameters,

βm = (dmβ/dωm)ω=ω0 , calculated at the ZDWL of the fiber. This can be accomplished

by expanding β (ω) in a Taylor series around ω0. Keeping the terms up to fourth order

in this expansion gives:

β2p ≈ β3(ω1−ω0)+
β4

2
(ω1−ω0)2, β4p ≈ β4. (3.11)

Depending on the values of the fiber parameters β3 and β4, one can choose the pump

frequency ω1 such that β2p and β4p have opposite signs. More specifically, since both

β3 and β4 are positive for most silica fibers, one should choose ω1 < ω0, i.e., the pump

wavelength should be longer than the ZDWL of the fiber.
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Figure 3.2 shows the gain spectra G(ω3) at several different pump wavelengths in

the vicinity of the ZDWL λ0 (chosen to be 1550 nm) by changing the pump detuning

∆λp = λ1−λ0 in the range−0.1 to +0.15 nm. The dotted curve shows the case ∆λp = 0

for which pump wavelength coincides with the ZDWL exactly. The peak gain is about

8 dB and the gain bandwidth is limited to below 40 nm. When the pump is tuned toward

shorter-wavelength side, the bandwidth actually decreases. In contrast, both the peak

gain and the bandwidth are enhanced by tuning the pump toward the longer-wavelength

side. The signal gain in the vicinity of pump is the same regardless of pump wavelength.

When signal wavelength moves away from the pump, the linear phase mismatch ∆β

strongly depends on the pump wavelength. If both the third- and forth-order dispersion

parameters are positive at ZDWL, according to Eq (3.11) the second order dispersion

at the pump is negative when ∆λp is slightly positive, and thus can compensate for

the nonlinear phase mismatch. This is the reason why the gain peak is located at a

wavelength far from the pump when λ1 > λ0. When phase matching is perfect (κ = 0),

FOPA gain grows exponentially with the fiber length L as G = 1 + exp(2γP1L)/4. For

the parameters used for 3.2, the best case occurs when ∆λp = 0.106 nm. However,

when ∆λp < 0, both the second- and forth-order dispersion parameters for the pump

are positive. As a result, the linear phase mismatch adds up with with the nonlinear

one, making κ relatively large. As a result, the FOPA bandwidth is reduced. For fibers

that have a negative β4, it is not possible to balance β2 and β4, therefore these fibers

provide a narrower gain bandwidth.

As the pump wavelength is pushed further into the anomalous side, a second gain

peak forms. This peak moves away from the ZDWL, and it narrows as ∆λp is increased.

This feature can be used when a signal far from the pump field has to be amplified

but a large gain bandwidth is not essential [32]. Figure 3.3 shows that as the pump

detuning from the ZDWL is increased from 0.2 to 1 nm, the second peak moves from

1605 nm to 1685 nm. In principle, this peak can be moved arbitrarily far. However,

as the gain bandwidth narrows down with a larger detuning, and the peak location is



33

1560 1590 1620 1650 1680
0

4

8

12

16

S
ig

na
l G

ai
n 

(d
B

)

Signal Wavelength (nm)

∆λ
p
 = 0.2 nm 0.4 0.6 0.8 1

Figure 3.3: Gain spectra for a single-pump FOPA for several values of pump detuning.

The same parameter set that is used in Fig. 3.2 is used.

highly sensitive to the exact value of pump wavelength, slight deviations in the pump

wavelength causes large changes in the signal gain. Similar results are obtained when

β4 is negative by tuning the pump wavelength into the normal dispersion side.

From a practical standpoint, one wants to maximize both the peak gain and the gain

bandwidth at a given pump power P1. Since the peak gain in Eq. (3.9) is approximately

given by Gp ≈ exp(2γP1L)/4, its value increases exponentially with the fiber length.

However, the gain bandwidth scales inversely with L because the phase mismatch in-

creases for longer fibers. The obvious solution is to use a fiber as short as possible.

However, as the available amount of gain is a function of γP1L, shortening of fiber

length must be accompanied with an increase in the value of γP1 to maintain the same

amount of gain. This behavior is illustrated in Figure 3.4 where the gain bandwidth

is shown to increase significantly when large values of γP1 are combined with shorter
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Figure 3.4: Gain spectra for single-pump FOPAs of three different lengths. The product

γP1L = 6 is kept constant for all curves. Other parameters are the same as those used

for Figure 3.2.

lengths of fiber. The solid curve obtained for the 250-m-long fiber exhibits a 50-nm

region on each side of the ZDWL over which the gain is nearly flat. Therefore, a sim-

ple rule of thumb for single-pump FOPAs is to use as high pump power as possible

together with a fiber with as large a nonlinearity as possible. Since n2 is fixed for silica

fibers, the nonlinear parameter γ can be increased only by reducing the effective core

area. Such fibers have become available in recent years and are called high-nonlinearity

fibers (HNLFs) even though it is not the material nonlinearity n2 that is enhanced in

such fibers. Values of γ � 10 W−1/km can be realized in such fibers [33]. Photonic

crystal fibers exhibiting high values of γ have also been used to build FOPAs [34]

HNLFs have been used to make FOPAs with a large bandwidth. In a 2001 experi-

ment, a 200-nm gain bandwidth was realized by employing Raman-assisted parametric
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amplification inside a 20-m-long HNLF with γ = 18 W−1/km [36]. The required pump

power (∼ 10 W) was large enough that the signal was also amplified by stimulated Ra-

man scattering when its wavelength exceeded the pump wavelength. Recent advances

in designing microstructure fibers also make it possible to use short fiber lengths. A net

peak gain of 24.5 dB over a bandwidth of 20 nm has been realized inside a 12.5-m-long

microstructure fiber with γ = 24 W−1/km pumped by high-energy pulses [34]. In an-

other 2003 experiment, a peak gain of 43 dB with 85 nm bandwidth was obtained by

pumping the FOPA with pulses at a repetition rate of 20 Gb/s [37]. However, a pulse-

pumped FOPA requires either synchronization between the pump and signal pulses or

pumping at a repetition rate much higher than that of the signal.

Another scheme for mitigating the phase-matching problem manages fiber disper-

sion along the fiber length, resulting in the so-called quasi-phase matching. This can be

realized either through periodic dispersion compensation [38], [39] or by carefully ar-

ranging different sections of the fiber with different dispersion properties [40]–[42]. As

quasi-phase matching can be maintained along a fairly long length, continuous-wave

(CW) pumps can be used and still realize considerable amount of gain. Figure 3.5

shows the experimental results for such a single-pump FOPA [43] where both the net

signal gain and the net conversion efficiency at the idler wavelength are shown at sev-

eral pump-power levels. At a pump power of 31.8 dBm (about 1.5 W) at 1563 nm,

the FOPA provided 49-dB peak gain. It was designed using a 500-m-long HNLF

(γ = 11 W−1/km) with low dispersion (dispersion slope S = 0.03 ps/nm2/km). The

fiber was composed of three sections with ZDWLs (1556.8, 1560.3, 1561.2 nm, re-

spectively). In another experiment that used the same technique, a single-pump FOPA

produced 70 dB gain with 1.9 W of pump power [44].
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Figure 3.5: (a) Measured signal gain and (b) idler conversion efficiency for a single-

pump FOPA at several pump powers. Solid curves show the theoretically expected

results.

3.2 Dual-Pump Parametric Amplifiers

In the previous Section the simpler case of single-pump FOPAs is used to explain the

basic features of FOPA design. This Section focuses on dual-pump FOPAs that employ

the nondegenerate FWM process using two pumps with different frequencies [10]–

[12], [45]–[50]. Because of the extra degrees of freedom presented by the second pump

in terms of its frequency and SOP, dual-pump FOPAs have several advantages over

single-pump FOPAs. The most important advantage is that they can provide relatively
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flat gain over a much wider bandwidth than what is possible with single-pump FOPAs,

[48], [49].

In the case of nondegenerate FWM, two distinct photons, one from each pump, are

used to create the signal and idler photons as shown in Eq. (2.1). Using Eqs. (2.77) and

(2.78) it can be shown that the expression for the signal gain in dual-pump FOPAs is

the same as the expression (3.9) found in the case of single-pump FOPAs, [3]

G(ω3) =
[
1+(1+κ

2/4g2)sinh2(gL)
]
. (3.12)

However, in the case of dual-pump FOPAs, the expression for the parametric gain co-

efficient g and phase-mismatch parameter κ are slightly different:

g =
√

(2γ)2P1P2− (κ/2)2, (3.13)

κ = ∆β + γ(P1 +P2), (3.14)

where P1 and P2 are the input pump powers, assumed to remain undepleted.

Similar to the single-pump case, one can expand the linear phase mismatch ∆β =

β (ω3)+β (ω4)−β (ω1)−β (ω2) in a Taylor series as [46]:

∆β = 2
∞

∑
m=1

1
(2m)!

(
d2mβ

dω2m

)
ω=ωc

[
(ω3−ωc)2m−ω

2m
d

]
. (3.15)

where ωc = (ω1 +ω2)/2 is the mean frequency of the two pumps and ωd = (ω1−ω2)/2

is the half of their frequency difference. This equation differs from the phase-mismatch

term in the case of single-pump FOPA Eq. (3.10) by the last term. The ωd term con-

tributes only when two pumps are used and is independent of the signal and idler

frequencies. This difference provides the main advantage of dual-pump FOPAs over

single-pump FOPAs as the ωd term can be used to control the phase mismatch. By

properly choosing the pump wavelengths, it is possible to use this term for compen-

sating the nonlinear phase mismatch γ(P1 + P2) stemming from SPM and XPM. As a

result, the total phase mismatch κ can be maintained close to zero over a quite wide

spectral range after the first term is made small by balancing carefully different orders

of fiber dispersion.
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Figure 3.6: Optimized gain spectra for single-pump and dual-pump FOPAs and cor-

responding phase-mismatch κ . Same amount of total pump power was used in both

cases.

The importance of the ωd term can be best seen by comparing the phase-matching

parameter κ for single- and dual pump FOPAs. Equation (3.10) shows that it is hard

to maintain this phase-matching condition over a wide bandwidth in a single-pump

FOPA. This is because ∆β → 0 when the signal wavelength approaches the pump

wavelength, and hence κ → 2γP1. This value of κ is quite large and results in only a

quadratic growth of signal (G = 1 + γ2P2
1 L2). The net result is that the signal gain is

considerably reduced in the vicinity of the pump wavelength, and the gain spectrum

exhibits a dip when single-pump FOPAs are used. However, in the case of dual-pump

FOPAs, by choosing the pump frequencies properly ωd can be used to compensate for

nonlinear contribution to phase mismatch. Figure 3.6 compares the phase-mismatch

parameter κ for single-and dual pump FOPAs shown by thick dashed and thick solid

curves, respectively. The corresponding gain spectra are shown by the thin dashed and
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thin solid curves. For single-pump FOPAs, the value of κ is fixed to 2γP1 at the pump

wavelength λ1 = 1550 nm. Therefore, the gain profile has a dip at the center (thin

dashed curve) [36].

The most commonly used configuration of dual-pump FOPAs employs a relatively

large wavelength difference between the two pumps for realizing flat gain over a wide

spectral range. This increases the magnitude of the ωd term so that linear phase mis-

match is large enough to compensate for nonlinear phase mismatch. At the same time,

the mean frequency of the two pumps ωc is set close to the ZDWL of the fiber so that

the linear phase mismatch in Eq. (3.15) is kept constant over a broad range of ω3.

Therefore, to achieve a fairly wide phase matching range, the two pump wavelengths

should be located on the opposite sides of the ZDWL in a symmetric fashion, but should

be reasonably far from it [10]. Figure 3.6 shows how κ can be reduced to zero over a

wide wavelength range using such a scheme, resulting in a flat broadband gain spec-

trum. Comparing the single-pump and dual-pump cases, it can be seen that although

single-pump FOPAs may provide nonuniform gain over a wider bandwidth under cer-

tain conditions, dual-pump FOPAs provide much more uniform gain in general.

The preceding discussion is based on the assumption that only the nondegenerate

FWM process, ω1 +ω2 = ω3 +ω4, contributes to FOPA gain. However, the situation is

much more complicated for dual-pump FOPAs because the degenerate FWM process

associated with each intense pump, i.e. 2ω1 = ω3 + ω5 and 2ω2 = ω3 + ω6, always

occurs simultaneously with the nondegenerate one. In fact, it turns out that the com-

bination of degenerate and nondegenerate FWM processes can create eight other idler

fields besides the one at the frequency ω4 [5], [10]. Only four among these idlers, say at

frequencies ω5, ω6, ω7, and ω8, are significantly relevant for describing the gain spec-

trum of FOPA because they are related to the signal frequency through the relations:

2ω1 → ω3 +ω5, 2ω2 → ω3 +ω6, (3.16)

ω1 +ω3 → ω2 +ω7, ω2 +ω3 → ω1 +ω8. (3.17)
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Although these degenerate and nondegenerate FWM processes look as simple as Eq.

(2.1) at the first glance, they do not occur independently because energy conversion is

also maintained among the following processes:

2ω1 → ω4 +ω7, 2ω2 → ω4 +ω8, (3.18)

ω1 +ω2 → ω5 +ω8, ω1 +ω2 → ω6 +ω7, (3.19)

ω1 +ω4 → ω2 +ω5, ω1 +ω6 → ω2 +ω4. (3.20)

All of these processes involve at least two photons from one or both intense pumps and

will occur in the same order as the process in Eq (2.1) as long as their phase matching

conditions are satisfied. As a result, a complete description of the FWM processes in-

side dual-pump FOPA becomes quite complicated [10]. Fortunately, a detailed analysis

shows that the phase matching conditions associated with these processes are quite dif-

ferent. When the two pumps are located symmetrically far from the ZDWL of the fiber,

the ten FWM processes shown in Eqs. (3.16)–(3.20) can only occur when the signal is

in the vicinity of the two pumps. Thus, they leave unaffected the central flat part of the

parametric gain spectrum resulting from the process shown in Eq. (2.1) [10], which is

mainly used in practice. Figure 3.7 compares the FOPA gain spectrum obtained numer-

ically using a complete analysis that includes all five idlers model (Solid curve) with

that obtained using the sole nondegenerate FWM process of Eq. (2.1). It can be seen

clearly that the flat portion of the gain spectrum has its origin in the single FWM pro-

cess of Eq. (2.1). The other 10 processes only affect the edges of gain spectrum and

reduce the gain bandwidth by 10–20%. Thus, it can be concluded that a model based

on Eq. (2.1) is sufficient to describe the performance of dual-pump FOPAs as long as

the central flat gain region is used experimentally.
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Figure 3.7: Gain spectra for a dual-pump FOPA including the contribution of all idlers

(solid curve). The dotted curve shows gain spectrum when only a single idler corre-

sponding to the dominant nondegenerate FWM process is included. The parameters

used are L = 0.5 km, γ = 10 W−1/km, P1 = 0.5 W, P2 = 0.5 W, β3 = 0.1 ps3/km,

β4 = 10−4 ps4/km, λ1 = 1502.6 nm, λ2 = 1600.6 nm, and λ0 = 1550 nm.

3.3 Polarization Dependence of FOPA Gain

The FWM equations Eqs. (2.67) and (2.68) derived in Chapter 2 show that FWM has

a vectorial nature. The efficiency of the FWM process depends on the state of polar-

ization (SOP) of the pumps, signal and idler [50]. So far, the vectorial nature of the

FWM process was neglected. It was assumed that all fields are launched with the same

linear polarization and that they retain their input SOPs along the fiber. In general, this

assumption breaks down in two respects. First, it may not be possible to control the

input SOPs of the fields. For instance, in a communication system, the input SOP of
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the signal varies randomly. Secondly, even if the input SOPs are fixed, they may not

retain their polarization states along the fiber due to fiber irregularities. It is impor-

tant to understand how FWM efficiency depends on the SOPs of the interacting fields

to describe FOPA gain correctly. What is more, the polarization dependence of FWM

provides another degree of freedom to design fiber-optic parametric amplifiers that may

be useful for different applications.

In this Section, the vectorial nature of FWM is investigated. First, the fiber is as-

sumed to be perfectly isotropic. In practice, this can be nearly achieved for short lengths

of fiber < 10 m and it allows for investigating the vectorial nature of FWM processes

itself. Second, this assumption will also be relaxed and it will be shown that FOPAs

that use longer lengths of fiber exhibit a different polarization dependence.
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3.3.1 Theoretical Model

The starting point is the vectorial FWM equations (2.67) and (2.68) derived in Chap-

ter 2:

d|A1〉
dz

= iβ (ω1)|A1〉+ i~b ·~σ|A1〉+ iγ
[
P1 +P2 + |A2〉〈A2|

− 1
3

(
〈A1|σ3|A1〉+ 〈A2|σ3|A2〉+σ3|A2〉〈A2|

)
σ3

]
|A1〉, (3.21)

d|A2〉
dz

= iβ (ω2)|A2〉+ i[~b+~b1(ω2−ω1)] ·~σ|A2〉+ iγ
[
P1 +P2 + |A1〉〈A1|

− 1
3

(
〈A2|σ3|A2〉+ 〈A1|σ3|A1〉+σ3|A1〉〈A1|

)
σ3

]
|A1〉, (3.22)

d|A3〉
dz

= iβ (ω3)|A3〉+ i[~b+~b1(ω3−ω1)] ·~σ|A3〉

+ iγ
[
P1 +P2 + |A1〉〈A1|+ |A2〉〈A2|

− 1
3

(
〈A1|σ3|A1〉+ 〈A2|σ3|A2〉+σ3|A1〉〈A1|+σ3|A2〉〈A2|

)
σ3

]
|A3〉

+ iγ
[
|A1〉〈A∗2|+ |A2〉〈A∗1|−

σ3

3

(
|A1〉〈A∗2|+ |A2〉〈A∗1|

)
σ3

]
|A∗4〉, (3.23)

d|A4〉
dz

= iβ (ω4)|A4〉+ i[~b+~b1(ω4−ω1)] ·~σ|A4〉

+ iγ
[
P1 +P2 + |A1〉〈A1|+ |A2〉〈A2|

− 1
3

(
〈A1|σ3|A1〉+ 〈A2|σ3|A2〉+σ3|A1〉〈A1|+σ3|A2〉〈A2|

)
σ3

]
|A4〉

+ iγ
[
|A1〉〈A∗2|+ |A2〉〈A∗1|−

σ3

3

(
|A1〉〈A∗2|+ |A2〉〈A∗1|

)
σ3

]
|A∗3〉, (3.24)

where β (ω) is the propagation constant,~b =~b0(ω1),~b1 = (d~b0 /dω)ω=ω1 , and bire-

fringence at the frequency of the second pump, signal and idler are Taylor-expanded

around the frequency of the first pump. It is assumed that pumps are much stronger

than the signal and idler so that their depletion is negligible. All fields are assumed

to be continuous waves, so that, the time derivatives in Eqs. (2.67) and (2.68) can be

dropped. As usual, the FWM equations for single-pump FOPAs can be derived by

putting |A2〉 = 0 in Eqs. (3.21) and (3.22) and replacing |A1〉 and |A2〉 by |A1〉/
√

2 in

the signal and idler equations (3.23) and (3.24).
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Fiber birefringence is taken into account through~b0 and~b1. FOPA gain shows dif-

ferent characteristics depending on the nature of the fiber birefringence. Some fibers

are manufactured so that they have a large birefringence with a fixed principal axis.

FWM in highly birefringent fibers is investigated in detail in Chapter 6. In practice,

even nominally isotropic fibers have small amount of birefringence. Ideally, a perfectly

circular fiber, free from stress or strain should be perfectly isotropic. However, this

symmetry is broken inevitably during the drawing process, leading to residual birefrin-

gence. Typically, the residual birefringence is small enough that, the beat length can

be as long as 10 m. The direction of the principal axes of the residual birefringence

cannot be controlled and it changes randomly along the fiber at a length scale of ∼ 1 m

[51]. When fibers shorter than 10 m are used, fiber birefringence can be ignored, and

the fiber can be assumed to be isotropic. For fibers much longer than the correlation

length of residual birefringence, effects of randomly varying birefringence cannot be

ignored. Dependence of FOPA gain on the polarizations of the pumps, signal and idler

is investigated in the short and long length scales separately.

3.3.2 FWM in Short Fibers

In this case, fiber birefringence is completely neglected and the fiber is assumed to be

isotropic. Even though the fiber does not have any birefringence, Eqs (3.21) and (3.22)

show that pump SOPs may go through nonlinear polarization rotation due to SPM and

XPM. It is easier to see the nature of this rotation in the Stokes space. Equations (3.21)

and (3.22) can be put in a more compact from using the following identities for the

Pauli spin matrices:

(~r ·~σ)(~k ·~σ) =~r ·~kσ0 + i(~r×~k) ·~σ, (3.25)

|A〉〈B|= 1
2

[〈B|A〉σ0 + 〈B|~σ|A〉 ·~σ] , (3.26)
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where~r and~k are arbitrary vectors with three components, and |A〉 and |B〉 are arbitrary

Jones vectors. Using these identities, Eqs. (3.21) and (3.22) can be written as

d|A1〉
dz

= iβ (ω1)~P1 + iγ

{(
P1 +

3
2

P2

)
σ0 +

1
2
~P2 ·~σ

− 1
3

[(
~P13 +

3
2
~P23

)
σ0−

1
2
~P2 ·~σ

]}
|A1〉, (3.27)

d|A2〉
dz

= iβ (ω2)~P2 + iγ

{(
P2 +

3
2

P1

)
σ0 +

1
2
~P1 ·~σ

− 1
3

[(
~P23 +

3
2
~P13

)
σ0−

1
2
~P1 ·~σ

]}
|A2〉. (3.28)

These two pump equations become even more compact if all the fields are represented

in the Stokes space: [50]:

d~P1

dz
=

2γ

3

[
~P13−2~P2⊥

]
×~P1, (3.29)

d~P2

dz
=

2γ

3

[
~P23−2~P1⊥

]
×~P2, (3.30)

where ~Pk = 〈Ak|~σ|Ak〉, with k = 1 or 2, is the Stokes vector corresponding to the kth

pump field. ~Pk3 is the part of the Stokes vector that is along the z axis of the Poincare

sphere and ~Pk⊥ is the transverse part of the Stokes vector that lies on the equatorial plane

(x–y plane) of the Poincare sphere. Equations (3.29) and (3.30) show that pumps rotate

around their own z-component due to SPM and rotate around the transverse component

of the other field due to XPM. In general, pumps rotate in a complicated manner and it

is not possible to get a closed form solution to Eqs. (3.21)–(3.24).

Equations (3.29)–(3.30) show that in the special case in which both pumps are cir-

cularly polarized, they retain their input polarization states. Another special case is

when both pumps are linearly polarized, with their SOPs either parallel or orthogonal.

In these cases it is possible to get a simple analytical solution to Eqs. (3.21)–(3.24)

which can provide sufficient insight to the polarization-dependent nature of FWM.

To get the simple analytical solution for the signal gain it is assumed that the pump,

signal and idler fields are of the form |Ak〉= Akêk with k = 1–4, where Ak is the scalar
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amplitude and êk is the unit Jones vector that is either linearly polarized or circularly

polarized. In all these cases, the equation for the pumps can be solved easily and

inserted into the signal and idler equations. The signal and idler equations then take the

following canonical form after an appropriate change of variables:

dA3

dz
=

i
2

κA3 +2rgiγA1A2A∗4, (3.31)

dA4

dz
=

i
2

κA4 +2rgiγA1A2A∗3, (3.32)

where κ = ∆β + rkγ(P1 + P2). The polarization dependence of FWM and the phase-

matching condition is reflected in rg and rk which take different values for different

input field SOPs. Equations (3.31) and (3.32) have the same form as the scalar FWM

equations Eqs. (2.77) and (2.78) shown in Chapter 2 except that FWM strength and

phase-mismatch parameters are modified. The signal gain can be calculated easily to

give:

G =
〈A3(L)|A3(L)〉
〈A3(0)|A3(0)〉

=
[
1+(1+κ

2/4g2)sinh2(gL)
]
, (3.33)

where g =
√

(2rgγ)2P1P2− (κ/2)2 and values of rg and rk for different pump and signal

input SOPs are shown in Table (3.1) [50].

The comparison of the last two columns in Table (3.1) shows that FOPA gain de-

pends on the overall SOP of the fields. For example, even when all fields remain parallel

(first row), changing all fields from linear polarization to circular polarization reduces

FWM strength by a factor of 2/3. Comparing different rows shows that, when all fields

are either linearly or circularly polarized but their relative orientations change, FWM

efficiency also changes. For instance, when pumps are copolarized, changing signal

polarization from the parallel to the orthogonal state reduces FWM strength by a factor

of 1/3 in the case of linear polarization and leads to no gain in the case of circular

polarization. In general, FWM efficiency is maximized when all fields are parallel re-

gardless of their individual SOPs. Note also that when linearly polarized fields interact,

the nonlinear contribution to the phase-matching condition also depends on the relative

orientations of the fields.
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SOPs Linear Circular

Pumps Signal rk rg rk rg

ê1 ‖ ê2 ê3 ‖ ê1 1 1 2/3 2/3

ê1 ‖ ê2 ê3⊥ê1 −5/3 1/3 2/3 0

ê1⊥ê2 Arbitrary ê3 1 1/3 2/3 2/3

Table 3.1: This table summarizes the polarization dependence of nonlinear-phase mis-

match and FWM strength. The first column shows the relative orientations of the pump

SOPs. The second column shows the signal SOP with respect to the pump SOPs. Values

of rk and rg are listed for the cases when all fields are linearly polarized and circularly

polarized.

3.3.3 FWM in Long Fibers

In long fibers, the effects of randomly varying residual birefringence has to be taken

into account. In Eqs. (3.21)–(3.24), birefringences experienced by individual fields are

Taylor-expanded around the frequency of the first pump to show explicitly that fields

with different frequencies experience different amounts of birefringence, depending on

their detuning from the first pump. The common birefringence term ~b and the term

that leads to frequency-dependent birefringence~b1 affect the evolution of the fields in

different ways. The frequency-independent part of birefringence b which is common to

all fields rotate all fields at the same rate and preserve their relative orientations. In con-

trast, the frequency-dependent part of the birefringence rotates the SOPs of fields with

different frequencies at different rates. If the signal and idler are in the form of pulses,

the PMD term leads to a polarization-dependent group velocity. However, since the

frequency-independent part is much larger than the frequency-dependent birefringence

term (|~b| � |~b1|(ωk−ω1)), they affect the fields at different length scales. Therefore

the impact of these two terms can be studied independently. This section focuses on
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the effects of fast birefringence rotations caused by ~b. Section 4.2 investigates PMD

related effects in detail.

In the absence of nonlinearity, field SOPs go through random rotations due to ran-

domly varying birefringence. In the Stokes space, the tip of the Stokes vectors cor-

responding to the SOPs of the fields perform random walks on the Poincare sphere

similar to a diffusion process. It has been shown that if the axis of the residual bire-

fringence rotates randomly on a length scale shorter than the beat length, SOPs of the

fields diffuse rapidly and cover the entire surface of the Poincare sphere [52], [53]. The

FWM process depends on overall SOPs of the fields and occurs on a length scale of

the nonlinear length defined as 1/(γ
√

P1P2). Inside one nonlinear length, the field SOP

goes through many different polarization states on the Poincare sphere. The overall

efficiency of FWM is not determined by individual SOP states the field goes through,

but only by their average. Averaging Eqs. (3.21)–(3.24) over the fast SOP rotations

simplifies the equations considerably [54]:

d|A1〉
dz

= iβ (ω1)|A1〉+ iγe

(
P2 + |A1〉〈A1|+ |A2〉〈A2|

)
|A1〉, (3.34)

d|A2〉
dz

= iβ (ω2)|A2〉+ i~b1(ω2−ω1) ·~σ|A2〉

+ iγe

(
P1 + |A1〉〈A1|+ |A2〉〈A2|

)
|A2〉, (3.35)

d|A3〉
dz

= iβ (ω3)|A3〉+ i~b1(ω3−ω1) ·~σ|A3〉

+ iγe

(
P1 +P2 + |A1〉〈A1|+ |A2〉〈A2|

)
|A3〉

+ iγe

(
|A1〉〈A∗2|+ |A2〉〈A∗1|

)
|A∗4〉, (3.36)

d|A4〉
dz

= iβ (ω4)|A4〉+ i~b1(ω4−ω1) ·~σ|A4〉

+ iγe

(
P1 +P2 + |A1〉〈A1|+ |A2〉〈A2|

)
|A4〉

+ iγe

(
|A1〉〈A∗2|+ |A2〉〈A∗1|

)
|A∗3〉, (3.37)

where γe = 8γ/9.
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The comparison of the averaged Eqs. (3.34)–(3.37) and Eqs. (3.21)–(3.24) shows

that, as a result of fast rotations, the nonlinearity of the fiber is reduced effectively by

a factor of 8/9 [52]–[54]. What is more, the averaged equations do not depend on the

overall SOPs of the fields, but only on the relative orientations of the field SOPs with

respect to one another. An analytical expression for the signal gain can be obtained

from the averaged Eqs. (3.34)–(3.37) in the absence of the PMD term. In practice,

when the frequencies of the fields are not too far from one another, the PMD term can

be neglected.

It is instructive to see the nature of pump evolution in the Stokes space. Using

Eqs. (3.34) and (3.35) the equations for the evolution of pump SOPs can be written in

the Stokes space as:

d~P1

dz
= γe~P2×~P1, (3.38)

d~P2

dz
= γe~P1×~P2. (3.39)

Equations (3.38) and (3.39) show that the pump SOPs rotate around one another. As

a result, even though the direction of the pump SOP changes along the fiber, the two

pumps conserve their power. Another conserved quantity is the sum of the Stokes vector

of the two pumps ~P0 = ~P1 +~P2. In fact, the pump SOPs rotate around the common axis

along ~P0. This has the important consequence that the right side of the pump field in

Eqs. (3.34) and (3.35) remains constant along the fiber. This can be seen by noting that

|A1〉〈A1|+ |A2〉〈A2|=
1
2

[
(P1 +P2)σ0 +(~P1 +~P2) ·~σ

]
, (3.40)

where the relation given in Eq. (3.26) is used.

As the right side of the pump fields in Eqs. (3.34) and (3.35) does not depend on z,

they can be integrated easily to find the following solution for the pump fields:

|A1(z)〉 = exp
[
iγez

(
P2σ0 +M0

)]
|A1(0)〉, (3.41)

|A2(z)〉 = exp
[
iγez

(
P1σ0 +M0

)]
|A2(0)〉, (3.42)
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where M0 = |A1〉〈A1|+ |A2〉〈A2|. Inserting this solution into Eqs. (3.36) and (3.37),

we obtain, after a change of variables, the following signal and idler equations:

d|B3〉
dz

= iκ|B3〉+ iγe

[
|A10〉〈A∗20|+ |A20〉〈A∗10|

]
|B∗4〉 (3.43)

d|B4〉
dz

= iκ|B4〉+ iγe

[
|A10〉〈A∗20|+ |A20〉〈A∗10|

]
|B∗3〉 (3.44)

where A10 and A20 stand for the input pump fields, κ = ∆β +γ(P1 +P2), and B3 and B4

are related to the signal and idler fields as

|Bk〉= exp
{ i

2
∆β z− iγez

2
[
(P1 +P2)+2M0

]
− iβ (ωk)z

}
|Ak〉, (3.45)

with k = 3 or 4.

The signal and idler equations (3.43) and (3.44) can be combined to obtain the

following second-order differential equation for the signal [54]:

d2|B3〉
dz2 =−κ

2|B3〉+ γ
2
e

[
P1|A20〉〈A20|+P2|A10〉〈A10|

+ 〈A10|A20〉|A10〉〈A20|+ 〈A20|A10〉|A20〉〈A10|
]
|A3〉. (3.46)

This second-order differential equation for the signal field can be put into the following

simple form:

d2|B3〉
dz2 =−κ

2|B3〉+
γ2

e P1P2

4
[3+ p̂1 · p̂2 +(p̂1 + p̂2) ·~σ]|B3〉 (3.47)

where, p̂1 = ~P1/P1 and p̂2 = ~P2/P2 are the unit vectors along the Stokes vectors of the

pumps. This equation can be solved for the signal field

|B3(z)〉= GF+|B3‖〉+GF−|B3⊥〉, (3.48)

where |B3‖〉 and |B3⊥〉 are the polarization components of the input signal that are

parallel and anti-parallel to the Stokes vector p̂0 = (p̂1 + p̂2)/
√

2. In other words, |B3‖〉

and |B3⊥〉 are the eigenvectors of the matrix p̂0 ·~σ. Since p̂0 is a real vector, |B3‖〉 and

|B3⊥〉 define an orthogonal basis. Furthermore, GF+ and GF− are the gains experienced

by the two polarization components of the signal field and are given by

GF± = cosh(g± z)+
iκ
g±

sinh(g±z), (3.49)
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where g± is defined as

g± =
√

F2
±−κ2, F± = F0[1± cos(θp/2)], (3.50)

where F0 = γe
√

P1P2, and θp = cos−1(p̂1 · p̂2) is the angle between the Stokes vectors

of the two pumps. Combining Eqs. (3.48) and (3.49), the signal gain can be written as

G3(L) =
G+ +G−

2
+

G+−G−
2

p̂0 · p̂3, G± = 1+
[

F±
g±

sinh(g±L)
]2

(3.51)

where G± = |GF±|2 and G3(L) = P3(L)/P3(0).

The signal gain for single-pump FOPAs can be found following the same procedure.

In the case of single-pump FOPAs, the signal gain can be found from Eqs. (3.50) and

(3.51) by setting, F0 = γeP1/2, θp = 0, p̂0 = p̂1 and κ = ∆β +2γeP1.

The solution for the signal gain Eqs. (3.50) and (3.51) shows that, the signal gain

does not depend on the SOPs of the individual fields but only on the relative angles

between them. This is expected since the SOPs of all fields rotate on a much shorter

scale than the nonlinear length. Note that the phase matching condition in this case is

independent of SOPs of the fields.

As the analytical solution is available for the long-length scale, the signal gain for

the cases shown in Table 3.1 can be calculated easily. When the input pumps have

orthogonal polarization states in the Jones space, (〈A1|A2〉= 0), the Stokes vectors cor-

responding to the two pumps make an angle of θp = π , ( p̂1 · p̂2 =−1). In this case,

F+ = F− = γe
√

P1P2, and therefore, G+ = G−, and p̂0 = 0. Equation (3.51) shows that

when pumps are initially orthogonal, the signal gain becomes independent of the signal

SOP. Several groups have already demonstrated that dual-pump FOPAs indeed provide

polarization-independent gain when orthogonally polarized pumps are used [12], [55]–

[61]. Note that single-pump FOPAs cannot produce the polarization-independent gain

directly.

If the two pumps are not orthogonally polarized, θp 6= π , then F+ > F− and G+ >

G−. What is more, the sum of the unit Stokes vectors of the two pumps does not vanish,
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~P0 6= 0. Equation (3.51) shows that, if the unit Stokes vector of signal p̂3 points in the

same direction as p̂0, it experiences the largest gain |G+|2 and if it is orthogonal to this

direction in the Jones space (antiparallel in Stokes space), it experiences the minimum

gain |G−|2. Physically speaking, when the pumps are not orthogonally polarized, there

is a preferred SOP direction for which the signal experiences maximum gain, and this

direction is along ~p0. When the pumps are parallel, the signal experiences maximum

gain when its SOP is parallel to that of pumps, which is higher by a factor of 2 on a

dB scale compared to the signal gain when the pumps are orthogonal. However, if the

signal the SOP is orthogonal to SOP of copolarized pumps, the signal experiences no

gain at all, i.e, G− = 1.

3.4 Applications and Limitations

With their high gain over a wide spectrum, FOPAs have many practical applications.

Some of these applications are discussed briefly in Section 3.4.1. Because of several

practical issues, their performance has limitations. Some of these limitations are intro-

duced in Section 3.4.2.

3.4.1 Wavelength Conversion and Other Applications

Simultaneous amplification of seven channels was realized in a 2003 experiment us-

ing a single-pump FOPA made of HNLF [6]. The experiment showed that dominant

degradation stems from gain saturation and FWM-induced crosstalk among channels.

In another experiment, by using two CW pumps with powers of 600 mW at 1559 nm

and 200 mW at 1610 nm, a gain of more than 40-dB over a 33.8-nm bandwidth was

obtained inside a 1-km-long HNLF for which γ = 17 W−1/km, ZDWL = 1583.5 nm,

β3 = 0.055 ps3/km and β4 = 2.35× 10−4 ps4/km. Figure 3.8 shows the data obtained

from this experiment [48]. The solid curve shows the theoretical prediction. In an-
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other experiment a dual-pump FOPA produced 38-dB gain with a 1.5-dB ripple over a

wavelength region of more than 47 nm [49].

As discussed earlier, all FOPAs generate one or more idler waves during signal am-

plification. Since each idler is a phase-conjugated replica of the signal, it carries all the

information associated with a signal and thus can be used for wavelength conversion.

Indeed, FOPAs can act as highly efficient wavelength converters with a wide bandwidth

[8]. As early as 1998, peak conversion efficiency of 28 dB was realized over a 40-nm

bandwidth (full width of the gain spectrum) using a pulsed pump [9]. More recently,

transparent wavelength conversion (conversion efficiency > 0 dB) over a 24-nm band-

width (entire pump tuning range) was realized using a single-pump FOPA made with

just 115 m of HNLF [62]. In a 2006 experiment wavelength conversion was realized

with simultaneous 22 dB gain over a 20 nm wide wavelength range [63]. Since the cre-

ated idler is a phase conjugated replica of the signal, a FOPA can be used for dispersion

compensation in a fiber-optic communication system. In a 2004 experiment, a single-

pump FOPA was used for phase conjugation at mid span to compensate for dispersion

and fiber losses simultaneously [17].

Several experiments used dual-pump FOPAs for wavelength conversion [11], [12],

[55]–[58], [64]–[67]. Using a 2.5-km-long HNLF and pumps with 0.5 W of power, a

dual-pump FOPA produced 30-dB gain while converting signal bits to the idler wave-

length over a 20-nm-wide wavelength range [11]. As discussed in Section 3.2, dual-

pump FOPAs can produce multiple idlers at the same time. This concept was used in an

experiment in 2003 to convert the signal to three different bands simultaneously [12].

Several experiments showed that using dual-pump FOPAs with orthogonally polarized

pumps, polarization-insensitive wavelength conversion can be achieved [55]–[58].

The ultrafast nature of the nonlinear response of FOPAs is also useful for many

practical applications. FOPAs have been used as stable sources of pulses at high rep-

etition rates (160 Gb/s) in long-haul transmission [68], [69]. In another experiment,

a transform-limited Gaussian-shape pulse train was generated at a 40-Gb/s repetition
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Although phase modulation of the pumps is still

necessary to suppress SBS, spectral broadening of

the idler is no longer a problem in dual-pump

FOPAs because the phases of the two pumps can

be manipulated such that a specific idler is not

broadened, depending on which idler is used for

wavelength conversion. If v4 in Eq. (1) is used for

wavelength conversion, the two pumps should be

modulated out of phase [50]. However, if v7 or v8

in Eq. (14) is used, the two pumps should be modu-

lated in phase [51]. Idler spectrum broadening can

also be eliminated by modulating the signal phase at

a rate twice of that used for modulating the pump

phase [52, 53]. In the case of counterphase modula-

tion, higher order idler generation in a dual-pump

FOPA is shown to provide optical regeneration with

a high extinction ratio and without spectral broad-

ening [54].

Similar to the single-pump case, the gain in dual-

pump FOPAs is also strongly polarization dependent

if no precaution is taken to mitigate the polarization

effects [6, 55]. Apart from the polarization diversity

loop used for single-pump FOPAs, polarization

independent operation of a dual-pump FOPA can

also be realized by using orthogonally polarized

pumps [56–59]. When the two pumps are linearly

but orthogonally polarized, the nondegenerate FWM

process becomes completely polarization inde-

pendent. In one experiment, a small polarization-

dependent gain (PDG) of only 1 dB was observed

when the signal was amplified by 15 dB over band-

width 20 nm [59].

A practical issue associated with dual-pump

FOPA is the Raman-induced power transfer be-

tween the two pumps. As shown in Eq. (5), the

FWM efficiency j is proportional to
ffiffiffiffiffiffiffiffiffiffiffi
P1P2

p
for a

nondegenerate process and is maximized when the

two pump powers are the same (P1 ¼ P2). However,

as the two pumps are far from each other but still

within the bandwidth of the Raman-gain spectrum,

stimulated Raman scattering can transfer energy

from the pump of high frequency to that of low

frequency. Because the two pumps cannot maintain

equality in their powers along the fiber, a significant

reduction occurs in the FWM efficiency even though

the total power of the two pumps remains constant.

To reduce this effect, the power of the high-

frequency pump is chosen to be higher than that of

the low-frequency pump at the input end of the

fiber. With this scheme, the two pumps can maintain

their powers close to each other over most of the

fiber. Although Raman-induced pump power trans-

fer reduces the FOPA gain by a considerable

amount, it does not affect the shape of the gain

spectrum because phase matching depends on the

total power of the two pumps that is conserved

inside FOPA as long as the two pumps are not

depleted too much.

5. FLUCTUATIONS OF ZDWL

In the preceding sections, the fiber used to make an

FOPA was assumed to be free from any fluctuations

in its material properties. However, it is difficult to

realize such ideal conditions. In practice, optical

waves in a realistic fiber undergo random perturba-

tions originating from imperfections in the fiber.

Two such imperfections are related to random vari-

ations along the fiber length in the ZDWL and

residual birefringence, both of which originate partly

from random changes in the core shape and size. In

this section, we focus on ZDWL variations and con-

sider the effects of residual birefringence in the next

section. As dual-pump FOPAs provide much flatter

gain spectra and are more likely to be used for

telecommunication applications, we consider such

FOPAs but limit our attention to the sole nonde-

generate FWM process given in Eq. (1). As pointed

out in the last section, this process is sufficient to

describe the main flat portion of FOPA gain as long

as the two pumps are located far from each other.

As seen clearly in Fig. 7.2, FOPA gain spectrum is

extremely sensitive to dispersion parameters of the

fiber. Changes in the ZDWL by as small as 0.05 nm

change the gain spectrum considerably. Broad and

flat gain spectra for dual-pump FOPAs were

obtained in Section 4 by assuming that the disper-

sion characteristics of the fiber do not change along

the fiber. However, this is not the case in reality.

Fluctuations in the core shape and size along the

fiber length make the ZDWL of the fiber change
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Figure 3.8: Measured (diamonds) and calculated (solid) gain spectrum as a function of

signal wavelength for a dual-pump FOPA.

rate, when a weak CW signal was amplified using a FOPA whose pump power was

sinusoidally modulated at 40 Gb/s [70]. Optical time-division demultiplexing from

40 Gb/s to 10 Gb/s was demonstrated [23] over a 39 nm wavelength range [24]. An-

other experiment used a single-pump FOPA for optical sampling at 300 Gb/s [21].

FOPAs can also be used to mitigate noise associated with an input signal when operat-

ing in the saturation regime [71]. A similar scheme can be used for all-optical signal

regeneration using a higher-order idler [72], [73]. The same concept was also utilized

in a dual-pump configuration [74].

FOPAs can also work in the pump-depleted region and can transfer as much as 92%

of the pump power to the signal and idler fields [75]. Such FOPAs can be used to realize

CW-pumped optical parametric oscillators with 30% internal conversion efficiency and

a tuning range of 80 nm [76].
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3.4.2 Practical Limitations

In Sections 3.1 and 3.2 the basic concepts of FOPAs were introduced after making

several assumptions about FOPAs. Under such assumptions, FOPAs were predicted

to provide gain bandwidths as large as 100 nm with flat gain profiles. A comparison

of the predictions of the simple theory presented in Sections 3.1 and 3.2 with the ex-

perimental results discussed in Section 3.4 shows that in practice FOPAs cannot meet

these expectations. For instance, the widest gain profile that has been realized so far

using dual-pump FOPAs is only 47 nm wide [49], even though the simple theory of

Section 3.2 predicts that it is possible to obtain 100-nm-wide gain spectrum.

In Chapter 4, I show that the imperfections of fibers do not allow for a uniform

FOPA gain over a wide bandwidth, and lead to a trade off between gain uniformity and

gain bandwidth. As a result, in practice, researchers have to sacrifice gain bandwidth

to maintain a useful, uniform gain spectrum.

Another limitation of FOPAs that has not been discussed so far is the degradation

of signal quality during amplification. In principle, FOPAs can have 3-dB noise figure

which is the lowest limit for any phase-insensitive linear amplifier [18]–[20]. However,

several experiments showed that, in fact, FOPAs have higher noise figures. A noise

figure of 4.2 dB with a maximum gain of 27.2 dB [77] and 3.7 dB with 17-dB gain [78]

have been measured for parametric amplifiers. Similarly, a noise figure of 3.8 dB with

40 dB conversion efficiency has been reported for FOPA-based wavelength converters

[79] by reducing the pump noise.

In Chapter 5, I show that, because of the fast response time of FWM process and

the exponential dependence of FOPA gain on the pump powers, noise associated with

pumps severely distorts amplified signal. I discuss the origins of the pump noise, and

the importance of walk off induced by group-velocity difference between the signal and

pumps.
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The discussion of Section 3.3 showed that the polarization dependence of the gain in

the case of single-pump FOPAs is another limitation. In Chapter 6, I propose a simple

way to achieve polarization-independent gain by using highly birefringent fibers.

A practical issue associated with dual-pump FOPAs is the Raman-induced power

transfer between the two pumps [11]. As shown in Eq. (2.79), the FWM strength is

proportional to
√

P1P2 for a nondegenerate process and is maximized when the two

pump powers are the same (P1 = P2). However, as the two pumps are far from each other

but still within the bandwidth of the Raman-gain spectrum, stimulated Raman scattering

can transfer energy from the pump of high frequency to that of low frequency. Since

the two pumps cannot maintain equality in their powers along the fiber, a significant

reduction occurs in the FWM efficiency even though the total power of the two pumps

remains constant. To reduce this effect, the power of the high-frequency pump is chosen

to be higher than that of the low-frequency pump at the input end of the fiber [48]. With

this scheme, the two pump can maintain their powers close to each other over most of

the fiber. Although Raman-induced pump power transfer reduces the FOPA gain by

a considerable amount, it does not affect the shape of the gain spectrum since phase

matching depends on the total power of the two pumps, which is conserved inside

FOPA as long as the two pumps are not depleted too much.
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4 Impact of Fiber Imperfections

In the previous Chapter, fibers used to make FOPAs were assumed to be free from

any imperfection. However, it is difficult to realize such ideal conditions. In practice,

optical fields in realistic fibers undergo random perturbations originating from imper-

fections within the fiber. Two such imperfections are related to random variations in the

ZDWL [80] and residual birefringence along the fiber length, [51]. Both imperfections

originate partly from random changes in the core size and shape. The impact of these

two fiber irregularities on the FOPA gain is discussed in the following two Sections.

4.1 Fluctuations of Zero-Dispersion Wavelength

In this Section, the impact of random variations in the ZDWL of fibers is investigated

for both dual-pump and single-pump FOPAs with a special attention on the uniformity

of gain spectrum in the case of dual-pump FOPAs.

As seen clearly in Fig. 3.2, the gain spectrum of a FOPA is extremely sensitive to the

dispersion parameters of the fiber. Changes in the ZDWL by as small as 0.1 nm change

the gain spectrum considerably. Broad and flat gain spectra for dual-pump FOPAs

were obtained in Section 3.2 by carefully balancing the linear and nonlinear phase

mismatches, assuming that the dispersion characteristics of the fiber do not change
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along the fiber. However, this is not the case in reality. Fluctuations in the core shape

and size along the fiber length make the ZDWL of the fiber to change randomly. Since

such perturbations typically occur during the drawing process, they are expected to have

a small correlation length (∼ 1 m). Long-scale variations may also cause the ZDWL to

vary over length scales comparable to fiber lengths used for FOPAs [80]. In general,

the ZDWL fluctuates only by a few nanometers, and the standard deviation of such

fluctuations is a small fraction (<0.1%) of the mean ZDWL of the fiber.

4.1.1 Numerical Simulations

In the following analysis the vector nature of the FWM process is neglected and a scalar

approach is used for simplicity. The parameter space in which this simplification holds

is determined in the next Section. The pump fields are much stronger than the signal

and idler fields, and they are assumed to remain undepleted. This is generally the case

in practice. In the case of dual-pump FOPAs, only the nondegenerate FWM process

given in Eq. (2.1) is taken into account. As pointed out in Section 3.2, this process is

sufficient to describe the main flat portion of the FOPA gain spectrum as long as the two

pumps are located far from each other. With these simplifications, the growth of signal

and idler waves is still governed by Eqs. (2.77) and (2.78). However, in the presence of

random ZDWL variations along the fiber, the linear phase mismatch ∆β and hence κ

become a random function of z; resulting in the following set of two equations:

dB3

dz
=

i
2

κ(z)B3 + iFB∗4, (4.1)

dB4

dz
=

i
2

κ(z)B4 + iFB∗3, (4.2)

where the FWM strength F = 2γ
√

P1P2 for a dual-pump FOPA and F = γP1 for a

single-pump FOPA. The phase-mismatch parameter κ(z) = ∆β (ω,z)+ γ(P1 + P2) for

dual-pump FOPAs and κ(z) = ∆β (ω,z) + 2γP1 for single-pump FOPAs. The linear

part of the phase mismatch ∆β is defined in the same way as before:

∆β ≈ β2c
[
(ω3−ωc)2−ω

2
d
]
+β4c

[
(ω3−ωc)4−ω

4
d
]
/12, (4.3)
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where β2c is defined as

β2c ≈ β3[ωc−ω0(z)]+β4[ωc−ω0(z)]2/2, (4.4)

ωc = (ω1 +ω2)/2 is the mean of the two pump frequencies, and ωd = (ω1−ω2)/2 is

the half of their difference. In the case of single-pump FOPA, ωc = ω1 and ωd = 0.

When the ZDWL is constant along the fiber, a broad gain spectrum is obtained

by optimizing the FOPAs such that κ remains close to zero over a relatively broad

spectral range. Random variations in the ZDWL cause β2c in Eq. (4.3) to vary randomly

along the fiber, and it becomes difficult to maintain κ = 0. As a result, the FOPA gain

spectrum becomes considerably nonuniform even if the fiber is otherwise perfect. As

FWM is sensitive to local phase mismatch, optimization of other design parameters

(such as average ZDWL, pump powers and wavelengths, strength of nonlinearity, etc.)

does not guarantee a uniform and wide gain spectrum when ZDWL varies randomly

along the fiber even by a small amount ∼1 nm.

Mathematically, random ZDWL variations along the fiber render κ random and

transform Eqs. (4.1) and (4.2) into two stochastic differential equations with multiplica-

tive noise whose solution generally requires a numerical approach. To see the impact of

random ZDWL fluctuations on the FOPA gain, numerical simulations are performed.

FOPAs made using different fiber pieces from the same spool would exhibit differ-

ent gain spectra because each corresponds to a different realization of the stochastic

process. Such fiber-to-fiber variations in the gain spectra can be predicted by solving

Eqs. (4.1) and (4.2) repeatedly, each time with a different random ZDWL profile. We

consider a FOPA made using 500-m of high-nonlinearity fiber (γ = 10 W−1/km) for

which the average ZDWL is λ̄0 = 1550 nm with dispersion parameters β3 = 0.1 ps3/km

and β4 = 10−4 ps4/km. The dual-pump FOPA is assumed to be pumped at 1502.6 nm

and 1600.6 nm with a power of 0.5 W at each wavelength. The single pump FOPA

is pumped at 1550.33 nm with 1 W. Random variations of the ZDWL are modeled by

dividing the fiber into a number of equal-length sections, each having a constant but
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random ZDWL. In reality, the ZDWL is not constant over fixed lengths. However,

when section length is short enough, it is a good approximation to fast changes. It is

assumed that ZDWL fluctuations follow a Gaussian distribution with a standard devia-

tion σλ = 1 nm and a correlation length lc = 5 m. The correlation length in this model

is the length over which the ZDWL is constant.

In the case of single-pump FOPAs, the scalar form of the NLS equation is solved

directly rather than integrating Eqs (4.1) and (4.2) since the former method, which

is more exact, turned out to be less time consuming. The scalar form of the NLS

equation can be obtained from Eq. (2.54) by putting |A〉= Aê where A is the total scalar

amplitude, and ê is a unit vector along a linear polarization state. By neglecting the

birefringence term we get

∂A
∂ z

=−β1
∂A
∂ t
− i

β2(z)
2

∂ 2A
∂ t2 −

β3

6
∂ 3A
∂ t3 + i

β4

24
∂ 4A
∂ t4 + iγ|A|2A. (4.5)

Similar to the procedure followed in the case of dual-pump FOPAs, Eq. (4.5) is solved

for each section in which the ZDWL is constant, then the resulting field is fed to the

next section, which has a randomly picked ZDWL, until the end of the fiber is reached.

The whole procedure is repeated for 100 different fibers all having the same average

ZDWL but different ZDWL variations.

4.1.2 Numerical Results

Figure 4.1 shows the gain spectra for the dual-pump configuration for 100 realizations

of the random process. The dashed curve shows the expected gain profile in the absence

of ZDWL variations. It is evident that amplified signal can fluctuate over a wide range

for different members of the ensemble even when σλ = 1 nm. This simulation result

has two consequences. First, it is not easy to predict the gain profile based only on the

average value of ZDWL of the fiber. Second, even if one goes through 100 different

1-km-length fibers chances that one of them will yield a uniform gain spectrum is very

small. Such large variations in the gain spectrum would be unacceptable in practice.
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Figure 4.1: Fiber-to-fiber variations in the FOPA gain spectrum caused by random

variations in ZDWL along the fiber for the pump wavelength separation of 98 nm.

The dashed curve shows the gain profile in the absence of ZDWL fluctuations. Dotted

vertical lines mark the locations of the pumps.

Figure 4.2 shows the result of the numerical simulations for the single-pump FOPA

configuration. Each thin solid line is the gain spectrum obtained from a different fiber.

The dashed line shows the optimized gain spectrum assuming that ZDWL is constant

by placing the pump at 1550.32 nm. Figure 4.2 shows that fluctuation of ZDWL causes

the signal gain to vary from fiber to fiber. Moreover, both the gain peak and the gain

bandwidth are reduced. The portion of the gain spectrum that is farthest from the pump

wavelength is the most sensitive part of the gain spectrum.
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Figure 4.2: Fiber-to-fiber variations in the FOPA gain spectrum caused by random

variations in ZDWL along the fiber for the single-pump FOPA. Dashed curve shows

the gain profile in the absence of ZDWL fluctuations.

4.1.3 Mitigation of ZDWL Fluctuations

The important question is how FOPAs can be used in practice in spite of ZDWL vari-

ations. We have found that the impact of random ZDWL variations can be mitigated

significantly by reducing the gain bandwidth. This can be achieved by reducing the

wavelength separation between the two pumps and optimizing the average frequency

ωc. Figure 4.3 shows the improvement in the dual-pump case realized by changing the

pump wavelengths to 1525.12 and 1575.12 nm so that the two pumps are only 50 nm

apart. With this choice, the signal power fluctuates over a much reduced range. More

importantly, the gain spectrum is uniform to within a few dB for each fiber over a 40-nm

region between two pumps.
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Figure 4.3: Fiber-to-fiber variations for the pump wavelength separation of 50 nm. The

dotted lines show the location of the pumps.

Figure 4.4 shows the gain variations for a single-pump FOPA, when the pump wave-

length is tuned from 1550.32 nm used in Fig. 4.2 to 1550.7 nm. In the absence of

ZDWL fluctuations, adjusting the pump wavelength produces a narrower gain band-

width as shown by the thick dashed line. Comparing Fig. 4.4 with Fig. 4.2 shows

that when the pump wavelength is adjusted, the amount of fiber-to-fiber variations is

reduced. Moreover, the gain peak is higher.

A closer look at the phase mismatch expression Eqs. (4.3) and (4.4) reveals why

it is necessary to reduce the gain bandwidth to retain the gain uniformity. In these

equations, ZDWL appears only through β2c. When the signal wavelength is close to

a pump wavelength, ∆β nearly vanishes regardless of the ZDWL. However, as the

signal wavelength moves away, fluctuations in ∆β increase and become maximal when

|ω3 −ωc| is a maximum. Reducing the pump separation guarantees that |ω3 −ωc|
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Figure 4.4: Fiber-to-fiber variations for the pump wavelength separation of 50 nm.

Dotted lines show the location of the pumps.

remains small and therefore fluctuations in ∆β and the parametric gain can be kept

below a reasonable limit. The same reasoning applies to single-pump FOPAs. However,

a single-pump FOPA gain cannot be made as uniform as a dual-pump FOPA since the

flat portion of the single-pump gain occurs far from the pump wavelength, and that is

where the ZDWL fluctuations has the highest impact.

4.1.4 Analytical Model

A simple way to quantify the FOPA performance is to calculate the average gain by

averaging the signal gain, G(ω3) = P3(L)/P3(0), over different realizations of random

ZDWL variations. Although such an “averaged” gain spectrum does not correspond

to any real FOPA, it provides a good indication of the impact of ZDWL variations on

FOPA performance. The average gain Gav can be calculated analytically when random
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deviations in ∆β are relatively small compared with its optimum value and when the

correlation length lc is much smaller than the FOPA length [80]. In the following,

the expression for Gav is derived and used to optimize the FOPA design. First, ∆β is

expanded in a Taylor series as ∆β = ba +bδλ0 where ba = 〈∆β 〉 and

b = β3(2πc/λ̄
2
0 )[(ω3−ωc)2−ω

2
d ]. (4.6)

The random variable δλ0 represents fluctuations in the ZDWL. It can be modeled as a

Gaussian stochastic process whose first and second moments are given by [80], [82]

〈δλ0〉= 0, 〈δλ0(z)δλ0(z′)〉= 2Dλ δ (z− z′), (4.7)

where Dλ = σ2
λ

lc/2 is the diffusion coefficient and σλ is the standard deviation of

ZDWL fluctuations.

From Eqs. (4.1) and (4.2) the set of equations that describes the evolution of signal

power can be found as

dP3

dz
= gΓi, (4.8)

dΓr

dz
=−κaΓi−bδλ0Γi, (4.9)

dΓi

dz
= κaΓr +gP3−

g
2

P3(0)+bδλ0Γr, (4.10)

where Γr and Γi are the real and imaginary parts of Γ = B3 B4, g = 4γ
√

P1P2, and

κa = ba + γ(P1 + P2) represents the average phase-mismatch. Averaging Eqs. (4.8)–

(4.10) over the ensemble yields

d〈P3〉
dz

= g〈Γi〉, (4.11)

d〈Γr〉
dz

=−κa〈Γi〉−b〈δλ0 Γi〉, (4.12)

d〈Γi〉
dz

= κa〈Γr〉+g〈P3〉−
g
2

P3(0)+b〈δλ0 Γr〉. (4.13)

In Eqs. (4.11)–(4.13), random variable δλ0 and variable Γ are not statistically inde-

pendent. Therefore, the averages that contain the product of these two terms cannot be
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separated. In order to obtain a complete set of equations for the three average quantities

of interest, 〈P3〉, 〈Γr〉 and 〈Γi〉, Eqs. (4.11)–(4.13) can be converted to what is known as

Ito stochastic differential equations using the transformation rules explained in detail

in Reference [81]. Averaging the resulting equations over ZDWL fluctuations [82], the

following set of three linear equations is obtained

d〈P3〉
dz

= g〈Γi〉, (4.14)

d〈Γr〉
dz

= −κa〈Γi〉−Dλ b2〈Γr〉, (4.15)

d〈Γi〉
dz

= κa〈Γr〉+g〈P3〉−
g
2

P3(0)−Dλ b2〈Γi〉. (4.16)

The average gain Gav = 〈P3(L)〉/P3(0) can be obtained by solving the linear equa-

tions (4.14)–(4.16) and is given by

Gav =
1
2

[
3

∑
i=1

(g2 +a jak)eaiL

(ai−a j)(ai−ak)
+1

]
, (4.17)

where i 6= j 6= k and ai are the roots of the cubic polynomial a3 +2(Dλ b2)a2 +(D2
λ

b4 +

κ2
a −g2)a−Dλ (bg)2.

Figure 4.5 shows the “average” gain spectra obtained analytically (solid curves)

and numerically (dashed curves). Numerical results are obtained by averaging over

different realizations shown in Figs. 4.1 and 4.3. The ZDWL is assumed to follow a

Gaussian distribution with σλ = 1 nm. The role of correlation length lc is illustrated

by choosing lc = 5 and 50 m. In the case of a constant ZDWL (dotted curve), the

gain spectrum is flat over a 80-nm bandwidth. However, variations in the ZDWL of

even ±1 nm deteriorate the flat region of the gain spectrum severely. For lc = 5 m,

the average gain is reduced from 38 to 18 dB in the center and varies by as much as

20 dB over the central region. For lc = 50 m, a flat region reappears, but the gain is

reduced from 38 to 7 dB. When lc = 50 m, ZDWL fluctuations cannot be assumed to

be delta-correlated. This is the reason behind the discrepancy between the analytical

and numerical curves for lc = 50 m.
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Figure 4.5: FOPA gain spectra in the case of 98-nm pump separation for two different

correlation lengths lc = 5 m and lc = 50 m. Solid curves show the analytical predic-

tion. Dashed curves represent an average of 100 gain spectra similar to those shown in

Figs 4.1 and 4.3. The dotted curve shows the expected gain in the absence of disper-

sion fluctuations. The innermost curves show the average gain when pump separation

is reduced to 50 nm using σλ = 1 nm and lc = 5 m

The innermost solid (analytical) and dashed (numerical) curves in Fig. 4.5 show the

average gain for the same FOPA when the pump separation is reduced from 98 to 50 nm.

The pump wavelengths were optimized to make the gain curve as flat as possible. For

this choice of pump spacing, the average gain remains nearly uniform although its

bandwidth is reduced to around 40 nm and the amount of gain is reduced by about 2 dB

compared with the case of a constant ZDWL. Noting from the comparison of Figs. 4.1

and 4.3 that the gain fluctuations are much smaller for 50-nm pump spacing, one arrives

the conclusion that the flatness of the average gain and the variance of gain fluctuations

are related, and flatness of Gav is a desirable design goal. This relationship is verified
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Figure 4.6: Degree of flatness plotted as a function of separation between pump wave-

lengths for several values of σλ .

through extensive numerical simulations. The main conclusion is that the effects of

ZDWL variations can be mitigated significantly by reducing the pump separation in the

40–50 nm range. This conclusion is consistent with the recent experiments in which

pump separation was chosen to be in this range [49], [65]. The reduced pump spacing

lowers the usable FOPA bandwidth but makes its performance relatively immune to

ZDWL variations.

As a further guide to dual-pump FOPA design, a measure of the flatness is intro-

duced through a “degree of flatness” defined as S = Gmin/Gmax where Gmin and Gmax

are the minimum and maximum values of the average gain in the spectral region be-

tween the two pumps. Figure 4.6 shows how S varies as a function of pump-wavelength

separation for different levels of ZDWL fluctuations quantified through the standard

deviation σλ . For each point in the curves, the center pump frequency ωc was also

optimized. Because the analytical expression is valid only for lc � L, the correlation
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Figure 4.7: FOPA gain spectra for λ1 = 1550.33 and λ1 = 1550.7 nm with correlation

length lc = 5 m, and λ1 = 1550.33 nm with lc = 50 m. Solid curves show the analytical

prediction. Dashed curves show the averages of 100 gain spectra plotted in Figs 4.2

and 4.4. Variation in ZDWL is kept at 1 nm

length was fixed at 5 m for the 500-m-long FOPA considered here; other parameters of

FOPA were the same as those used in Figs. 4.1 ans 4.3. As seen in Fig. 4.6, for any

value of σλ , it is possible to retain the flatness of the average gain spectrum as long

as the pump separation is reduced below a critical value. This critical value depend on

the level of ZDWL fluctuations. In particular, pump separation becomes increasingly

smaller as σλ becomes larger to maintain the same degree of flatness. For σλ = 1 nm,

the maximum tolerable pump separation is about 50 nm.

In Fig. 4.7 Gav for single-pump FOPAs is plotted using the analytical solution of

Eq. (4.17) (solid lines) and compared to the average of different realizations obtained

from Figs. 4.2 and 4.4 (dashed lines). Due to a reflection symmetry of the curves,
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only one side of the gain curves is plotted. Figure 4.7 shows that the analytical result

predicts the average gain very well when the correlation length is small. However, when

the correlation length is large the theory overestimates the impact of ZDWL variations.

Unlike the dual-pump FOPA case, it is not easy to use the average gain curve to design

a FOPA that will have a relatively flat gain, unless the amount of ZDWL variations is

small.

4.2 Effect of Residual Fiber Birefringence

It was shown in Section 3.3 that FWM efficiency depends on the SOPs of the interact-

ing fields and when fibers longer than a few hundreds of meters are used, field SOPs

vary randomly along the fiber length. This Section investigates how and under what

conditions residual birefringence, in particular PMD, affects the gain of a dual-pump

FOPA in nominally isotropic fibers.
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4.2.1 Theoretical Model

The starting point is the vectorial FWM equations (2.67) and (2.68) derived in Chap-

ter 2:

d|A1〉
dz

= iβ (ω1)|A1〉+ i~b ·~σ|A1〉+ iγ
[
P1 +P2 + |A2〉〈A2|

− 1
3

(
〈A1|σ3|A1〉+ 〈A2|σ3|A2〉+σ3|A2〉〈A2|

)
σ3

]
|A1〉, (4.18)

d|A2〉
dz

= iβ (ω2)|A2〉+ i[~b+~b1(ω2−ω1)] ·~σ|A2〉+ iγ
[
P1 +P2 + |A1〉〈A1|

− 1
3

(
〈A2|σ3|A2〉+ 〈A1|σ3|A1〉+σ3|A1〉〈A1|

)
σ3

]
|A1〉, (4.19)

d|A3〉
dz

= iβ (ω3)|A3〉+ i[~b+~b1(ω3−ω1)] ·~σ|A3〉

+ iγ
[
P1 +P2 + |A1〉〈A1|+ |A2〉〈A2|

− 1
3

(
〈A1|σ3|A1〉+ 〈A2|σ3|A2〉+σ3|A1〉〈A1|+σ3|A2〉〈A2|

)
σ3

]
|A3〉

+ iγ
[
|A1〉〈A∗2|+ |A2〉〈A∗1|−

σ3

3

(
|A1〉〈A∗2|+ |A2〉〈A∗1|

)
σ3

]
|A∗4〉, (4.20)

d|A4〉
dz

= iβ (ω4)|A4〉+ i[~b+~b1(ω4−ω1)] ·~σ|A4〉

+ iγ
[
P1 +P2 + |A1〉〈A1|+ |A2〉〈A2|

− 1
3

(
〈A1|σ3|A1〉+ 〈A2|σ3|A2〉+σ3|A1〉〈A1|+σ3|A2〉〈A2|

)
σ3

]
|A4〉

+ iγ
[
|A1〉〈A∗2|+ |A2〉〈A∗1|−

σ3

3

(
|A1〉〈A∗2|+ |A2〉〈A∗1|

)
σ3

]
|A∗3〉. (4.21)

The fields are assumed to be CW so that the time dependent terms can be dropped and

the birefringence parameters are defined as~b =~b0(ω1) and b1 = (d~b0/dω)ω=ω1 . These

equations constitute a set of eight scalar equations with complex coefficients, resulting

in 16 real equations that need to be solved numerically.

It was shown in Section 3.3 that because of the common birefringence term~b0, the

SOPs of all fields rotate together on a short length scale. Because of the randomly

varying birefringence axis, field SOPs perform a random walk on the surface of the

Poincaré sphere. Even though this diffusion process is random, since all fields expe-

rience the same birefringence, the trajectories of the SOPs of all fields are correlated.
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The PMD term, on the other hand, causes SOPs of the fields with different frequencies

to rotate at different rates. In this case, trajectories of the SOPs of fields that have large

frequency difference lose their correlation after some distance in the fiber. The length

scale at which two fields with frequencies ω1 and ω2 lose their initial correlation is

called the PMD diffusion length defined as [83], [84]

Ldiff =
3

D2
p(ω1−ω2)2 . (4.22)

where the PMD parameter Dp is related to the variance of random variable b1 as

D2
p = 〈b2

1〉lc and lc is the correlation length of the fiber birefringence. In more exact

terms, Ldi f f is the length scale at which the dot product of two fields with frequencies

ω1 and ω2 reduces by a factor of 1/e on the average.

In a fiber with a PMD parameter Dp = 0.1 ps/
√

km, Ldi f f = 200 m for two fields

separated by 50 nm. Clearly, PMD induced randomization is not as fast as the frequency-

independent rotations, unless the frequency difference is beyond 300 nm. It is difficult

to find a case where all fields lose their correlation on a length scale much shorter than

the nonlinear length. Therefore, it is not possible to average Eqs. (4.18)–(4.21) over the

random rotations of SOPs of interacting fields induced by PMD as it was done in the

case of frequency-independent rotations.

4.2.2 Numerical Model

In a recent study, an analytic vector theory was developed to investigate the PMD effects

on FOPAs pumped at a single wavelength [85]. However, in practice dual-pump FOPAs

are preferred since they provide a uniform gain over a much larger bandwidth [11],

[49], [65]. Another important property of dual-pump FOPAs is that, in principle, they

can eliminate the dependence of the gain on the initial SOP of the signal [12], [55]–[61].

It is difficult to extend the analytic vector theory developed for single-pump FOPAs to

the case of dual-wavelength pumping because of the complexity of the problem. For

this reason, numerical simulations are employed to study the impact of PMD on the
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performance of such amplifiers. Two separate issues are investigated. First, how much

the overall gain and its flatness are degraded because of PMD; second, whether it is

possible to make FOPAs in such a way that the signal gain is independent of the signal

SOP.

For numerical simulations we divide the fiber into many sections such that the

amount of birefringence and the direction of principal axes are fixed in each section

but vary from section to section. Each section was taken to be 5 m long. As the correla-

tion length of birefringence fluctuations is typically∼1 m, our numerical results should

mimic the expected behavior. In each fiber section Eqs. (4.18)–(4.21) are solved. The

fiber and pump parameters are the same as those used to produce Fig. 4.1. More specif-

ically, we consider a 500-m-long high-nonlinearity fiber with γ = 10 W−1/km pumped

with two lasers, each providing 0.5 W of power. The fiber is assumed to have its zero-

dispersion-wavelength at λ0 = 1.55 µm with β3 = 0.1 ps3/km and β4 = 10−4 ps4/km.

The initial SOP of all fields is chosen to be linear and parallel. The pump wavelengths

are chosen to obtain the most uniform gain profile in the absence of PMD and have

values λ1 = 1600.6 nm and λ2 = 1502.6 nm.

Three parameters are enough to characterize random birefringence of the fiber lead-

ing to first-order PMD effects, namely, birefringence b of each section, the correlation

length lc and the PMD parameter Dp of the fiber. b is assumed to follow Gaussian

statistics with zero mean and a standard deviation of 0.4 m−1 (δn ≈ 10−7). The ran-

dom variable b1 also follows Gaussian statistics which is determined through the PMD

parameter Dp. The correlation length is equal to the length of each section (lc = 5 m).

4.2.3 Results and Discussion

First, numerical simulations are used to investigate the degree to which the gain spec-

trum of a FOPA is degraded by PMD. For this purpose, Eqs. (4.18)–(4.21) are solved

and the FOPA gain G is calculated for three different values of Dp by varying the signal
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Figure 4.8: Changes in gain spectra with birefringence fluctuations for a dual-pump

FOPA for Dp = 0.1 ps/
√

km. Other parameters are given in the text. Both pumps and

signal are copolarized initially. Each curve corresponds to a different fiber or the same

fiber measured at different times.

wavelength in the range 1.5-1.6 µm. Because of PMD, G varies over a wide range for

each realization of the stochastic process. Figure 4.8 shows the range of gain fluctua-

tions for Dp = 0.1 ps/
√

km. Variations from one gain curve to the other can be seen as

fiber-to-fiber variations. They can also be the results of measurements taken at differ-

ent times using the same fiber since fiber birefringence fluctuates in time, although on

a long time scale of the order of minutes [86].

The average gain is found after averaging over 50 realizations shown in Fig. 4.8,

for each set of parameters. The results are shown in Fig. 4.9. The ideal case of an

isotropic fiber is also shown for comparison (solid curve). PMD reduces the average

gain considerably and degrades the flatness of the gain spectrum appreciably for Dp >
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Figure 4.9: Average gain spectra for three values of PMD parameters for the same

parameter values used in Fig. 4.8. Solid curve shows for comparison the no-PMD case

0.1 ps/
√

km. For a relatively low-PMD fiber with Dp = 0.05 ps/
√

km, the average gain

is reduced by 10 dB but the spectrum remains relatively flat.

For the parameter values used in Fig. 4.9, the frequency-independent changes in the

SOP (caused by b0) can be predicted by using Eqs. (3.49) and (3.50). Comparison of

FWM strength listed in Table. 3.1 and FWM strength predicted by Eq. (3.50) shows

that gain is expected to reduce from its peak value of 37 dB in the absence of birefrin-

gence to 33 dB when there is only frequency-independent birefringence. Any further

reduction from 33 dB represents the contribution of the frequency-dependent rotations

on the Poincaré sphere and can be attributed to PMD, because of which the four fields

no longer retain the initial parallel configuration of their SOPs. The larger the PMD
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parameter and the larger the difference between the frequencies of two fields, the faster

their SOPs deviate from each other.

For Dp = 0.05 ps/
√

km, the diffusion length for the two pumps is Ldiff ∼ 200 m but

it reduces to 50 m for Dp = 0.1 ps/
√

km. The reason why the gain spectrum remains

relatively flat in Fig. 4.9 for low PMD values is that the four fields keep their original

parallel configuration for a considerable portion of the fiber. For larger values of Dp, a

dip begins to form at the center of the gain spectrum. This dip can also be understood

from the above argument. Since the center of the spectrum corresponds to a signal

frequency that is the farthest from both pumps, the signal loses its correlation with both

pumps faster and thus experiences less gain. The dip becomes deeper as Dp increases.

The diffusion length Ldiff for the signal is 780, 200, and 90 m for Dp = 0.05, 0.1, and

0.15 ps/
√

km, respectively. In short, the gain spectrum retain its flatness whenever the

diffusion length is larger than the fiber length. For large values of Dp, the diffusion

length becomes considerably shorter than the fiber length, and the spectrum degrades.

The average gain shown in Fig. 4.9 does not quantify the PMD effects completely.

It is well known that PMD can fluctuate with time for any fiber depending on the envi-

ronmental conditions [51], [86]. Such fluctuations will translate into signal fluctuations

because the FOPA will amplify the signal by different amounts. To quantify the PMD-

induced fluctuation in the signal power, Fig. 4.10 shows the ratio σ/〈G〉 (both expressed

in dB units) as a function of signal wavelength, where σ is the standard deviation of

gain fluctuations. Although the fluctuation level is only 10% for Dp = 0.05 ps/
√

km (±3

dB from the average gain shown in Fig. 4.9), it exceeds 30% for Dp = 0.15 ps/
√

km

for some signal wavelengths. Such large fluctuations are unacceptable for practical

applications of FOPAs.

In Figs. 4.8 to 4.10 the input SOP of the signal was kept fixed. In many system ap-

plications, it is not possible to control the SOP of the incoming signal. Since the FWM

efficiency depends on the relative orientations among two pumps and the signal, fluc-

tuations in the input signal SOP become another source of noise through polarization-
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Figure 4.10: σ/〈G〉 as a function of signal wavelength for three different PMD param-

eter values used in Fig. 2. Both σ and 〈G〉 are expressed in dB units.

dependent gain (PDG). In the case of dual-wavelength pumping, the use of linearly but

orthogonally polarized pumps with equal powers can eliminate this problem. However,

this scheme relies critically on the assumption that once the two pumps are launched

into the fiber, they maintain their orthogonality. As discussed earlier, PMD rotates the

pump SOPs at different rates such that they no longer stay orthogonal. Thus, eventually

gain would depend on the input SOP of the signal, as also observed experimentally [12].

Figure 4.11 shows the results of numerical simulations for the same FOPA used

for Figs. 4.8–4.10 but the pumps are now orthogonally (and linearly) polarized and

Dp = 0.1 ps/
√

km. The initial SOP of the signal is linear but makes an angle of

θ = 0,45, and 900 from the pump at the shorter wavelength. For comparison, the

gain expected in the absence of PMD effects is also included (dotted curve). For cer-

tain signal wavelengths, PDG can be as much as 12 dB, where PDG equals the dif-
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Figure 4.11: Average gain versus signal wavelength for three different initial linear SOP

of the signal for Dp = 0.1 ps/
√

km; θ represents the angle in between the linear SOPS

of signal and shorter-wavelength pump. The other pump is orthogonally polarized.

Dotted curve shows for comparison the no-PMD case.

ference between the maximum and minimum gains as the input signal SOP is varied.

The largest PDG occurs for signals close to the pumps in wavelength. The results in

Fig. 4.11 agree well with a recent experiment [12]. The reason for the largest PDG to

occur close to pump wavelengths can be understood in physical terms as follows. The

signal with a wavelength close to one pump remains aligned with that pump but decor-

relates with the other pump rapidly because of a large frequency difference. Hence,

signal can see only the averaged effect of the farther pump but experiences the highest

or smallest gain depending on if it started parallel or orthogonal to the closer pump.

This also explains why for θ = 0 gain peaks close to the pump at a shorter wavelength
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and decreases as it gets closer in wavelength to the other pump. Noting that the FWM

efficiency is minimum when the pumps are orthogonal, it is not surprising that the gain

is minimum in the case of isotropic fiber. PMD can make the pumps nonorthogonal

(and even parallel occasionally) and thus increases the gain, as seen in Fig 4.11.

4.3 Conclusions

This Section showed that fiber imperfections such as randomly varying ZDWL and

PMD induced by residual birefringence constitute a major limiting factor for modern

FOPAs. In particular, because of these irregularities in fibers, FOPAs cannot produce

wide and uniform gain spectra.

In Section 4.1 the impact of randomly varying ZDWL on the performance of both

single- and dual-pump FOPAs is investigated. It is shown that the signal gain can

vary considerably from FOPA to FOPA even though all of them are made using fibers

with the same zero-dispersion wavelength on average. Gain spectrum becomes highly

nonuniform for a given FOPA because of such dispersion fluctuations. This problem

can be solved to a large extent by reducing wavelength separation between the two

pumps but at the expense of a reduced gain bandwidth. The analytical theory developed

in this section shows that the maximum tolerable pump separation depends on the level

of ZDWL variations within the fiber and is about 50 nm for a standard deviation of

1 nm. This explains why in most recent dual-pump FOPA experiments, pumps were

kept 40 to 50 nm apart [49], [65].

In Section 4.2, the effects of PMD on dual-pump parametric amplifiers are investi-

gated numerically. It is found that PMD induces large fluctuations in the signal power.

The average gain itself is reduced by more than 10 dB even for a relatively small value

of 0.05 ps/
√

km for the PMD parameter. For larger values of the PMD parameter,

the gain spectrum begins to distort and loses its flatness. It is also shown that PDG

cannot be eliminated by using orthogonally polarized pumps and can exceed 12 dB for
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Dp = 0.1 ps/
√

km. The diffusion length Ldiff is an important design parameter. To evade

the adverse effects of PMD, Ldiff should be kept comparable to or larger than the fiber

length. For a given fiber PMD, this can be achieved by keeping the pump wavelengths

closer. Hence, similar to the random ZDWL variations, random residual birefringence

also limits the achievable flat gain bandwidth. These results are in agreement with a

recent experiment [12].
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5 Pump-Induced Degradations

In Chapter 4, the effects of fiber irregularities on the FOPA performance were investi-

gated. Effects of randomly varying ZDWL and fluctuating residual fiber birefringence

were studied in the context of their impact on the FOPA gain bandwidth and gain uni-

formity. An equally important performance criterion for amplifiers is that they do not

add too much excess noise on the amplified signal and idler fields. The excess noise is

defined as the portion of the noise that is added on top of the minimum amount of noise

required by quantum mechanics.

In the linear regime in which amplifier gain depends linearly on the input signal

power, the minimum noise figure required by quantum mechanics depends on whether

or not the amplifier gain is a function of the signal phase. Using phase-insensitive am-

plifiers, one cannot achieve a noise figure of less than 3 dB in the high-gain limit. How-

ever, phase-sensitive amplifiers can amplify the signal without decreasing the signal-

to-noise ratio (SNR); hence they can have a 0-dB noise figure.

One may ask what the origin of 3-dB noise figure is in the case of phase-insensitive

amplifiers. The answer is that the additional noise is required to prevent the violation

of the Heisenberg uncertainty principle [87]. According to this principle, the real and

imaginary parts of the complex amplitude of the electric field, also known as the two

quadratures of the electric field, cannot be measured with arbitrary precision simulta-
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neously. A phase-insensitive amplifier cannot distinguish the two quadratures, and thus

amplifies them by the same amount. At the high gain limit, the two quadratures of the

electric field becomes classical, and they can be measured simultaneously. The noise

that leads to the 3-dB noise figure is added so that the measurement still has the same

amount of uncertainty even after the fields become classical. This noise is not required

when the amplifier is operated in the phase-sensitive regime since such amplifiers can

amplify one quadrature while inducing loss in the other quadrature. In this case the

uncertainty principle is not violated. FOPAs can operate in both phase-sensitive and

phase-insensitive modes. If there is no idler at the input of the fiber, signal gain be-

comes independent of the phases of the input fields, and the FOPA becomes phase

insensitive. A FOPA becomes phase sensitive if both the signal and idler are launched

at the input.

In order for FOPAs to become practical, it is important that FOPAs do not deterio-

rate the SNR beyond what is dictated by the quantum limit. Therefore, it is important

to identify the mechanisms through which the signal and idler SNRs may deteriorate

during amplification inside a FOPA and to find methods to mitigate them. One such

noise source is the perturbations associated with the pumps.

5.1 Preparation of High-Power Pumps

As discussed in Chapter 3 in detail, FOPAs require high pump power so that FWM

can occur in shorter fibers resulting in a wider gain bandwidth. What is more, the

pump wavelengths have to be tunable since to achieve a uniform and wide-gain band-

width, pump frequencies have to be fine-tuned with respect to the ZDWL of the fiber.

Preparation of pumps that satisfy these criteria requires multiple stages and numerous

components. Figure 5.1 shows the complexity of a typical experimental setup used to

make a dual-pump FOPA [48]. Single-pump FOPAs are similar except that only one

pump is used.
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Figure 5.1: A dual-pump FOPA setup. The external cavity tunable semiconductor lasers

are labeled as λ1, λ2 and λ3, PC stands for polarization controller, PM is phase mod-

ulator, booster amplifiers are labeled as A1 and A2, F1 and F2 are tunable filters, OSA

stands for optical spectrum analyzer and WM is for wavelength meter.

To ensure tunability, tunable external-cavity semiconductor lasers are used as CW

seeds. Such sources can provide very high quality beams with a large tuning range and

a narrow bandwidth but they are not powerful enough. To boost the output power to the

required levels, the seed is passed through a preamplifier and a booster erbium-doped

fiber amplifier (EDFA). EDFAs are commonly used as most FOPAs are built around

the communication band. Amplification is done in multiple stages to increase the SNR

of the pump. The amplified-spontaneous emission (ASE) noise added by the EDFAs is

reduced by placing tunable optical filters (F1 and F2) after them. The amplified pump

fields and signal field are mixed at the second coupler C2 and launched together into the

HNLF where FWM takes place. After propagating through the fiber, the pump fields

are filtered. The amplified signal and idler are analyzed using an optical spectrum

analyzers.

The residual ASE noise passing through the bandwidth of tunable filters, causes

fluctuations in the pump power. During the FWM process, these fluctuations are trans-

ferred to the signal and idler. Since the signal (or idler) gain depends exponentially on

pump powers, fluctuations transferred to the signal and idler are expected to be much

higher. Note that the fast response time of the FWM process, which makes FOPAs
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useful for many important applications, also helps transferring noise from the pumps

to the signal efficiently. Several groups have suggested that the noise associated with

the pumps is one of the dominant sources of signal SNR degradation [8], [77]–[79],

[88]–[91]. Section 5.2 extends the earlier works to the case of dual-pump FOPAs and

shows that the group-velocity difference between the signal and pumps has to be taken

into account to determine the noise transfer correctly [92].

ASE noise added by the EDFAs is not the only source of pump perturbation. After

boosting the pump power and filtering the ASE noise as much as possible, the pumps

are still not ready to be launched into the fiber, because the amount of pump power

that can be launched into the fiber is limited by stimulated Brillouin scattering (SBS).

SBS, another third-order nonlinear process, is three orders of magnitude more effi-

cient than the FWM process [3]. Because SBS has a narrow gain spectrum (bandwidth

<100 MHz), it is possible to increase the SBS threshold beyond the required level of

pump power by broadening the spectrum of the pumps to beyond 1 GHz. In practice,

the pump spectra are broadened by modulating pump phases either sinusoidally [44] at

several fixed frequencies or randomly using a pseudo-random bit pattern at bit rates of

3–10 Gb/s [48]. Even though pump-phase modulation is deterministic and cannot be

considered as noise in the strict sense, it can lower the signal and idler SNR through

several different mechanisms [31], [64]–[67], [93]–[97]. Sections 5.3 and 5.4 introduce

two new mechanisms through which pump-phase modulation degrades the signal SNR.

5.2 Pump-Noise Transfer: Walk-off Effects

The noise-transfer problem has been studied for single-pump FOPAs [8], [90], [91].

However, these calculations ignored the walk-off effects caused by the group-velocity

mismatch among the pumps, signal and idler. In this Section, it is shown that such

walk-off effects have a major impact on the relative intensity noise (RIN) transfer. In

particular, they can improve the optical SNR of the amplified signal and that of the
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idler. Moreover, the analysis is extended to the case of dual-pump FOPAs as they have

several advantages.

To estimate when walk-off effects become important, two time scales are intro-

duced. First one is the coherence time τc of pump noise. It is related inversely to the

bandwidth Bo of the optical filter used to reduce the ASE added by EDFAs. The sec-

ond time scale is the walk-off delay τw between the signal and pumps caused by the

group-velocity mismatch. This time delay can be written as

τw =
β3L

2
|(ω1−ω0)2− (ω3−ω0)2| ≈ β3L

2
|(ω1−ω3)(ω2−ω3)|, (5.1)

where ω0 is the zero-dispersion frequency of the fiber, β3 is its third-order dispersion

at ZDWL, and L is its length. Also, ω1 and ω2 are the pump frequencies and ω3 is the

signal frequency as usual. As the pumps are located almost symmetrically around the

ZDWL, so are the signal and idler. Therefore, the two pumps travel at the same group

velocity, and the signal and idler travel together. Hence, it is enough to consider group-

velocity mismatch between one of the pumps and signal only. When τw � τc, averaging

produced by the walk off becomes negligible. However, when τw is comparable to or

larger than the coherence time τc, the signal can experience different pump powers

along the fiber, resulting in an averaging over pump fluctuations.

The preceding discussion suggests that an increase in τw helps in reducing the

FOPA noise. To increase τw, both β3 and L in Eq. (5.1) should be as large as possible.

Historically, these two parameters are always minimized as they limit the gain band-

width. However as discussed in Chapter 4, the main factors limiting gain bandwidth

are fiber imperfections related to random variations in the zero-dispersion wavelength

[82] or/and in the residual birefringence of the fiber [84]. For instance, even if one

reduces fiber length by using the so-called highly nonlinear fibers, it is not possible to

increase the gain bandwidth beyond 50 nm because of fiber imperfections [48], [49].

From the standpoint of RIN transfer, the fiber length should be optimized so that it is

large enough to allow the averaging of pump noise but still small enough that it does

not become a limiting factor for the gain bandwidth.
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5.2.1 Theoretical Model

The validity of these physical arguments is tested through extensive numerical simu-

lations. It is found that RIN transfer in a FOPA is indeed reduced considerably when

walk-off effects are included. In numerical simulations, the scalar the FWM equations,

that are derived from the vectorial FWM Eqs. (2.67) and (2.68) of Chapter 2, are solved

using the split-step Fourier method:

∂A1

∂ z
+

1
vg1

∂A1

∂ t
+

id1

2
∂ 2A1

∂ t2 = iβ (ω1)A1 + iγ(|A1|2 +2|A2|2)A1, (5.2)

∂A2

∂ z
+

1
vg2

∂A2

∂ t
+

id2

2
∂ 2A2

∂ t2 = iβ (ω2)A2 + iγ(|A2|2 +2|A1|2)A2, (5.3)

∂A3

∂ z
+

1
vg3

∂A3

∂ t
+

id3

2
∂ 2A3

∂ t2 = iβ (ω3)A3 +2iγ(|A1|2 + |A2|2)A3 +2iγA1A2A∗4, (5.4)

∂A4

∂ z
+

1
vg4

∂A4

∂ t
+

id4

2
∂ 2A4

∂ t2 = iβ (ω4)A4 +2iγ(|A1|2 + |A2|2)A4 +2iγA1A2A∗3, (5.5)

where |Ak〉= Akx̂, k = 1–4 are the two pump, signal, and idler fields, all linearly polar-

ized along the x axis. β (ωk) = ωkn(ωk)/c is the propagation constant, vgk = 1/β1(ωk)

is the group velocity, dk = β2(ωk) is the group-velocity dispersion at the frequency of

the field Ak, and n(ω) is the refractive index of the fiber. It is assumed that the pump

frequencies are close enough (|ω1−ω2| ∼ 50 nm) that the effects of PMD induced by

residual birefringence and ZDWL fluctuations can be neglected.

The pumps are assumed to be relatively noise-free before they are amplified by a

factor of Gp by an EDFA. The ASE added by the EDFAs has a spectral density of

SASE = nsp(h̄ω)(Gp−1) for the pump at frequency ω , where nsp is the population in-

version factor [28]. The pumps are assumed to be filtered using filters with a 1-nm

effective bandwidth. To calculate RIN spectra, Eqs. (5.2) through (5.5) are solved re-

peatedly for different ASE-noise seeds, and an ensemble average over 1000 realizations

is performed numerically. The following definitions for the signal RIN, pump RIN, and
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Figure 5.2: RIN spectral density as a function of noise frequency at signal wavelengths

of 1530 (dotted), 1536 (dashed) and 1550 nm (solid). The short-dashed curve shows

for comparison the pump RIN spectrum. The FOPA parameters used are given in the

text.

the RIN enhancement factor Fr are used [28]:

RINp(ω,0) =
1

〈P1〉2
∫

∞

−∞

〈δP1(t)δP1(t + τ)〉exp(−iωτ)dτ, (5.6)

RINs(ω,L) =
1

〈P3〉2
∫

∞

−∞

〈δP3(t)δP3(t + τ)〉exp(−iωτ)dτ, (5.7)

Fr(ω) = RINs(ω,L)/RINp(ω,0), (5.8)

where Pm = |Am|2, δPm = Pm−〈Pm〉, and 〈· · · 〉 denotes ensemble averaging.
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5.2.2 Results and Discussion

Figure 5.2 shows the signal RIN spectra at three signal wavelengths of 1530, 1536 and

1550 nm. The short-dashed curve shows, for comparison, the pump RIN (identical

for both pumps). In all cases, a 1-km-long, highly nonlinear fiber with parameters

λ0 = 1550 nm, β3 = 0.1 ps3/km, β4 = 0.8×10−4 ps4/km, and γ = 4.2 W−1km−1 were

used. A lower value of γ is used to obtain 30 dB gain as the analysis ignores dispersion

and fast birefringence fluctuation. The input signal is assumed to be noise-free with

10 µW of power. The pumps are located at 1525.28 and 1575.28 nm and have 0.5 W of

average power after they are amplified by 27 dB by an EDFA with nsp = 1.5. Figure 5.2

shows that the signal RIN is enhanced by 15 dB at low frequencies. However, the

enhancement is reduced considerably for large frequencies, and for some frequencies,

the signal RIN is even less than the pump RIN. This is because of the averaging of

high-frequency noise by the walk-off effects. Because such effects are larger for signal

wavelengths that are detuned farther from the pumps, the RIN spectrum is narrower and

the RIN is reduced significantly when the signal wavelength is 1550 nm (solid curve).

Figure 5.3 shows the RIN enhancement factor as a function of noise frequency

under the conditions of Fig. 5.2. The horizontal line on top shows for comparison

the expected behavior when the walk-off effects are ignored. In the no-walk-off case,

the signal RIN is 35 times larger than the pump RIN for all frequencies. When the

walk-off effects are taken into account, RIN enhancement is reduced as the frequency

increases and becomes nearly zero for frequencies beyond 200 GHz or so. The inset of

Fig. 5.3 shows the RMS spectral width σR of the RIN spectrum as a function of signal

wavelength by solid squares. The solid-curve fit in this inset is obtained by assuming

that σR = C/τw where C is a fitting parameter. The good agreement reveals that the

RMS width of the signal RIN is inversely proportional to the walk-off-induced delay

τw. Signal wavelengths that are farthest from each pump have the smallest RIN because

τw is largest for them.
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Figure 5.3: RIN enhancement factor Fr calculated for the same three signal wavelengths

as in Fig. 5.2. The horizontal line shows the no-walk-off case. The inset shows the

numerically calculated RMS width σR of the signal RIN spectrum as a function of

signal wavelength (squares). The solid curve shows the fit assuming that σR scales

inversely with the walk-off parameter τw.

The main effect of RIN transfer is to reduce the SNR of the amplified signal. It is

expected that the SNR depends on the bandwidth of the optical filters used to reduce

ASE noise. Figure 5.4 shows the optical SNR as a function of filter bandwidth for

FOPA lengths of 0.5, 1 and 2 km at a fixed signal wavelength of 1555 nm. To make

a meaningful comparison, the amount and the bandwidth of the FOPA gain are kept

constant by keeping the product γ(P1P2)1/2L constant through changes in γ and by

adjusting pump wavelengths by < 0.1 nm. In all cases, the amplified signal is degraded

severely (SNR < 18 dB) because of RIN transfer. The best SNR is realized for the
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Figure 5.4: Optical SNR as a function of filter bandwidth for FOPA lengths of 0.5, 1

and 2 km. Signal is at 1555 nm. All other parameters are identical to those used for

Fig. 5.2.

longest FOPA, for which SNR exceeds 17 dB and degrades only by < 0.5 dB even if

filter bandwidth increases from 0.5 to 3 nm. This is easily understood from Fig. 5.4

showing that the width of RIN spectrum is determined by the inverse of the walk-off

parameter. When the FOPA length is relatively short and the amount of walk off is

reduced, the SNR is not only smaller but it also degrades considerably with increasing

filter bandwidth. The electrical SNR of the signal, on the other hand, would not be

degraded as much as the optical SNR because of a much lower bandwidth of electrical

filters. In the case of a fiber with a smaller β3 ≈ 0.05 ps2/nm, walk-off effects will be

reduced by 50 %. Ideally, it is possible to increase signal and idler SNR arbitrarily by

reducing the filter bandwidth. However, filter bandwidth cannot be reduced arbitrarily
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because when filters with narrow bandwidths are used, they induce dispersion on the

phase modulated pumps, and distort the pump power profile significantly [93].

5.3 Impact of Pump-Phase Modulation

Pump-phase modulation can affect both dual- and single-pump FOPAs in several ways.

As pump phases are modulated, the instantaneous frequencies of pumps become time

dependent. As discussed at the end of Section 2.7, when FOPAs are operated in the

phase-insensitive mode, an idler frequency is created from the vacuum with the fre-

quency that satisfies energy conservation. Since a FWM process requires that energy

conservation among the interacting fields has to be satisfied instantaneously, ω4(t) =

2ω1(t)−ω3, the idler field is also created with time-dependent instantaneous frequency.

Effectively, this causes broadening of the idler spectrum twice as much as the pump

spectral broadening [31], [64]–[67].

Pump-phase modulation also affects the signal and idler gain by making the phase-

matching condition time-dependent. This can be noticed easily from the expression

for the phase-mismatch parameter given in Section 3.1 in Eqs. (3.8)–(3.11). As κ is

a function of the pump frequency, and as pump frequency changes in time, the phase-

mismatch becomes time-dependent, and hence the gain varies in time [95], [97].

These problems can be mitigated using dual-pump FOPAs and by modulating the

pump phases in opposition, i.e., keeping the sum of pump phases φ1(t)+φ2(t) constant

at all times. In this case, ω1(t)+ ω2(t) also remains a constant and idler broadening

can be prevented [31], [64]–[67]. As discussed in Section 3.2, the phase-mismatch

parameter κ in the case of dual-pump FOPAs depends critically on the mean of the

pump frequencies Eq. (3.15). When the pump phases are modulated in opposition, the

mean of the pump frequencies also remains constant. As a result FOPA gain is not

affected appreciably by pump-phase modulation [97].
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In dual-pump FOPAs, modulating pump phases in opposition is preferred to avoid

broadening of idler spectrum. However, pumps experience a relatively large dispersion

inside the fiber if they are located far from the ZDWL of the fiber. As a result, during

propagation inside the FOPA, phase modulation (PM) is converted into amplitude mod-

ulation (AM) through the group-velocity dispersion. Because the FOPA gain depends

exponentially on the pump powers, even small changes in pump powers can cause large

variations in the signal and idler powers. Such distortions of the signal and idler appear

as noise when pseudo-random bit patterns are used. The SNR at the output end is then

used to quantify the FOPA performance.

5.3.1 Theoretical Model

Equations governing the evolution of the pumps, signal, and idler fields can be obtained

from Eqs. (5.2)–(5.5) based on the same assumptions used in the previous Section. In

this case, the pumps are assumed to be free from ASE noise added by EDFAs, and

time dependence of the pumps originate from the phase modulation. Equations (5.2)

and (5.3) show that fiber dispersion distorts the pump fields through PM-to-AM conver-

sion. In general, Eqs. (5.2)–(5.5) cannot be solved analytically when dispersive effects

are included. However, it is possible to obtain an approximate solution with some

simplifications justified for most practical dual-pump FOPA configurations. First, new

variables Bk and B j are introduced with the transformations

Ak = Bk exp(iβ (ωk)z+ iγψk− iφ3−k), (5.9)

A j = B j exp[i(β (ω j)−∆β/2)z+3iγψ0/2], (5.10)

where, k = 1, 2, and j = 3, 4. Working in a reference frame moving with the signal

group velocity and introducing τ = t−β1(ω3)z as a new time variable, Eqs. (5.2)–(5.5)
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can be written as

∂B1

∂ z
=−δ13

∂B1

∂τ
− i

2
d1

∂ 2B1

∂τ2 + γ

(
d1

2
F(B1,ψ1)− iδ13B1

∂ψ1

∂τ

)
, (5.11)

∂B2

∂ z
=−δ13

∂B2

∂τ
− i

2
d2

∂ 2B2

∂τ2 + γ

(
d2

2
F(B2,ψ2)− iδ13B2

∂ψ2

∂τ

)
, (5.12)

∂B3

∂ z
=

i
2

κ(z)B3 +2iγ(P1P2)1/2B∗4−
i
2

d3
∂ 2B3

∂τ2 + γ
3d3

4
F(B3,ψ0), (5.13)

∂B4

∂ z
=

i
2

κ(z)B4 +2iγ(P1P2)1/2B∗3−
i
2

d4
∂ 2B4

∂τ2 + γ
3d4

4
F(B4,ψ0), (5.14)

where the function F(B,ψ) is defined as F(B,ψ) = 2B′ψ ′ + Bψ ′′ + iγB(ψ ′)2, with

the prime standing for a derivative with respect to τ . Only a single group-velocity

mismatch parameter δ13 = β1(ω1)−β1(ω3) appears in these equations because the two

pumps as well as the signal and idler pair are located almost symmetrically around the

zero-dispersion wavelength [β1(ω1)≈ β1(ω2), β1(ω3)≈ β1(ω4)].

Other quantities appearing in Eqs. (5.11) and (5.14) are defined as

ψk =
∫ z

0
[Pk(z′)+2P3−k(z′)]dz′ ψ0 =

∫ z

0
[P1(z′)+P2(z′)]dz′, (5.15)

κ(P1,P2) = ∆β + γ[P1(z)+P2(z)], ∆β = β (ω3)+β (ω4)−β (ω1)−β (ω2).

(5.16)

Physically, ψk and ψ0 represent the nonlinear phase shifts imposed on the four fields

through self- and cross-phase modulations. The parameter κ governs the total phase

mismatch. Its linear part ∆β represents the contribution of fiber dispersion, as usual.

Its nonlinear part γ(P1 + P2) plays an important role because it makes κ to vary along

the FOPA length if the pump powers become z-dependent.

In Eqs. (5.11) and (5.12) the functions F(B1,ψ1) and F(B2,ψ2) involve derivatives

of the nonlinear phase shifts. These terms have their origin in the PM-to-AM conversion

process discussed earlier. Physically speaking, the pump PM has to be converted to AM

by dispersion of the fiber before nonlinearity of the fiber becomes important. However,

the dispersion length for phase-modulated pumps is much longer (> 10 km) compared

with typical FOPA lengths (< 2 km). Therefore, to a good approximation, the last
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two terms in Eqs. (5.11) and (5.12) can be neglected as long as AM does not become

more than 10% of initial pump powers. With this simplification, Eqs. (5.11) and (5.12)

become linear equations and can be solved easily to obtain

Bk(z,τ) =
∫

∞

−∞

B̃k(0,ω)exp[idkω
2/2− iω(τ−δ13z)]dω, (5.17)

where B̃k(0,ω) is the spectrum of the phase-modulated pumps at the input end of the

FOPA, with k = 1 or 2.

A closed form solution for the pump power may be difficult to get from Eq. (5.17).

However, when |dk|∆ωk z� 1, it can be approximated to the first order as

Pk(z,τ) = Pk(0)[1+dkz(∂ 2
φk(τ)/∂τ

2)]. (5.18)

where ∆ωk is the pump spectral bandwidth induced by PM modulation [98].

As the pumps are symmetrically positioned on opposite sides of the ZDWL, they

experience the same magnitude of dispersion with opposite signs, d1 ≈ −d2. What is

more, ∂ 2φ1(τ)/∂τ2 ≈−∂ 2φ2(τ)/∂τ2 since the pump phases are modulated in opposi-

tion. As a result, the amplitude modulation of the pumps is roughly same, even though

their phases are modulated in opposition. In other words, powers of both pump rise

and fall together. If the pump phases are modulated in the same way, i.e, φ1(t) = φ2(t),

the amplitude modulation induced on the pumps would have opposite direction; in the

sense that when power of one pump increases the other decreases and vice versa. This

would mitigate the impact of pump power variation, however, as discussed earlier, this

would lead to idler spectral broadening as well as gain fluctuations.

The signal and idler equations (5.13) and (5.14) can now be tackled. As discussed

earlier, the last term in the equation can be neglected. In practice, the effects of disper-

sion on signal and idler fields can also be ignored and one can set d3 = d4 = 0 in this

equation. With these well-justified approximations, the signal and idler equations (5.13)

and (5.14) can be written in the matrix form as

∂

∂ z

 B3(z)

B∗4(z)

 =
i
2

 κ(P1,P2) 4γ
√

P1(z)P2(z)

−4γ
√

P1(z)P2(z) −κ(P1,P2)

 B3(z)

B∗4(z)

 . (5.19)
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This equation is easily solved when the pump powers remain constant along the fiber

and leads to the simple solution given in Eqs. (3.12)– (3.15). However, because of

PM-to-AM conversion, the pump powers become z-dependent, and in general it is not

possible to integrate Eq. (5.19) analytically.

It turns out that an approximate solution can be obtained for Eq. (5.19). In practice,

FOPAs are operated such that the phase-matching condition is satisfied for the average

pump powers, i.e., κ(〈P1〉,〈P2〉)≈ 0. Under such conditions, κ(P1,P2) = γ(δP1 +δP2),

where δPk(z) = Pk(z)−〈Pk〉 and angle brackets denote time averaging. If δPk � Pk,

the diagonal terms of the evolution matrix in Eq. (5.19) become negligible compared

with the off-diagonal terms. In physical terms, small variations in pump powers are

transferred to signal and idler through changes in the FWM strength rather than through

phase mismatch. With this simplification, Eq. (5.19) can be integrated to obtain the

following approximate solution for the signal and idler fields:

B3(L) = B3(0)cosh(ḡL), B4(L) = iB∗3(0)sinh(ḡL), (5.20)

where L is the FOPA length. The average gain ḡ is defined as

ḡ =
2γ

L

∫ L

0
[P1(z,τ−δ13z)P2(z,τ−δ13z)]1/2 dz, (5.21)

where the pump power Pk = |Bk|2 for k = 1,2 is obtained from Eq. (5.18) for a given

pump PM scheme.

5.3.2 Results and Discussion

Equation (5.21) has a simple physical interpretation. The PM-to-AM conversion pro-

cess makes pump powers to vary with time in a pseudorandom fashion. These time-

dependent fluctuations in pump powers get transferred to the signal and idler through

the four-wave mixing process, and the net parametric gain is determined by the length-

averaged quantity ḡ in Eq. (5.21). Note that the signal and idler interact with different

temporal regions of the pumps at different locations of the fiber because of the walk-off
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effects induced by group-velocity mismatch. As a result, Eq. (5.21) can also be seen

as a temporal averaging that reduces the extent of signal and idler fluctuations if the

walk-off between the signal and the pumps is large enough.

To make further progress, a specific shape for PM profile has to be assumed. If

the nonreturn-to-zero (NRZ) format is employed, the phase remains constant except

near the leading and trailing edges. To get a closed form solution, it is assumed that

the leading edges follow a raised-cosine shape, i.e., φ(τ) = π[1−cos(πτ/Tr)]/2 where

0 < τ < Tr. Using Eqs. (5.18) and (5.21) with Tw ≡ δ13L, the following expression is

obtained for ḡ(τ) near each leading edge:

ḡ = 2γ
√

P1(0)P2(0)
[
L

+
πβ21L2

T 2
w

(
cos[

π

Tr
(τ−Tw)]− cos[

π

Tr
τ]− πTw

Tr
sin[

π

Tr
(τ−Tw)]

)]
. (5.22)

A similar approach is used to find ḡ near the trailing edges. In the absence of walk-off

effects (Tw ⇒ 0), changes in ḡ scales with fiber length as L2 and with rise time as T−2
r .

To test validity of the approximate solution in Eq. (5.20), a number of numeri-

cal simulations are performed for a FOPA using realistic parameters and the results

are compared with the analytical expressions. To make the PM profile realistic, fil-

tered “rect” functions are used to simulate the NRZ bit stream. A 1-km-long fiber

with its zero-dispersion wavelength at 1556 nm and γ = 10 W−1/km is considered.

Other fiber parameters, taken from [99], are β3 = 0.049 ps3/km (dispersion slope =

0.03 ps/nm2/km), and β4 = −5.810−5 ps4/km. The two pumps are located at 1531

and 1581 nm and are launched with 150 mW of power at the input end. The signal is

launched with 0.1 µW of power at 1557 nm. With these parameters, the FOPA provides

a gain of 20 dB in the spectral region located between the two pump wavelengths.

In the numerical simulations phases were modulated using a pseudorandom bit

stream of NRZ pulses at a bit rate of 10 Gb/s. Figure 5.5(a) shows the modulated

phase profile of one of the pumps for a duration of 6 bits. Figure 5.5(b) shows how

P1/〈P1〉 (or P2/〈P2〉) varies as a function of time after propagation through the fiber.
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Figure 5.5: (a) Modulated pump phase over a duration of 6 bits at 10 Gb/s. (b) Normal-

ized pump power as a function of time. Numerical results (circles) are also shown for

comparison.

Solid lines represent the analytical predictions and circles show the numerical results.

The effect of different rise times is shown by using Tr = 25 and 40 ps. The rise time Tr

is defined as the time during which pump phases change from 10 to 90% of their peak

value. It is clear from Fig. 5.5 that pump powers are distorted at the locations where

pump phases change rapidly. A shorter rise time (Tr = 25 ps) increases the level of

distortion significantly.

Figure 5.6 shows temporal variations in the normalized signal power P3/〈P3〉 after

amplification in the same time window used for Fig. 5.5. Similar variations occur at the

idler wavelength. Comparison of Figs. 5.5(b) and 5.6 shows that variations in the signal

power follow pump variations and are enhanced considerably by the FWM process.

The agreement between the analytical theory and numerical simulations is excellent.
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Figure 5.6: Normalized signal power as a function of time at the FOPA output.

In most cases, the curves are indistinguishable, justifying the approximations made in

deriving Eq. (5.21).

To quantify the extent of degradation induced by PM-to-AM conversion, signal

SNR defined as 〈P3〉/σ3 is used where σ2
3 = 〈(P3(t)−〈P3〉)2〉 is the variance of signal

fluctuations. Figure 5.7 shows the signal SNR as a function of bit rate for different

rise times. The SNR values obtained in the absence of walk-off effects (δ13 = 0) are

shown by dashed lines for comparison. FOPA parameters are the same as those used for

Fig. 5.5. Clearly, signal SNR decreases rapidly as the bit rate of PM is increased. The

SNR also depends on rise time and it becomes < 23 dB even for a relatively small gain

of 20 dB, if NRZ pulses with a short rise time (Tr ≤ 25 ps) are employed. The situation

is worse for FOPAs with higher gains; a 40 dB gain will reduce the SNR below 20 dB.
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Figure 5.7: Signal SNR as a function of PM bit rate for Tr = 25 to 40 ps. Dashed curves

show the SNR without the walk-off effects.

5.4 Impact of Component PMD and PDL

In Section 5.3, it is shown that the pump-phase modulation degrades the signal and idler

SNR because it is converted to amplitude modulation by fiber dispersion. The fiber is

not the only component that can convert pump-phase modulation to amplitude modula-

tion. As it is discussed in Section 5.1, after pump phases are modulated, pumps have to

go through numerous components before they enter the fiber. As a result, pump-phase

modulation can be converted to amplitude modulation, as well as SOP modulation,

before the pumps even enter the fiber.

This Section introduces a new mechanism through which polarization-mode dis-

persion (PMD) and polarization-dependent loss (PDL) associated with various op-

tical components distort the pump fields and thus degrade the amplified signal and
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idler beams at the FOPA output. Dispersion-like distortion of a time-dependent signal

through PMD and PDL has been studied before in the context of telecommunication

systems [100] and erbium-doped fiber amplifiers [101].

In simplest terms, PMD has its origins in the dependence of birefringence-induced

phase shifts on frequency. PMD rotates the state of polarization (SOP) of optical fields

with different frequencies at different rates. Equivalently, the two polarization compo-

nents of a pulse travel with different group velocities such that the pulse disperses in

time [51], [83], [100]–[102]. An optical component with PDL attenuates the two po-

larization components of a field by different amounts [100]. The combination of PMD

and PDL affects both the power and the SOP of an optical field. Their combined impact

is aggravated further by the fact that the birefringence magnitude as well as the orien-

tation of the principal axes of some optical components may vary in time because of

environmental changes [51], [86]. As a result, it may not be possible to arrange these

components to minimize the PMD and PDL effects without using complex feedback

mechanisms.

Consequences of PMD and PDL for a FOPA are two-fold. First, the SOPs of the

pumps do not remain constant in time. Because the gain of the FOPA depends on

the SOPs of its pumps, the gain also varies in time. Second, the pump powers are

clipped by the components exhibiting PDL, causing them to vary in time. Even though

such changes in the pump SOPs and powers are relatively small, they affect the FOPA

gain significantly because this gain depends exponentially on the powers and SOPs of

the pumps. In the absence of pump-phase modulation, such variations in the pump

SOP and power would be only as fast as random variations in the PMD and PDL of

the optical components (on the time scale of a few minutes to hours) [86]. However,

as pump phases are modulated to suppress SBS, PMD and PDL can lead to signal

fluctuation on a time scale∼ 1 ns. Physically speaking, the instantaneous frequencies of

the pumps vary in time at the rates at which pump phases are modulated. As the pumps

pass through a component with PMD, their SOPs become time dependent on the same
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scale because PMD rotates different frequency components of pumps at different rates.

A PDL component following the PMD component attenuates the pump by different

amounts at different times. As a result, the pumps entering the FOPA have, in practice,

SOPs and powers that change with time at the rate of phase modulation.

In Section 5.4.1 the concept of effective PMD and PDL vectors are introduced. An

expression for the pump powers at the input end of the FOPA in terms of the effective

PMD and PDL vectors are derived in Section 5.4.2. This expression is used in Section

5.4.3 to find the FOPA gain in terms of the effective PMD and PDL vectors. Section

5.4.4 focuses on temporal changes in the signal power produced by PMD and PDL

when pump phases are modulated. In Section 5.4.5, a simple solution is proposed for

minimizing the impact of PMD and PDL on the FOPA performance.

5.4.1 Effective PMD and PDL Vectors

In the frequency domain, the action of an optical component exhibiting PMD on an

optical field at frequency ω can be described in the Jones space as [100]

|Aout(ω)〉= U(ω)|Ain(ω)〉, U(ω) = e−
i
2 ω~b(ω)·~σ (5.23)

where the vector~b(ω) = [b1(ω),b2(ω),b3(ω)] is the PMD vector of the optical com-

ponent in the Stokes space and~σ = [σ1,σ2,σ3] is the Pauli spin vector with components

as defined in Eq. (2.40) [3] Note that~b ·~σ, defined as b1σ1 + b2σ2 + b3σ3, is a 2× 2

matrix. The PMD vector~b(ω) is, in general, frequency dependent; the first term in the

expansion of~b(ω) is conventionally referred to as the first-order PMD. The PMD vec-

tor points in the direction of the fast axis in the Stokes space. Its magnitude b provides

the relative delay between the polarization components of the field that are parallel and

anti-parallel to the PMD vector.

The transfer matrix T of a component exhibiting PDL is not unitary. The optical

field after passing through such a component can be written as [100]

|Aout(ω)〉= T |Ain(ω)〉, T = e−µe~µ·~σ (5.24)
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where ~µ is the PDL vector with magnitude µ . In this representation of the PDL matrix,

the polarization component of a field that is parallel to ~µ experiences no loss but the

anti-parallel component is attenuated by exp(−2µ). Such a PDL component is said to

have a PDL of 10log10[exp(4µ)] in decibel units [100]. Some components used to pre-

pare FOPA pumps may also exhibit polarization-dependent gain (such as erbium-doped

fiber amplifiers [101]). Their effect is equivalent to that of a polarization-independent

gain followed by a PDL component.

In general an optical component may exhibit some degree of PMD and PDL at the

same time. Calculating the total transfer matrix of a large number of such components

becomes quite complicated. However, noting that any matrix M can be decomposed

into a unitary matrix and a positive Hermitian matrix in the form M = TU , modelling

of such a system can be simplified without loss of generality. More specifically, one can

assume that the pump passes through only two components, the first one having only

PMD with a transfer matrix U and the second one having only PDL with a transfer

matrix T [100]. In addition, it can be assumed that all polarization-independent changes

on the pumps, such as phase modulation and amplification, occur before the PMD and

PDL components. Note that the PMD and PDL represented by the matrices U and T

are not the same as the PMD and PDL vectors of any individual component, or a simple

combination of those [100].

5.4.2 Stokes Vector of the Pump After PMD and PDL

Distortion of the pump field after going through the components that have PMD and

PDL can be calculated using the concept of effective PMD and PDL vectors introduced

in the previous Section. The following well-known identities related to the Pauli spin
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vector are used in the rest of the derivation [102]:

(~r ·~σ)(~k ·~σ) = ~r ·~kσ0 + i(~r×~k) ·~σ (5.25)

(~r ·~σ)~σ(~r ·~σ) = 2~r(~r ·~σ)− r2~σ (5.26)

e~r·~σ = cosh(r)σ0 + sinh(r)r̃ ·~σ (5.27)

where~r and~k are complex valued vectors with r2 =~r ·~r and r̃ =~r/r.

The pump field before entering the PMD and PDL components has the form

|Ain(t)〉=
√

Peiφ(t)|ain〉 (5.28)

where P is the pump power after amplification, φ(t) is the phase modulation imposed

on the pump, and |ain〉 is the unit Jones vector of the pump. Using Eqs. (5.23) and

(5.24) the pump field after the PMD and PDL components can be expressed as follows

|Aout(ω)〉= T U(ω)|Ain(ω)〉. (5.29)

By substituting Eqs. (5.23), (5.24) and (5.28) in Eq. (5.29) and taking the Fourier

transform, the output pump field in time domain is found to be

|Aout(t)〉 = e−µe~µ·~σ
√

P
2π

∫
∞

−∞

dω exp
[
− i

2
ω~b ·~σ− iωt

]
∫

∞

−∞

dt ′ exp[iφ(t ′)+ iωt ′]|ain〉, (5.30)

where the PDL element is assumed to be independent of pump frequency. Using

Eq. (5.27) and changing the order of integration, Eq. (5.30) becomes

|Aout(t)〉= e−µe~µ·~σ
√

P
2π

∫
∞

−∞

dt ′ eiφ(t ′)
∫

∞

−∞

dω e−iω(t−t ′)

×
[

cos(ωb/2)− isin(ωb/2)b̂ ·~σ
]
|ain〉. (5.31)

The integrations in Eq. (5.31) can be performed analytically. By using Eq. (5.27),

the resulting expression can be written as

|Aout(t)〉 = e−µ
√

Pexp
( i

2
[φ(t +b/2)+φ(t−b/2)]

)
× e~µ·~σe−

i
2 θ(t)b̂·~σ|ain〉, (5.32)
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where θ(t) = φ(t + b/2)− φ(t − b/2). The Stokes vector of the pump, defined as

~Pout = 〈Aout |~σ|Aout〉, becomes

~Pout(t) = Pe−2 µ〈ain|e
i
2 θ b̂·~σe~µ·~σ~σ e~µ·~σe−

i
2 θ b̂·~σ|ain〉. (5.33)

To proceed further, the following relation that can be derived from Eqs. (5.25)–

(5.27) is used:

e~r
∗·~σ~σ e~r·~σ = [r̃(r̃∗ ·~σ)+ r̃∗(r̃ ·~σ)+ ir̃× r̃∗] |sinh(r)|2 +~αR

+ (|cosh(r)|2− (r̃ · r̃∗)|sinh(r)|2−~αI×)~σ (5.34)

where ~αR + i~αI = 2cosh(r∗)sinh(r)r̃. With this relation, Eq. (5.33) becomes

~Pout(t) = Pe−2µ
{

sinh(2µ)µ̂ +
[
1+2sinh2(µ)µ̂ µ̂

]
R(θ)p̂

}
(5.35)

where R(θ) = e
i
2 θ b̂·~σ~σ e−

i
2 θ b̂·~σ, and p̂ = 〈ain|~σ|ain〉 is the unit Stokes vector of the

input pump. R(θ) represents rotation of the SOP of the pump around the direction of

the PMD vector by an angle θ and using Eq. (5.34) it can also be expressed as

R(θ) = cosθ +(1− cosθ)b̂b̂+ sinθ b̂×, (5.36)

where the projection operator b̂b̂ and the cross-product operator b̂× are defined as [102]

b̂b̂ =


b1b1 b1b2 b1b3

b2b1 b2b2 b2b3

b3b1 b3b2 b3b3

 , b̂×=


0 −b3 b2

b3 0 −b1

−b2 b1 0

 . (5.37)

It follows from Eq. (5.35) that the pump SOP becomes time-dependent after the

PMD component. The PDL component makes the pump power also time dependent.

Since the amount of PMD is much smaller than the duration of a pump-phase modula-

tion cycle, one can expand φ(t±b/2) in a Taylor series and retain terms up to first-order

in b. In this case, θ(t) can be approximated as

θ(t)≈ b
∂φ(t)

∂ t
. (5.38)



105

Therefore, distortions are expected in time intervals during which pump phase changes

rapidly.

The power changes induced on the pump depend not only on the amounts of PMD

and PDL but also on the relative orientations of the PMD and PDL vectors with respect

to the pump SOP. For instance, if the input SOP of the pump is parallel to the PMD

vector (p̂ ‖ b̂), it is not affected by PMD. Similarly, if the PDL vector points in the same

direction (p̂ ‖ b̂ ‖ µ̂), pump power remains unaffected. It is clear from the rotation

matrix R(θ) that, for a given θ , the maximum SOP rotation occurs when the PMD

vector and the input pump SOP are orthogonal (b̂⊥p̂). In this case, the last term in

R(θ) contributes most because it represents the projection of the pump SOP on the axis

that is perpendicular to both the PMD vector and the pump SOP. In the same manner,

when the PDL vector is perpendicular to both the PMD vector and the input pump SOP

(b̂⊥p̂ and ±µ̂ ‖ b̂× p̂), the variations in the pump power are maximized.

In general, the directions of the three vectors, p̂, b̂, and µ̂ , do not remain fixed in

time and rotate randomly on a slow time scale. What is more, some components can

have both PMD and PDL at the same time making it impossible to control them in-

dependently. Therefore it is not possible to adjust the components so that a minimum

amount of distortion is guaranteed. In practice, one observes that pump power distor-

tions can vary over a wide range. In the worst case scenario, the three vectors p̂, b̂, and

µ̂ are mutually orthogonal, and Eq. (5.35) reduces to

~Pout(t) = Pe−2µ {[sinh(2µ)± cosh(2µ)sin(θ)] µ̂ + cos(θ)p̂} . (5.39)

Moreover, in FOPAs that use dual pumps, the distortions on the two pumps occur inde-

pendently and their contribution can add constructively or destructively.

To study how much the pump field is affected by PMD and PDL in a realistic sys-

tem, it is assumed that the pump is modulated using a pseudo-random bit sequence in

the nonreturn-to-zero format [48]. The use of the following functional form

φ(t) =
π

2
{erf [c0(2t +T0)/Tr]− erf [c0(2t−T0)/Tr]} (5.40)
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Figure 5.8: (a) Pump-phase variations over a 500-ps window centered on a single bit at

3 Gb/s. Variations of pump SOP (b) and pump power (c) for rise times of 25 ps (solid)

and 35 ps (dashed) with 0.5 ps of PMD and 0.5 dB of PDL.

allows us an easy way to adjust the full-width at half maximum and the rise time of the

pulses by choosing T0 and Tr appropriately. Here erf(x) stands for the error function,

and c0 ≈ 0.9 guarantees that Tr is the duration in which the pump phase increases from

10% to 90% of its maximum. Using Eqs. (5.38) and (5.40) the rotation angle is given

by

θ(t)≈ 2c0
√

πb
Tr

{
exp

[
− c2

0(2t +T0)/T 2
r

]
− exp

[
− c2

0(2t−T0)/T 2
r

]}
. (5.41)

This equation shows that the faster the pump phase is modulated and the larger the

PMD is, the larger the pump SOP rotation will be.

In recent experiments, pump phase has been modulated at bit rates ranging from 2

to 10 Gb/s [61], [65]. Rise times are quoted rarely, but a rise time of 30 ps was used in

[61]. Realistic values for PMD and PDL magnitudes are also needed. However, since
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these values can vary over a wide range in practice, they are varied over a realistic range.

As an example, Figure 5.8 is drawn for a PMD of 0.5 ps and a PDL of 0.5 dB. Part (a)

shows pump-phase variations from Eq. (5.40) for an isolated 1 bit at a bit rate of 3 Gb/s

(T0 = 333 ps). The solid and dashed curves in part (b) show θ(t) for rise times of 25

and 35 ps, respectively. It is assumed that the PMD vector is perpendicular to the input

pump SOP, resulting in the maximum rotation. At locations where the pump phase

changes rapidly, θ = 2.6◦ for Tr = 35 ps and increases to θ = 3.6◦ when the rise time

is reduced to 25 ps. Fig. 5.8(c) shows relative changes in the pump power for a PDL

of 0.5 dB for the same two rise times, assuming that the PDL vector is perpendicular

to both b̂ and p̂. In this configuration, the pump power varies by less than 0.5%. Even

though a 0.5% change sounds small, it can affect the FOPA performance as discussed

in next Section.

5.4.3 Polarization Dependence of FOPA Gain

The preceding discussion is quite general, and it can be used for both single- and dual-

pump FOPAs. This Section focuses on a practical, dual-pump FOPA configuration

in which the two pumps are linearly as well as orthogonally polarized. Such FOPAs

can provide a relatively large gain bandwidth that is nearly insensitive to signal SOP

[55]–[61] as long as pump polarizations remain perfectly orthogonal.

In Section 5.4.1, it is shown that the SOPs and powers of the two pumps change

during time intervals their phase changes rapidly. The important question is how the

signal gain changes when the pumps experience PMD and PDL before entering the

FOPA. As the SOPs of the input pumps are not fixed, vectorial FWM equations have

to be used. Since most FOPAs use long lengths of fiber, the expression for the signal

gain obtained in Section 3.3.3 can be used assuming that the pump wavelengths are

close enough to allow for ignoring PMD effects. In this case the signal gain is given by
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Eqs. (3.50) and (3.51) as

G3(L) =
G+ +G−

2
+

G+−G−
2

p̂0 · p̂3, G± = 1+
[

F±
g±

sinh(g±L)
]2

(5.42)

where

g± =
√

F2
±−κ2, F± = γe

√
P1P2[1± cos(θp/2)]. (5.43)

According to Eqs. (5.42) and (5.43), if the pump powers or pump SOPs change, the

signal gain is also affected. In fact, even if pump powers and SOP change slightly, the

impact on the signal can be quite large because of the presence of the sinh(g±L) in Eq.

(5.43). To illustrate the impact of PMD and PDL on the signal and idlers, consider a

FOPA designed using a 1-km-long highly nonlinear fiber (γe = 15 W−1km−1) having

its zero-dispersion wavelength at 1583.5 nm. The third-and fourth-order dispersion

parameters at this wavelength are β3 = 0.055 ps3/km and β4 = 2.35× 10−4 ps4/km.

These fiber parameters correspond to an actual configuration used experimentally [48].

The two pumps are orthogonally polarized initially and are launched with 260 mW of

power at wavelengths of 1559 and 1609 nm.

Figure 5.9 shows the signal gain G3 as a function of signal frequency predicted by

Eq. (5.42) for such a FOPA. As shown by the solid curve, in the absence of the PMD and

PDL effects, the FOPA produces a uniform gain of 28 dB in the central spectral region

between the two pumps. Dependence of signal gain on the relative orientations of input

pumps is shown by the dotted and the dashed curves for which θp = 180◦± 2.5◦. In

each case, the vertical bars show the extent of gain variations when pump powers are

changed artificially by ±1%. The main point to note is that the signal can change by

> 1 dB with relatively small changes in pump powers and small deviations from perfect

orthogonality of the pump SOPs. It should be stressed that even though Figure 5.9

shows only the signal gain, the same behavior occurs for the idler beam because FWM

generates signal and idler photons in pairs. In the following, the focus is on signal

amplification but the conclusions apply for other FOPA applications related to phase

conjugation or wavelength conversion.
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Figure 5.9: FOPA gain as a function of signal wavelength when two pumps are orthog-

onally polarized (θ = π , solid curve). The dotted and dashed curves show the cases

when pump SOPs make an angle of 177.5◦ and 182.5◦, respectively. In each case,

vertical bars show the extent of gain variations when pump powers vary by 1%.

5.4.4 Temporal Variations in Amplified Signal

Now, temporal changes in the signal power produced by PMD and PDL can be cal-

culated when pump phases are modulated to suppress SBS. Figure 5.10 shows the

amplified signal power (normalized to its time-averaged value) over the same time in-

terval used for Fig. 5.8. As discussed in Section 5.4.1, the relative orientations of the

pump SOPs with respect to the PMD and PDL vectors determines how much the signal

is distorted. To illustrate this point, parts (a)–(c) of Fig. 5.10 correspond to different

orientations of the PMD and PDL vectors. In Fig. 5.10a, the pumps are linearly and

orthogonally polarized such that p̂1 = [1,0,0] and p̂2 = [−1,0,0]. The PMD and PDL

vectors affecting the first pump are b̂1 = [0,0,1] and µ̂1 = [0,1,0]. These vectors for
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Figure 5.10: Time dependence of the relative signal power at the FOPA output for three

different orientations of the pump SOP vector, PMD vector, and PDL vector. In parts

(b) and (c) different curves are for different signal SOPs discussed in the text.

the second pump are oriented such that b̂2 = [0,0,−1] and µ̂2 = [0,−1,0]. The mag-

nitudes of PMD and PDL are 0.5 ps and 0.5 dB, respectively, for both pumps. Since

pumps pass through the PMD components pointing in the opposite directions and their

phases are modulated in opposition, both pumps are rotated in the same direction. In

this situation, the pumps preserve their orthogonality throughout the FOPA length. The

PDL vectors are oriented such that the two pumps have the same power profile (similar

to that shown in Fig. 5.8). Therefore, signal distortions in Fig. 5.10a are solely due

to pump power variations. Moreover, as the pumps maintain their orthogonality, dis-

tortions are the same for all input signal SOPs, i.e, such a FOPA does not exhibit any

polarization-dependent gain (PDG).

In Fig. 5.10b, the PMD vector affecting the second pump is changed to b̂2 = [0,0,1]

so that pumps rotate in opposite directions and lose their orthogonality. Also, pump
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powers are affected by PDL such that their total power is nearly time-independent. As

a result, distortions in Fig. 5.10b originate mostly from variations in the pump SOPs.

In the time interval where pump phases change rapidly, the pump SOPs deviate from

orthogonality, and the signal gain depends on the input signal SOP as well as the pump

SOPs. The solid, dashed, dotted and dashed-dotted curves in Fig. 5.10b correspond

to the four choices of signal SOPs governed by p̂3 = [0,1,0], [0,−1,0], [1,0,0] and

[0,0,1], respectively. For certain signal SOPs, signal power can fluctuate more than

65%, indicating severe degradation of the FOPA performance caused by the PMD ef-

fects.

In Fig. 5.10c, both the PMD and PDL vectors affecting the second pump are taken

to be the same as those that affect the first pump. In this configuration, pump SOPs

rotate in opposition but pump powers change in unison. The contributions of pump

power variations adds to the distortion caused by pump-polarization variations at the

rising edge of the phase modulation profile but is subtracted from it at the falling edge.

As a result, the magnitude of signal distortion at the rising edge is even larger than that

shown in Fig. 5.10b. In all cases in Fig. 5.10, the pump SOP, PMD and PDL vectors

are chosen to be mutually orthogonal for both pumps, resulting in maximum pump

distortion. However, the distortion of the two pumps may add up or mitigate the effects

of each other, albeit in an uncontrollable manner. Moreover, since the directions of the

PMD and PDL vectors may change with time, signal distortions may fluctuate in time,

taking on shapes similar to those shown in Fig. 5.10 or their combinations. In practice,

PMD and PDL effects would appear as noise and lower the signal-to-noise ratio.

A comparison of Fig. 5.10a and Fig. 5.10b shows that for a given amount of PMD,

deviations from orthogonality of the pump SOPs are more harmful than pump-power

distortions caused by the combination of PMD and PDL. Even though the pump

SOPs as well as pump powers affect the FOPA gain exponentially by modifying F±

in Eq. (5.43), the nonorthogonality of the pump SOPs affects this quantity directly

through θp and is thus more harmful. It is important to stress that Fig. 5.10 focuses
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on the cases in which the PMD and PDL vectors are oriented such that they cause the

largest degradation of the pump. In practice these vectors can align from time to time

in such a way that the signal is relatively unaffected.

Unlike FOPAs with orthogonal pumps, when pump SOPs are parallel, their rotation

becomes less of a problem. Signal degradation in this situation is mainly due to pump

power variations which, as seen in Fig. 5.10a, are quite small (< 2%).

5.4.5 A Practical Solution

Since the nonorthogonality of two pumps caused by PMD and PDL is detrimental to the

FOPA performance, it would help if their SOPs are made perfectly orthogonal before

the pumps enter the fiber. This can be enforced in practice by placing good-quality

polarizers at the input end of the FOPA. Even though these polarizers would cause

some power distortion, it is shown in this section that they improve the signal quality

drastically at the FOPA output. Their use thus constitutes a simple practical solution to

the PMD- and PDL-induced degradation of FOPAs.

Figure 5.11 shows how much signal distortion can be mitigated by using polarizers.

This Figure is drawn under conditions identical to those used for Fig. 5.10 except for the

use of polarizers. Polarizers are adjusted so that their maximum transmission axes are

parallel to the input SOPs of the pumps with a 30-dB extinction ratio. A comparison of

Figs. 5.10 and 5.11 shows that polarizers help in reducing signal distortion in all cases.

In some cases, signal-power variations are reduced from more than 65% to less than

3%. The residual distortion is related to the finite extinction ratio of the polarizers used,

and a small amount of distortion is induced by the polarizers themselves. Figure 5.11b

shows that the FOPA exhibits some PDG because different signal SOPs are affected

differently. This is a sign that pumps still have polarization components that are not

orthogonal. If polarizers with an extinction ratio of 50 dB are used, the distortion

reduces to below 1% for all input signal SOPs. Polarizers also help reducing the signal
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Figure 5.11: Same as Fig. 5.10 except, polarizers with 30-dB extinction ratio are used

before two pumps enter the FOPA.

distortion in Fig. 5.10c where variations in both the pump power and pump SOPs affect

the signal. In this case, if polarizers with >50 dB extinction ratio are used, PDG totally

disappears and Fig. 5.11c reduces to Fig. 4a for all input signal SOPs.

From a practical perspective, one is interested in knowing how much signal quality

is degraded by the PMD and PDL effects. For this purpose, the standard deviation of

signal fluctuations is calculated by using σ3 =
[
〈P2

3 〉−〈P3〉2
]
, where the angle brackets

denote time averaging over a single bit duration. In Fig. 5.12, the relative distortion,

σ3/〈P3〉, is plotted as a function of PMD for several values of the average FOPA gain

G3 when the relevant vectors are adjusted to give the maximum distortion. The PDL

magnitude is taken to be 0.5 dB in all cases. The rise time is taken to be 35 ps. Polarizers

are used in Fig. 5.12b to demonstrate how much they help in improving the signal

quality. Figure 5.12 shows that signal distortion increases with PMD as well as with G3.

Polarizers reduce the impact of PMD and PDL induced distortions to a large extent. For
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Figure 5.12: Noise-to-signal ratio plotted as a function of PMD, assuming a PDL of

0.5 dB for both pumps. Notice the dramatic improvement in the case (b) in which

polarizers with 30-dB extinction ratio are used.

example, for a 1-ps PMD and a 28-dB FOPA gain, the output noise level is reduced from

15% to 0.5% when polarizers are used at the input end of the FOPA. Note that 〈P3〉/σ3

is not related directly to signal-to-noise ratio since only the worst case distortion is

taken into account.

5.5 Conclusions

In conclusion, noise associated with pumps is a major source of signal degradation. If

FOPAs are not designed properly they can reduce signal SNR severely.

In Section 5.2 it is shown that the walk-off effects can be beneficial in designing

low-noise FOPAs when the primary source of noise is the ASE added by EDFAs used
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to amplify pumps. How much pump noise is transferred to the signal depends on the

FOPA length and the bandwidth of the pump filter. Numerical simulations show that

FOPA length plays a significant role, and the SNR is lower for shorter fiber lengths.

From the standpoint of RIN transfer, it is better to use a longer fiber. In practice,

the FOPA length should be optimized to balance the conflicting requirement of a high

bandwidth and a low RIN.

Section 5.3 showed that PM-to-AM conversion of pumps lowers the SNR of both

the amplified and wavelength-converted signals when dual-pump FOPAs are employed.

The problem can be solved to some extent by optimizing the bit rate and the rise time

of the bit stream used for pump PM. One should choose PM parameters such that the

desired level of SBS suppression is achieved without inducing large variations in the

signal and idler powers. The length of the FOPA is also an important design parameter

since it determines both the extent of PM-to-AM conversion and the walk-off effects.

It is shown in Section 5.4 that PMD and PDL associated with various optical com-

ponents affect the quality of pump beams even before they enter a FOPA, and this in

turn may produce relatively large changes in the signal and idler powers at the FOPA

output. The magnitude of such changes depends on the relative SOPs of the two pumps.

In particular, predicted changes are relatively large for orthogonally polarized pumps,

but they become negligible for copolarized pumps. A simple solution is proposed to

mitigate the impact of PMD and PDL. It is shown that the use of high-quality polariz-

ers just before the input end of the fiber can improve the performance of a dual-pump

parametric amplifier dramatically.
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6 Polarization-Independent

Single-Pump FOPAs

It is discussed in Chapter 3 that dual-pump FOPAs have several advantages compared to

single-pump FOPAs. For instance, dual-pump FOPAs can provide a more uniform gain,

they can be made to be insensitive to signal polarization using orthogonally polarized

pumps, and they are more robust to pump-phase modulation. However, the single-pump

configuration remains attractive because of its relative simplicity [6]–[17], [43].

6.1 Review of Existing Techniques

A major drawback of the single-pump configuration is that the efficiency of the under-

lying FWM process depends critically on the relative polarization states of the pump

and signal. Several schemes have been proposed to solve this problem. However these

schemes require additional optical components whose use increases the complexity of

the FOPA design.

One of the most commonly used schemes employs a polarization-diversity loop

[103]–[106]. In this approach, the pump beam is split into its orthogonally polarized

components with equal amount of powers, which counterpropagate inside a Sagnac

loop. When the signal enters the loop, it is also split into its orthogonally polarized

components, each of which copropagates with the identically polarized pump. The
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two polarization components of the signal are then recombined after the polarization-

diversity loop. Such polarization-diversity loops have been used for optical sampling

at 80 Gb/s with a residual polarization dependence of only 0.7 dB [104]. By using

a polarization-maintaining HNLF inside such a loop, the wavelengths of 32 channels,

each operating at 10 Gb/s, were converted simultaneously with a polarization depen-

dence of only 0.2 dB [105]. A polarization-maintaining, highly birefringent fiber was

used in this experiment to make sure that pump, signal and idler fields remain copolar-

ized during the propagation and are not affected by PMD induced by residual birefrin-

gence.

In a recent experiment a slightly more complicated method was used [63]. In this

scheme, the pump is linearly polarized at a fixed axis and signal is launched with arbi-

trary polarization. After propagating in the fiber once, the pump field is reflected back

into the fiber using a fiber-brag-grating mirror. Signal and idler are also reflected back

into the fiber after their SOPs are rotated by 90 degrees using a Faraday rotator. In this

scheme, each polarization component of the signal field experiences gain from a copo-

larized pump either in the forward or backward propagation. This scheme is analogous

to the polarization-diversity loop scheme in the sense that polarization components of

signal and idler are amplified by the same amount at different stages. Even though

this scheme is slightly more difficult to implement, it makes use of whole pump power,

whereas in the polarization diversity loop scheme, the signal is amplified by half of the

pump power. Other application-dependent schemes require more complicated setups

and they work only when pump field is pulsed [23], [107].

This Chapter proposes a relatively simple scheme that requires only a highly bire-

fringent fiber for FWM. In this scheme, the pump beam is polarized at 45◦ from the

slow (or fast) axis of the fiber, while the signal polarization can vary over the entire

Poincaré sphere. Under such conditions, the pump power is divided equally between

the two principal axes of the fiber. The vector theory of FWM is used to show that, un-

der these conditions, each pump component amplifies only the copolarized signal com-
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ponent because the orthogonal FWM process is not phase-matched because of large

birefringence. The results of this Chapter show that gain variations with respect to

signal SOP can be reduced to <0.1 dB with the proposed scheme.

6.2 Theoretical Model

FWM in highly birefringent fibers have been investigated in the context of single- [108]

and dual-pump FOPAs [109]. It has been shown that, in highly birefringent fibers, bire-

fringence also affects the phase-matching condition. The phase-matching condition for

different FWM processes depends on fiber birefringence in different ways. It is shown

below that such dependence on fiber birefringence can be used to eliminate unwanted

FWM processes in a certain wavelength region where polarization-independent para-

metric gain can be achieved.

The vectorial form of FWM equations for a single-pump FOPA using a highly bire-

fringent fiber can be obtained from the vectorial FWM equations (2.67)–(2.68) derived

for dual-pump FOPAs in Section 2.6, by setting the second pump field to zero |A2〉= 0

in the pump equation (2.67) and replacing both |A1〉 and |A2〉 by |A1〉/
√

2 in the signal

and idler equations (2.68) :

d|A1〉
dz

= iβ (ω1)|A1〉+ ibσ1|A1〉+ iγ
[

P1−
1
3
〈A1|σ3|A1〉σ3

]
|A1〉, (6.1)

d|A3〉
dz

= iβ (ω3)|A3〉+ i[b+b1(ω3−ω1)]σ1|A3〉

+ iγ
[
P1 + |A1〉〈A1|−

1
3

(
〈A1|σ3|A1〉σ3 +σ3|A1〉〈A1|σ3

)]
|A3〉

+ iγ
[
|A1〉〈A∗1|−

1
3
σ3|A1〉〈A∗1|σ3

]
|A∗4〉, (6.2)

d|A4〉
dz

= iβ (ω4)|A3〉+ i[b+b1(ω4−ω1)]σ1|A4〉

+ iγ
[
P1 + |A1〉〈A1|−

1
3

(
〈A1|σ3|A1〉σ3 +σ3|A1〉〈A1|σ3

)]
|A4〉

+ iγ
[
|A1〉〈A∗1|−

1
3
σ3|A1〉〈A∗1|σ3

]
|A∗3〉, (6.3)
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where β (ω) = ω(nx + ny)/(2c) is the average propagation constant, nx and ny are the

effective mode indices along the slow and fast axes, respectively. The two birefringence

parameters are defined as b = δnω1/c and b1 = δn/c, where δn = nx−ny is assumed

to have negligible frequency dependence. The term b1 is the PMD term and it is re-

sponsible for frequency-dependent birefringence. Unlike the random birefringence and

PMD terms discussed in Sections 3.3 and 4.2, and the effective PMD term introduced

in Section 5.4, birefringence in highly birefringent fibers discussed in this Section is

much larger and has a fixed direction. To stress this difference, the effect of the PMD

term will be discussed in the context of differential-group velocity difference (DGD)

defined as ∆τ = b1L. In physical terms, DGD represents the relative delay between

the two polarization components of a field propagating along the fast and slow axes.

The fiber is assumed to have a linear birefringence, and the equations are written in the

linear SOP basis. Therefore, birefringence is expressed in terms of the σ1 matrix.

Equation (6.1) shows that the pump polarization changes because of fiber birefrin-

gence as well as SPM-induced coupling between the two polarization components of

the pump. Fiber birefringence and nonlinear birefringence rotate the pump SOP around

different axes which leads to a complicated motion. To see the nature of this evolution

it is instructive to write the equation for the evolution of individual polarization com-

ponents of the pump field as

du1

dz
= iγ

(
|u1|2 +

2
3
|v1|2

)
u1 +

iγ
3

v2
1u∗1e−i4πz/LB (6.4)

dv1

dz
= iγ

(
|v1|2 +

2
3
|u1|2

)
v1 +

iγ
3

u2
1v∗1ei4πz/LB (6.5)

where, LB = 2π/b is the beat length, and a change of variables is introduced through

|A1〉=

 u1eibz/2

v1e−ibz/2

eiβ (ω1)z. (6.6)

The first two terms on the right hand side of Eqs. (6.4) and (6.5) can be called SPM

and XPM terms. These terms only contribute to the phase and do not change the power
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contained in that component. However, the last terms are called the coherent coupling

terms and they can transfer energy between the two polarization components of the

pumps. This can be seen by calculating the evolution of the power in each polarization

component as follows

d|u1|2

dz
=−2γ

3
Im

{
(v1u∗1)

2e−i4πz/LB
}

(6.7)

d|v1|2

dz
=−2γ

3
Im

{
(v∗1u1)2ei4πz/LB

}
. (6.8)

In general, v1u∗1 is not real and the two polarization components exchange energy. How-

ever, when the beat length (LB = 2π/b) of the fiber is much shorter than the nonlinear

length [LNL = (γP1)−1], the coherent coupling term can be neglected. As a result, in

highly birefringent fibers, the pump powers in the fast and slow axis retain their power

along the fiber length. Ignoring the last term in Eqs. (6.4) and (6.5), these equations can

be solved to give

|A1(z)〉= exp
[
iβ (ω1)z+ i(bz/2)σ1 +

iγz
6

(
5〈A1|A1〉+ 〈A1|σ1|A1〉σ1

)]
|A1(0)〉. (6.9)

To see the origin of various FWM processes explicitly, a simple change of variables

is introduced for the signal and idler fields as uk

vk

 = exp
[

iz
2

[b+b1(ωk−ω1)]σ1 +
2i
3

γz(2〈A1|A1〉+ 〈A1|σ1|A1〉σ1)
]
|Ak〉

(6.10)

where uk and vk (k = 3 or 4) are the polarization components along the fast and slow

axes. Using Eq. (6.10) and the solution given in Eq. (6.9) in Eq. (6.2) and (6.3), the
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individual polarization components of the signal and idler are found to evolve as

du3

dz
= iγ

(
u2

1u∗4 +
1
3

v2
1u∗4e−i4πz/LB +

2
3

u1v1v∗4ei(∆τ∆ω)z/L
)

e−iκz

+
2iγ
3

u1v∗1v3ei(∆τ∆ω)z/L +
2iγ
3

u∗1v1v3e−i4πz/LB, (6.11)

dv3

dz
= iγ

(
v2

1v∗4 +
1
3

u2
1v∗4e−i4πz/LB +

2
3

v1u1v∗4e−i(∆τ∆ω)z/L
)

e−iκz

+
2iγ
3

v1u∗1u3e−i(∆τ∆ω)z/L +
2iγ
3

v∗1u1u3e−i4πz/LB, (6.12)

du4

dz
= iγ

(
u2

1u∗3 +
1
3

v2
1u∗3e−i4πz/LB +

2
3

u1v1v∗3e−i(∆τ∆ω)z/L
)

e−iκz

+
2iγ
3

u1v∗1v4ei(−∆τ∆ω)z/L +
2iγ
3

u∗1v1v4e−i4πz/LB, (6.13)

dv4

dz
= iγ

(
v2

1v∗3 +
1
3

u2
1v∗3e−i4πz/LB +

2
3

v1u1v∗3ei(∆τ∆ω)z/L
)

e−iκz

+
2iγ
3

v1u∗1u4ei(∆τ∆ω)z/L +
2iγ
3

v∗1u1u4e−i4πz/LB, (6.14)

where ∆ω = ω3−ω1, κ = ∆β + γP1 is the phase-mismatch parameter and the quantity

∆β = 2
∞

∑
m=1

β2m∆ω
2m/(2m!) is its linear part originating from fiber dispersion, as usual.

In deriving Eqs. (6.11)–(6.14), pump powers along the two principal axes are chosen to

be equal at the input end, i.e., |u1|2 = |v1|2 = P1/2.

6.3 Competing FWM Processes

Different nonlinear processes can be identified easily in Eqs. (6.11)–(6.14). The first

three terms in the parentheses are the FWM terms; they transfer energy from the pump

to the signal and idler as long as the phases associated with these terms do not vary con-

siderably over one nonlinear length. The first FWM term couples the pump, signal and

idler components copolarized along the same axis. Since each component of the signal

is amplified independently by the same amount, this term yields polarization-insensitive

gain. Its phase-matching condition, κ = 0, is independent of fiber birefringence and

leads to relatively broad gain bandwidth in the vicinity of the pump frequency. This

FWM process is the one that is considered in Section 3.1 in the scalar FWM case,
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where all fields are assumed to have the same linear polarization. It would provide the

dominant contribution and make the signal gain polarization-independent if one ensures

that this FWM process is the only phase-matched process, in the frequency region of

interest.

The second FWM term transfers energy from the pump to the copolarized signal

and idler components that are orthogonally polarized to the pump. This FWM process

can be separated into two parts. One that transfers energy from v1 to u3 and u4, as

described by the second term in Eq. (6.11) and the second term in Eq. (6.13) and the

other that transfers energy from u1 to v3 and v4 as described by the second terms of

Eqs. (6.12) and (6.14). The phase-matching condition for these two processes become,

κ±4π/LB = 0, respectively. Clearly, the phase-matching condition depends heavily on

fiber birefringence and cannot be satisfied in the vicinity of the pump frequency where

the first FWM process is phase-matched, i.e, κ ≈ 0.

The third FWM term involves both polarization components of the pump at the

same time, and energy is transferred from them to the signal and idler components

that are orthogonally polarized. Such a FWM process leads to polarization-dependent

gain. The phase-matching condition for this process, κ ± (∆ω∆τ/L) = 0, depends

on birefringence through the DGD ∆τ . The plus and minus signs depend on whether

the signal is on the fast or the slow axis assuming ω3 > ω1. These FWM processes

can also be nearly eliminated by choosing a fiber with birefringence large enough that

δn� γP1c/∆ω .

The last two terms in Eq. (6.11) involve only the pump and the signal, and they lead

to polarization-dependent XPM. Combined with other FWM processes, these terms can

also contribute to polarization-dependent gain by transferring energy from one compo-

nent of the signal to the other one. However, when the fiber has large DGD, these terms

cannot be phase-matched. For the same reason, it is possible to realize polarization-

insensitive XPM in a highly birefringent fiber [110].
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Figure 6.1: Schematic of the proposed scheme. A linearly polarized pump is launched

at 45◦ from each principal axis. The second half of the fiber is rotated by 90◦ and

spliced to the first half.

When DGD is large, the only process that satisfies phase matching in the vicinity

of the pump frequency is the first FWM term. Retaining only this term in Eqs. (6.11)–

(6.14), following the standard procedure used in Chapter 3 the signal gain is found to

be

G(ω3) = 1+
sinh2(gL/2)

(gLNL)2 , g =
√

(γP1)2−κ2. (6.15)

6.4 Proposed Scheme and Results

One issue remains to be addressed. Because of a large DGD needed for polarization-

insensitive gain, two polarization components of the signal (and idler) would split in

the time domain and would not remain synchronous at the output end. This may not

be desirable in practice, especially when the signal is in the form of pulses. However,

in practice, this problem can be solved with a simple trick. The basic idea is shown in

Fig. 6.1 and consists of cutting the birefringent fiber in half, rotating the second half

by 90◦ so that its slow and fast axes are reversed, and splicing it back to the first half.

In the second section, the signal still experiences polarization-insensitive gain (because
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the pump is still oriented at 45◦ with respect to the principal axes), but the DGD induced

in the first section is completely compensated inside this section. Of course, one can

also employ a pre- or post-compensation scheme in which the DGD is compensated,

before or after the FOPA, by sending the signal (and idler) pulses through an unpumped

birefringent fiber that has the same magnitude of DGD but its principal axes are rotated

by 90◦ from the FOPA fiber.

To test the validity of all the assumptions that are used to obtain the simple analyt-

ical expression given in Eq. (6.15), the coupled-nonlinear Schrödinger equation (2.54)

derived in Section 2.5 is solved numerically, using the split-step Fourier-transform

method. The FOPA parameters used in the simulations correspond to a realistic, highly

nonlinear fiber and are L = 1 km, γ = 17 W−1km−1, β3 = 0.055 ps3/km, and β4 =

2.35× 10−4 ps4/km. The zero-dispersion wavelength of the fiber is at 1583.5 nm and

its birefringence δn = 10−6 corresponds to a beat length of 1.5 m. Birefringence is kept

low intentionally so that residual effects of unwanted FWM processes are visible. The

pump is in the form of quasi-CW pulses with a peak power of 320 mW at a wavelength

of 1583.7 nm.

Figure 6.2 shows the FOPA gain as a function of signal wavelength. The central

peak is at the location of the pump. The solid and dotted curves show the maximum and

the minimum gain occurring when the signal polarization is parallel or perpendicular

to the pump polarization, respectively. The signal gain lies in between these two curves

for other polarization states. The dashed curve shows, for comparison, the signal gain

predicted by Eq. (6.15). Clearly, a nearly polarization-independent gain is achieved

even for a fiber birefringence as low as δn = 10−6.

The inset in Figure 6.2 shows that a small amount of polarization dependence re-

mains in the form of small-scale ripples. Its magnitude can be quantified through a

quantity, called the polarization-dependent gain (PDG) and defined as the ratio of the

maximum to the minimum signal gain, as the input signal SOP is varied. As seen in

the inset, PDG remains below 0.5 dB across the gain peak. To study the dependence of
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Figure 6.2: Signal gain as a function of wavelength. The solid and dotted curves corre-

spond to signal polarizations that are parallel and orthogonal to the pump, respectively.

The dashed curve shows the gain predicted by Eq. (6.15). The inset shows the gain on

a magnified scale.

PDG on birefringence, δn is varied from 10−6 to 2× 10−5. Further inspection shows

that the amplitude of the ripples (hence PDG) decreases and their frequency increases

as the fiber birefringence is increased. Figure 6.3 shows PDG as a function of fiber

birefringence. The upper curve corresponds to the same FOPA pumped with 500 mW

of pump power, producing 30 dB peak gain. It is found that PDG scales inversely with

fiber birefringence (on a dB scale) and reduces to <0.05 dB when fiber birefringence

exceeds 10−5. The solid curves show the fit obtained using an inverse dependence of

PDG on δn.



126

1 10 20
0

0.2

0.4

0.6

0.8

17 dB Gain

30 dB Gain

P
ol

ar
iz

at
io

n−
D

ep
en

de
nt

 G
ai

n 
(d

B
)

δn × 106

Simulation
δn−1 Fit

3.3 33.3 66.6

0

0.2

0.4

0.6

0.8

DGD (ps)

Figure 6.3: Polarization-dependent gain as a function of fiber birefringence for two

values of peak gain. The top scale shows the corresponding differential group delay.

The solid curves show a fit based on the inverse dependence of PDG on δn.

6.5 Conclusions

In conclusion, this Chapter presented a novel and simple scheme for making single-

pump FOPAs exhibiting negligible (<0.1 dB) amount of PDG. Since this scheme

makes use of a birefringent fiber, it is not affected by randomly varying residual bire-

fringence and resulting PMD [12], [84], [85]. This scheme has the advantage of sim-

plicity and makes use of only a birefringent fiber.
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